
Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

81

INTEGRATION OF MEDICAL SIMULATION EQUIPMENT

INTO UNIFIED DATA SYSTEM

1
ANDREY ALEKSEEVICH SVISTUNOV,

1
DENIS MIHAYLOVICH GRIBKOV,

2
SERGEY

SERGEEVICH SMIRNOV,
2
DMITRII ALEKSANDROVICH SYTNIK,

3
ALEKSANDR LVOVICH

KOLYSH
1
State Federal-Funded Educational Institution of Higher Professional Training I.M.

Sechenov First Moscow State Medical University of the Ministry of Health of the

Russian Federation, 119991, Moscow, Trubetskaya Street, 8, block 2, Russia
2
Complex Systems LLC, 170021, Tver, Skvortsova-Stepanova Street, 83, Russia

3
INTERMEDICA LLC, 603005, Nizhny Novgorod, Semashko Street, 20, Russia

ABSTRACT

At present there are no unified standards, regulations, protocols of data transfer from medical simulators by

various manufacturers. This prevents development and improvement of automation systems of simulation

training. This work is aimed at development of software which will provide merging of medical simulators

and training devices by various manufacturers into unified data system. This target is based on developed

and documented binary data format, where data are presented in the form of coupled key/value pair. On the

basis of the developed binary data format the structure of data package has been developed as well as

command list for interaction between client and server applications. Using the developed data format and

TCP/IP proprietary data exchange protocol has been developed. As an alternative, the data exchange

protocol on the basis of JSON format has been developed. The developed client and server applications

facilitate data exchange between software of medical simulation equipment and designed data system. The

developed software has been tested on the following medical simulators and training devices: Resusci Anne

(Laerdal), Lap-X (Epona), and Lap Mentor (Simbionix). In the future it is planned to expand possibilities of

the data system and to connect new simulators and training devices to this system. The protocol and

software, developed in this work, make it possible to combine data from various medical simulators in the

frame of unified data system in real time. The obtained results facilitate automation of training processes on

the basis of medical simulators.

Keywords: Simulator, Simulation Training, Medical Training Device, Data Base, Software, Data System

1. INTRODUCTION

Simulation training in medicine becomes more

and more popular nowadays [1]. Simulation centers

are being established aiming at education of

students, post graduates, medical residents, as well

as further training of practicing physicians [2].

Medical simulation equipment and medical training

devices in such centers are supplied by various

manufacturers for various fields: anesthesiology

and emergency medicine [3], obstetrics,

gynecology, perinatology and pediatry [4], surgery

[5]. This list increases constantly in the course of

development and improvement of simulation

techniques. Currently there are several data systems

available in the market and aimed at automation

and management of training in simulation centers.

However, the market of this field of data systems is

not sufficient, there are no unified requirements and

standards, regulations, protocols of data transfer

from medical simulators by various manufacturers.

Thus, manufacturers of simulators develop software

only for their own products and prevent

communications with simulators by other

manufacturers. This results in significant obstacles

for operation of simulation centers, when technical

achievements cannot improve efficiency, expected

initially, but rather lead to creation of additional

processes and tasks. This can be exemplified by

such manufactures and their software: CAE

Healthcare LearningSpace [6], Laerdal SimCenter

[7], Simbionix 3D Systems [8].

1.1.Formulation of the problem

Each manufacturer of medical simulators has its

own approach to designing of interface,

arrangement of data exchange and data storage

means. For instance, data about users and test

results can be stored in various data base

management systems (DBMS), such as MSAccess,

MSSQLServer, SQLite, MySQL. In addition, data

can be stored in XML format [9] and arbitrary

binary formats. Software of certain simulators and

training devices arranges the output data on results

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

82

of system operation in the form of reports in PDF

format. The test results are not always presented in

Russian language and are not always arranged

according to Russian medical standards. Therefore,

a complicated problem appears concerning

integration of required data formats of simulation

equipment by various manufacturers into unified

data system.

The training devices summarized in Table 1 were

selected for integration into unified data system.

The selection was based on the principle of

diversity with regard to medical fields and

manufacturers.

Table. 1. Medical Training Devices And Simulators

Selected For Integration Into Unified Data System

Designation
Manufacturin

g company

Link to

website

Resusci Anne Laerdal [10]

Lap-X Epona [11]

Lap Mentor Simbionix [12]

Gi Mentor Simbionix [13]

ORZone ORZone [14]

Angio Mentor Simbionix [15]

Arthrosim
Touch of Life

Technologies
[16]

UroSim,

ArthroS,

HystSim

VirtaMed

[17]

[18]

[19]

In order to integrate medical simulation

equipment into unified data system certain data

exchange protocol is required, which should be

developed. Hence, a format of transfer of data and

arbitrary objects should be selected. In our case the

objects can be presented by tables with various

data, video files, binary files with plots, various

images. In this regard such widely applied formats

as XML [19] and JSON [20] are not suitable for our

case. Network communication using these formats

is very resource intensive and in some cases it

cannot be applied at all. Application of binary

specifications XML and JSON is not very

convenient due to different implementation and, as

a consequence, to different data interpretation. In

addition, the aspect of implementing complexity

arises, since one formats enable increase in

productivity and the other provides possibility of

more compact data presentation due to complex

specification. In this regard we propose binary

format of data exchange (hereinafter referred as the

Format) as the most suitable for this situation.

2. EXPERIMENTAL SETUP

2.1 Data format specification

For any data exchange format the data types

should be defined which will be supported by such

format. For data transfer stored in data bases it is

proposed to use format in the form of

identifier/data. The format can be presented as

follows:

(Data type)(Data identifier)(Data length)(Data)

Let us consider this Format in details. “Data

type” is one byte with the value from -127 to 128.

This mandatory parameter is unique identifier of

data type. The data type value can be negative. In

this case the “Data” field contains array. The data

type is followed by “Data identifier” – a string in

ASCII format [21] terminated with null byte. The

“Data identifier” should be unique and not

duplicated in one data package, since this can lead

to ambiguous definition of this or that value. The

“Data identifier” is followed by “Data length” in

bytes. For binary objects the “Data length” can be

in the range from 0 to 2147483647 and is a four-

byte unsigned integer value. This field is not a

mandatory parameter and can be absent, whereas

the value of “Data length” field is defined

according to data type. The data can assume any

values according to identifier of data type.

Therefore, description of designation of data base

field and its value are described by the pair:

field/value. Taking into account that there are

simple data types, the length of which is fixed in

bytes, the “Data length” field can be absent which

reduces the networking packet size. In addition, the

time for data unpacking is also reduced. In the

Format it is proposed to use one-byte, two-byte,

four-byte integer numbers, signed and unsigned,

single- and double-precision floating-point

numbers, logical type, as well as strings and

arbitrary binary objects. Little-endian byte order is

assumed in this format [22].

2.2 Simple types

In the Format it is proposed to use simple data

types, which are supported in numerous

programming languages. Table 2 summarizes

identifiers of data types, their names in library, size

in bytes and description.

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

83

Table.2. Identifiers of data types

Data type

identifier
Name

in

librar

y

Data

length in

bytes

Data type description

0 dt_null 0 Null identifier

1 dt_boo

l

1 Logical (Boolean) data

type with two possible
values: (true) and (false)

2 dt_sint

8

1 Signed integer data type

3 dt_uint

8

1 Unsigned integer data

type

4 dt_sint

16

2 Signed integer data type

5 dt_uint

16

2 Unsigned integer data

type

6 dt_sint
32

4 Signed integer data type

7 dt_uint
32

4 Unsigned integer data
type

8 dt_sint

64

8 Signed integer data type

9 dt_uint

64

8 Unsigned integer data

type

10 dt_floa

t

4 Single-precision

floating-point number

11 dt_dou

ble

8 Double-precision

floating-point number

12 dt_stri

ng

up to

21474836

47

String

13 dt_obj

ect

up to

21474836

47

Binary object

Logical or Boolean type is the simple data type

which can assume two possible values: true or

false. This data type presents in nearly all

programming languages, it is also used in data

bases. One bit is sufficient for storage of this type,

however, minimum referenced storage in one byte

is usually used. In certain programming languages

it is assumed that 1 is true and 0 is false. In the

proposed Format we also will adhere to this

provision. Integer data types are simple data, they

are widely applied in programming languages.

They serve for presentation of integer numbers. The

set of numbers of these types is comprised of

subsets of integer numbers. Each integer type is

limited by minimum and maximum values. The

integer data types are subdivided into signed and

unsigned ones. Table 3 summarizes identifiers of

unsigned integer data types and their range.

Table.3. Identifiers Of Unsigned Integer Types And Their

Ranges

Name in

library

Length in

bytes (bits)
Data range

dt_uint8 1(8) 0..2
8
-1

dt_uint16 2(16) 0..2
16

-1

dt_uint32 4(32) 0..2
32

-1

dt_uint64 8(64) 0..2
64

-1

Signed integer types are also used together with

unsigned integer types. Sign is usually defined by

most significant bit: if the most significant bit is

unit, then the number is considered as negative.

Table 4 summarizes identifiers of signed integer

data types and their ranges.

Table.4. Identifiers Of Signed Integer Data Types And

Their Ranges

Name in library

object

(identifier)

Length in

bytes (bits)
Data range

dt_sint8 1(8) -2
7
..2

7
-1

dt_sint16 2(16) -2
15

..2
15

-1

dt_sint32 4(32) -2
31

..2
31

-1

dt_sint64 8(64) -2
63

..2
63

-1

The floating-point numbers are real numbers. A

number is stored in the form of mantissa and

exponent, herewith, floating-point number has fixed

relative and varying absolute accuracy. In the

Format it is proposed to apply four-byte and eight-

byte floating point numbers.

2.3 Example of presentation of simple data type

Data types, corresponding to data type identifiers

from 1 to 10 (Table 2), are simple. For their use the

“Data length” field is not required. “Data length” in

this case is defined according to Table 5.

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

84

Table. 5. Length Of Primitive Data Types

Data type Length in bytes

dt_null 1

dt_bool 1

dt_sint8 1

dt_uint8 1

dt_sint16 2

dt_uint16 2

dt_sint32 4

dt_uint32 4

dt_sint64 8

dt_uint64 8

dt_float 4

dt_double 8

The data record format corresponding to

identifiers of data types from 1 to 11 (Table 2) is

proposed to be as follows:

(Data type)(Data identifier)(Data)

Data type is defined according to Table 2 and is

one byte. The data identifier is a string in ASCII

format [21], its length can be in the range from 1 to

2147483647 bytes. This string should be terminated

with null byte. Thus, in order to locate simple data

types in this format we would use additionally only

two bytes: data type identifier and null byte at the

end of data identifier. For instance, let us locate the

data from Table 5 into this format. Data type will

be considered as data identifier and the length in

bytes as data. We obtain the following:

[0][dt_null0][b]

[1][dt_bool0][b]

[2][dt_sint80][b]

[3][dt_uint80][b]

[4][dt_sint160][bb]

[5][dt_uint160][bb]

[6][dt_sint320][bbbb]

[7][dt_uint320][bbbb]

[8][dt_sint640][bbbbbbbb]

[9][dt_uint640][bbbbbbbb]

[10][dt_float0][bbbb]

[11][dt_double0][bbbbbbbb]

In this example the data identifier is terminated

with null byte. Instead of the data value the number

of bytes occupied by the type is mentioned.

2.4 Strings

Strings are presented by ASCII format [21], the

string end should mandatory contain null byte. This

byte defines the string end. Table 2 summarizes

string identifier, its name in library and maximum

number of symbols. Format for serialization [23] of

string data will be as follows:

(dt_string)(Identifier0)(Data0).

The string should be terminated with null byte.

As an example let us locate string variable Name

into this format, its value is “FirstName”:

(dt_string)(Name0)(FirstName0)

This example illustrates that the string data can

be wrapped by only three bytes irrespective of its

length.

2.5 Binary objects

Binary objects are presented by the following

format:

(Data types)(Data identifier)(Data length)(Data).

The “Data length” field is mandatory in

presentation of binary objects. Maximum length of

binary object, similar to strings, is 2147483647

bytes. Table 2 shows data type identifier for binary

object. As an example of binary object the previous

case can be considered:

(dt_object)(Name0)(bbbb)(FirstName)

The difference from previous example is that for

binary objects, irrespective of their length, the

“Data length” field is defined, which occupies four

bytes. In this example each byte is denoted as “b”.

Therefore, binary data can be wrapped by six bytes.

It should be noted that the “FirstName” string in

this case is considered as sequence (array) of bytes,

the length of which is mentioned in the “Data

length” field, hence, there is no null byte in the end.

It is possible not to include the notion of binary

object in the Format description but to apply only

arrays. However, serialization [23] may be required

for array containing data arrays as elements. In such

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

85

situation we can easily apply array of binary

objects.

2.6 Arrays

Each data type corresponds to data array. In

order to indicate that "Data" field contains array of

certain data type it is necessary to set negative

identifier for data type. Table 6 summarizes

identifiers for arrays of various data types.

Table. 6. Identifiers Of Arrays

Identifier of array

type

Data type in array

-1 dt_bool

-2 dt_sint8

-3 dt_rint8

-4 dt_sint16

-5 dt_uint16

-6 dt_sint32

-7 dt_uint32

-8 dt_sint64

-9 dt_uint64

-10 dt_float

-11 dt_double

-12 dt_string

-13 dt_object

As can be seen in the table, absolute values of

identifiers of array types correspond to data type in

the array. Format for wrapper of any array is as

follows:

(Data type)(Data identifier)(Data length)(Data)

The “Data type” field will identify value type in

the “Data” field. This is provided by existence of

unity in the most significant bit of data type

identifier. Therefore, in this format for each data

type arrays of these types are defined. While using

string array it is necessary to add null byte in the

string end in order to separate strings. When array

of binary objects is used each block should be

preceded by indication of its length, which consists

of four bytes. This is an example of array of binary

objects:

(-Data type)(Type identifier)(Data length)(<Data

length>{object}<Data length>{object}…)

2.7 Description of data package

Data exchange between client and server

applications is performed by means of data

packages, their format is as follows:

(PackageLen)

(dt_string)(Command)(valueCommand)

(dt_string)(SimulatorName)(valueSimulatorNam

e)

(dt_object)(Data)(LenData)(valueData)

The “PackageLen” field defines package length

in bytes. The size of “PackageLen” field is four

bytes. The “Command” field contains command,

the “SimulatorName” field contains simulator

unique name. The “Data” field contains arbitrary

data. The “Data” field is not mandatory and can be

absent, depending on command. The field sequence

“Command”, “SimulatorName” and “Data” has no

name. Description of the fields of data package is

given in Table 7.

Table.7. Description Of Data Package

Field Assignment Comments

PackageLen Package length in

dt_uint32 format

Mandatory

parameter

Command Command Mandatory

parameter

Simulator

Name

Unique simulator

designation

Mandatory

parameter

Data Transferred data May be absent

The “Command” field contains command which

should be supported by client and server

application. Table 8 summarizes the commands to

be supported by the applications. The

“GetNewUser” command is intended mainly for the

server. The client sends this command to the server

in order to obtain data about new user. If new users

exist, then the server transfer data to the client

concerning this user by means of “SetNewUser”

command. If there are no new users, then the server

transfer “NoNewUser” command to the client, in

this case the client stops request of new users. The

“SetResult” command is sent by the client to the

server in order to store the results on the server. If

data were successfully stored on the server, then the

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

86

server sends the “OkSetResult” command to the

client. If an error occurred while saving data on the

server, or data were not saved by any reason, then

the server sends the “NoSetResult” command to the

client. In this case the client attempts to send the

“SetResult” command to the server once more.

Table 8 summarizes the command list.

Table.8. Command List

Comma

nd

Assignment

GetNew

User

Query of new users of the system

SetNew

User

Response for GetNewUser command

with new users

NoNew

User

Response for GetNewUser command

without new users

SetResul

t

Entry of exam results into data base

OkSetRe

sult

Response for SetResult command

after successful data entry into data

base

NoSetRe

sult

Response for SetResult command

after unsuccessful data entry into data

base

2.8 Examples of data packages

A data package for results transfer has the

following form:

(bbbb)

(12)(Command0)(SetResult0)

(12)(SimulatorName0)(Simulator10)

(13)(Data0)(LenData)(Value)

The first four bytes are the package length. Then,

the command to transfer data into common base,

simulator name. The “Data” field contains data

about exam results. Existence of null byte define

the string end. Data package for transfer of user

records has the following form:

(bbbb)

(12)(Command0)(SetUser0)

(12)(SimulatorName0)(Simulator10)

(13)(Data0)(LenData)(Value)

The first four bytes are the package length. Then,

the command to record user into the data base of

simulator, simulator name. The “Data” field

contains data about user records.

2.9 Description of data package on the basis of

JSON format

The main distinction of the JSON format [20]

from binary formats is that data are transferred in

text format. This format is easy-to-read, but has

poorer productivity in comparison with binary

formats. Since this format is widely applied, it is

also supported by our system. Data transfer

protocol using the JSON format is as follows:

{“Command”:“Value”,

“SimulatorName”:“Value”,

“Data”:{“StringField1”:“Value1”,

“IntegerField1”:123,

“FloatField1”:12.3,

“Array”:[1,2,3,4,5]}}

The “Command” field contains command name

(Table 8). The “SimulatorName” field contains

unique name of training device. The “Data” field

contains data about fields and their values. In the

example “StringField1” is string field,

“IntegerField1” is integer type field, “FloatField1”

is floating point number field, “Array” is value

array. For instance, , it is required to write “Score”

field into the JSON format, its value is described by

single-precision floating point number:

{“Score”:123.4}

In this example we used five symbols to wrap the

data. Now let us write the “FirstName” field into

the JSON format, its value is “Ivan”. This is written

as follows:

{“FirstName”:“Ivan”}

This example illustrates seven symbols are

required for string data.

Let us consider addition of integer data of 100

pieces by 4 bytes. For instance, time array upon

artificial lung ventilation. The array size in binary

form is 400 bytes. If the wrapper for binary data of

the proposed binary formats is added, then it is 406

bytes. If the name length is included, then we have

409 bytes in binary format. Now let us analyze the

possible results in the JSON format. Times are

recorded into file in milliseconds, and the exam

time may be several minutes. The value array will

be as follows: [1000000,1000020,…], therefore,

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

87

one value requires about seven symbols in average,

and if points are considered, then about eight

symbols. Finally we have 800 bytes. This is by two

times more than in binary presentation.

3. RESULTS

As a result of the performed work we developed

and documented binary format for serialization of

data and arbitrary objects. On the basis of this

Format and TCP/IP we developed proprietary data

exchange protocol. As a an alternative, protocol on

the basis of JSON format was developed [20].

Unfortunately, it is characterized by more modest

possibilities than binary format. Client/server

application was developed on the basis of protocol

based on binary format, which facilitates recording

of users in simulator software, as well as collecting

necessary data with their storage in common data

base. It is proposed to integrate medical simulators,

summarized in Table 1, into this system. At this

stage we tested software complex for the following

simulators: Resusci Anne [10], Lap-X [11], and

Lap Mentor [12]. Selection of these simulators and

training devices was stipulated by the fact that they

use various data base management systems. Client

application provides possibility to collect data

about results and to store them in local data base as

packages. If connection to the server is active, then

the client sends the results to the server and

requests data about new users. The server receives

data and stores them in common data base of the

system. A result of operation of this system is data

transfer from simulator software into common data

base, as well as user registration in local software

of simulator.

4. DISCUSSION

At present there are numerous binary formats on

the basis of which is it possible to arrange package

for data exchange, though, each of them has

intrinsic disadvantages in terms of implementation

of our task. Table 9 summarizes binary data format

and references to their description. Some of them

support not all data types necessary for our case.

Some formats have no special form for data

recording as key/value.

Table.9. References To Binary Formats

Designation of data

format

Reference

BSON [24][25][26]

BJSON [27]

UBJSON [28][29][30]

SmileFormat [31][32]

Protocol Buffers [33]

For illustrative purposes it is possible to compare

our developed format of data presentation with the

JSON format and the most suitable for our purposes

UBJSON format [29]. General view of byte

structure UBJSON is as follows:

(type)(length)(data)

“Type” is 1 byte, ASCII symbol [21]. It is used

for indication of data type following it. “Length”

(option) is 1 or 4 bytes (integer) depending on the

object length or size. For array: its length, for

object: the number of key/value pairs. If the length

or number of elements is from 0 to 254 inclusively,

then 1 byte is used. This field with the value of 255

is reserved for objects and arrays of unknown

length. “Data” (option) is the byte sequence,

directly representing the object data. The “length”

and “data” fields are used or not used depending on

the data type. For instance, 32-bit integer type has

standard size of 4 bytes. In order to record this type

1 byte is required for indication of type and 4 byte

for the value. In this case the “length” field is not

used since it is not required. The package structure,

for instance, for UBJSON format will be as

follows:

(bbbb)

(type)(b)(Command)(type)(b)(Value)

(type)(b)(SimulatorName)(type)(b)(Simulator1)

(type)(b)(Data)(type)(bbbb)(Value)

It can be seen in this example that each string

requires for two bytes, and if a string is longer than

255, then five bytes. Respectively, upon network

transfer of field and its value the overhead will be

seven bytes. Table 10 shows the values of network

load for each of three formats. Comparison was

performed for all data types in the Format.

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

88

Table.10. Comparison Of Network Load For Three Data

Formats

Data type JSON

(length

in

bytes)

BJSON

(length

in bytes)

Proposed

format

(length in

bytes)

dt_bool 8-9 5 4

dt_sint8 5-7 5 4

dt_uint8 5-7 5 4

dt_sint16 5-10 6 5

dt_uint16 5-9 6 5

dt_sint32 5-15 8 7

dt_uint32 5-14 8 7

dt_sint64 5-20 12 11

dt_uint64 5-19 12 11

dt_float 5-12 8 7

dt_double 5-20 8 7

dt_string

(length<255)

from 6 from 5 from 4

dt_string

(length>255)

from 6 from 8 from 4

dt_blob

(length<255)

from 6 from 5 from 4

dt_blob

(length>255)

from 6 from 8 from 4

5. CONCLUSIONS

The protocol and software, developed in this

work, make it possible to combine data from

various medical simulators in the frame of unified

data system in real time. The obtained results

facilitate automation of training processes on the

basis of medical simulators.

The developed data format in terms of network

load does not vary noticeably from its binary

analogs. It follows from Table 10 that the highest

network load will be applied by protocol on the

basis of JSON format. After connection of a

simulator to the unified system it is possible to use

any languages, Russian in our case, thus improving

data perception. On the basis of problem analysis

during data system development we propose data

exchange protocol which will allow data transfer of

various types in unified structure.

The designed data system has wide possibilities

for its application in simulation training centers in

Russia. The advantages of this system consist of its

flexibility and versatility, and the developed

exchange protocol facilitates significant increase in

data transfer and processing. In the future the list of

medical simulators and training devices

summarized in Table 1 is supposed to be expanded.

We plan to increase possibilities of the data system

and to connect new simulators and training devices

to this system.

6. ACKNOWLEDGMENTS

The work was supported by Ministry of

education and science of Russian Federation (Grant

14.607.21.0130, unique identifier of applied

researches: RFMEFI60715X0130).

REFERENCES:

[1] Simulation Training in Medicine, ROSOMED

Russian Society for Simulation Training in

Medicine. Ed. by Svistunov A. A. Compiled by

Gorshkov M. D. Publishing House of the First

Moscow State Medical University; Moscow

2013

[2] Balkizov Z. Z. (2011). Continuous medical

training. Application of simulation

technologies in health care center.

Zdravookhranenie, 10 (44-49)

[3] Simulation Training in Anesthesiology and

Emergency Medicine / compiled by M. D.

Gorshkov; ed. by V. V. Moroz and E. A.

Evdokimov.-Moscow: GEOTAR-Media, 2014.

[4] Simulation Training in Obstetrics, Gynecology,

Perinatology and Pediatry / compiled by M. D.

Gorshkov; ed. by G. T. Sukhikh.- Moscow:

ROSOMED, 2015.

[5] Simulation Training in Surgery / ed. by V. A.

Kubyshkin, S. I. Emel'yanov, and M. D.

Gorshkov.- Moscow: GEOTAR-Media, 2014.

[6] CAE Healthcare LearningSpace. Date Views

16.06.2016

www.caehealthcare.com/eng/audiovisual-

solutions/learning-space.

[7] Laerdal SimCenter. Date Views 16.06.2016

www.laerdal.com/SimCenter.

Journal of Theoretical and Applied Information Technology
 15

th
October 2016. Vol.92. No.1

 © 2005 - 2016 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

89

[8] Simbionix 3D Systems. Date Views

16.06.2016 www.simbionix.com/mentorlearn/.

[9] VirtaMed UroSim. Date Wiews 16.06.2016

www.virtamed.com/en/medical-training-

simulators/urosim/.

[10] Resusci Anne. Date Wiews 16.06.2016

www.laerdal.com/ResusciAnne/.

[11] Lap-X. Date Wiews 16.06.2016 www.medical-

x.com/products/lap_x/.

[12] Lap MENTOR. Date Wiews 16.06.2016

www.simbionix.com/simulators/lap-mentor/.

[13] GI MENTOR. Date Wiews 16.06.2016

www.simbionix.com/simulators/gi-mentor/.

[14] ORCAMP-Simulation. Date Wiews 16.06.2016

www.orzone.com/#!simulation/c1uks/.

[15] ANGIO MENTOR. Date Wiews 16.06.2016

www.simbionix.com/simulators/angio-mentor/.

[16] ArthroSim Arthroscopy Simulator. Date

Wiews 16.06.2016 www.toltech.net/medical-

simulators/products/arthrosim-arthroscopy-

simulator/.

[17] VirtaMed ArthroS. Date Wiews 16.06.2016

www.virtamed.com/en/medical-training-

simulators/arthros/.

[18] VirtaMed HystSim. Date Wiews 16.06.2016

www.virtamed.com/en/medical-training-

simulators/hystsim/

[19] XML. Date Wiews 16.06.2016

www.ru.wikipedia.org/wiki/XML/.

[20] JSON. Date Wiews 16.06.2016

www.ru.wikipedia.org/wiki/JSON/.

[21] ASCII. Date Wiews 16.06.2016

www.ru.wikipedia.org/wiki/ASCII/.

[22] Byte Order. Date Views 16.06.2016

www.ru.wikipedia.org/wiki/Порядок_байтов/.

[23] Serialization. Date Wiews 16.06.2016

www.ru.wikipedia.org/wiki/Сериализация/.

[24] BSON. Date Wiews 16.06.2016

www.ru.wikipedia.org/wiki/BSON/.

[25] BSON. Date Wiews 16.06.2016

www.bsonspec.org/.

[26] BSON Types. Date Wiews 16.06.2016

www.docs.mongodb.com/manual/reference/bso

n-types/.

[27] BJSON. Date Wiews 16.06.2016

www.bjson.org/.

[28] UBJSON. Date Wiews 16.06.2016

www.en.wikipedia.org/wiki/UBJSON/.

[29] Universal Binary JSON Specification. Date

Wiews 16.06.2016 www.ubjson.org/.

[30] Universale Binary JSON 0.9-dev

documentation. Date Wiews 16.06.2016

www.universal-binary-

json.readthedocs.io/en/latest/.

[31] SmileFormat. Date Wiews 16.06.2016

www.wiki.fasterxml.com/SmileFormat/.

[32] SmileFormatSpec. Date Wiews 16.06.2016

www.wiki.fasterxml.com/SmileFormatSpec/.

[33] Protocol Buffers ru. Date Wiews 16.06.2016

www.wikipedia.org/wiki/Protocol_Buffers/.

