
Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

342

SURVEY ON END TO END CONGESTION CONTROL
TECHNIQUES IN DIFFERENT NETWORK SCENARIOS

1USMAN AHMAD, 2DR. MD ASRI BIN NGADI, 3DR. ISMAIL FAUZI BIN ISNIN
1, 2 Department of Computer Science, Faculty of Computing,

Universiti Teknologi Malaysia (UTM), 81310 Johor, Malaysia.

E-mail : usman.ahmad82@yahoo.com, dr.asri@utm.my, ismailfauzi@utm.my

ABSTRACT

Most of the traffic on the Internet is depend upon the Transmission Control Protocol (TCP), so the
performance of TCP is directly related to Internet. Many TCP variants are developed and modified
according to the environment and communication needs. Most of current TCP variants have set of
algorithms which control the congestion in critical situations and maintain the throughput and efficiency of
network. Now a day’s TCP is facing fast growth of Internet with the demands of faster data communication
techniques on high speed links. In last 15 years many computer systems and cellular networks become
linked together with protocol stack used in TCP. TCP variants with different congestion control techniques
are working in different operating systems but a very small number of techniques are able to minimize the
congestion in the network. This paper presents a survey on end-to-end congestion control techniques used
in different TCP versions. The main purpose of this study is to review the characteristics and behavior of
TCP variants with different techniques to control the congestion in the different network scenarios.

Keyword: TCP Variants, Congestion Control, Internet, High Speed TCP

1. INTRODUCTION

Transmission Control Protocol (TCP) [1] is a
connection oriented protocol which provides the
end-to-end reliable data communication among the
different networks. Now almost all traffic of
Internet is carried by TCP, so the behavior of TCP
is coupled with the overall Internet performance.
Many TCP variants are proposed to improve the
efficiency of the network. This paper presents the
survey of congestion control proposals depending
upon it fundamental behavior with its end-to-end
principal.

The proposed approaches described the wide range
of techniques that allow the source (sender) to
detect loss events, changes in router, state of
congestion, RTT variations and bottleneck buffer
sizes. The major responsibility of TCP is its ability
to provide reliable data transmission between two
hosts on the Internet. TCP standard specifies the
sliding window for the flow control of data having
different mechanisms inside it. First is, all the data
stored (buffered) before sending by assigning a

sequence number to each stored byte and then
stored data is packetized into TCP packets for
transmission. Second, a window (portion)
containing data need to transmit towards the
receiver using IP protocol.

When sender side receives an acknowledgment of
data from receiver (destination) side then sender
transmits new portion of data which is also called
sliding window. In short it means that sender side
holds the responsibility to block the transmission
until receiver sends acknowledgment.

Sliding window based on data flow control is a
simple mechanism but there are many conflicting
concepts inside it, for a example TCP must have
maximum sliding window size (congestion
window) for the maximum throughput but on the
other hand if the congestion window is too large
then there are many chances of packet losses
because receiver and network have limited
resources. Thus need minimum congestion window

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

343

for minimum packet losses. Therefore, the problem
is to find optimal value for the sliding window
which provides good throughput and does not
overwhelm the receiver and network. Additionally,
TCP should be able to detect packet losses timely,
which means the interval should be shorter between
data transmission and loss detection. However this
interval should not be too short that TCP detects
loss prematurely and retransmits the packet
unnecessarily which cause congestion and wastage
of the network resources. So when and how sender
side detects loss is a big issue for TCP. Initially
TCP is designed to protect the input buffer of
receiver side from overflowing. The technique is
based on receiver’s window concept which is a way
for the receiver window to share the information
about available buffer size (storage) with sender
side. The size of the sender window should not be
exceeding than the size of receiver’s window.
Another case when the receiver side cannot be able
to process data as fast as sender generates then
receiver sends a signal to sender for reducing the
transmission rate or value of window.

To control the congestion in the network is an
extensive studied area over the last 20 years and
numbers of proposals are proposed aimed to control
the congestion with different techniques. Many
proposals related to congestion control are studied
by Hanbali et al [2] (congestion control in ad hoc
networks), Lochert et al [3] (congestion control
mobile networks), Widmer et al [4] (congestion
control for non-TCP protocols) Balakrishnan et al
[5] (congestion control for wireless networks),
Leung at al [6] (congestion control for network
with high levels of packet reordering), Low et al [7]
(current up to 2002 TCP variants and their
analysis), Hasegawa and Murata [8] (fairness issues
in congestion control).

In this review we tried to describe, classify and
analyze the major Congestion Control techniques
which optimize the various parameters of TCP. In
section II those congestion control techniques are
discussed which built a foundation for the end to
end congestion control algorithms. This foundation
is consisting on probing the network resources, loss
and delay base techniques for the detection of
congestion and mechanisms for the detection of

packet loss quickly. In section III we discussed
various congestion control techniques which are
proposed to solve poor network utilization in high
speed bandwidth networks.

2. CONGESTION COLLAPSES

Congestion occurs in the network when the demand
(load of data injected into the network) is increased
or closed to capacity of the network. Due to
congestion in the network, (i) the throughput of the
given path decreases, (ii) packet delay increases in
the network and (iii) the rate of packet drop
increases. So in these conditions there is no any
technique to reduce the congestion and sate of
network can be move towards the congestion
collapses and all end to end communication stops.

Congestion collapse is introduced and described as
a problem for TCP based network by Nagle in 1984
[9]. The first congestion collapse was observed
when the rate of throughput decreased to pathetic
level between UC Berkely and Lawrene Berkeley
Labs [8]. The original TCP algorithm has only flow
control technique to prevent the network from over
flowing. TCP did not have any technique to control
or reduce the load (traffic) in the network, when the
network is in the state of congestion. In 1988
V.Jacobson. et al introduced many algorithms
based on AIMD (Additive Increase Multiplicative
Decrease) and packet conservation principle
technique to prevent network by congestion
collapse [8]. The conservation principle means
when the system is running in stable state with full
data transmission rate then no new packet will enter
until old packet leaves the system [8].

Jacobson used the ACK clocking technique for the
estimation of old packet when it leaves network so
new packet can be able to enter for transmission
and when the packet loss occurs then the source
reduces the transmission rate by half of the last
sending rate (multiplicative decrease) Chiu a Jain
[10] described if all TCP sources use multiple
decrease technique then the network will not move
towards the congestion collapse moreover the TCP
flow will use fair allocation of bandwidth on the
given path. Below many TCP variants are discussed
to solve the problem of congestion, moreover in

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

344

Table 1 the summary of these TCP Variants are
discussed.

2.1 TCP Tahoe

The earliest end to end solution for congestion
problem in TCP has been proposed by Jacobson
[11]. This solution is based on TCP specification
[1] having number of algorithms which can be
divided into three techniques, slow start, congestion
avoidance and fast retransmit. Tahoe algorithm is
based on principle of “conservation of packets”,
that means during the packet transmission new
packet cannot be injected into the network unless a
packet is taken out. TCP Tahoe congestion control
technique is proposed by modify the original TCP
slow start, congestion avoidance and fast retransmit
procedures. Tahoe is also proposed new window
mechanism containing data called congestion
window (cwnd). The sender side of TCP cannot
transmit the data more than the size of congestion
window and advertised receiver window
(window=min(cwnd, rwnd)) where the cwnd is
congestion window and rwnd is receiver window.

Figure 1: Behavior of congestion window in slow start
phase

Figure 2: Behavior of congestion window in congestion
avoidance phase after packet loss

The size of congestion window is set to one
segment after establishing the connection and
increased by one segment after receiving each
acknowledgment which is exponential increment in
the size of congestion window. This procedure is
called Slow Start, shown in Figure 1 and after
packet loss or on reaching to predefined threshold
ssthresh it enters in congestion avoidance phase as
shown in Figure 2. After some time when the
capacity of the network reached and an
intermediate router will start to drop packets then
Tahoe uses two different mechanisms to detect
packet loss. First is retransmission time out (RTO)
and second is at the arrival of three duplicate
acknowledgments. If the packet loss is detected by
three duplicate acknowledgments then Tahoe enters
in the fast retransmission phase and resend the
dropped or lost packet. In TCP Tahoe after
indication of congestion the current size of
congestion window is halved and saved in a
variable called slow start threshold ssthresh after
that sender side sets the size of congestion window
to one segment and starts the slow start mechanism
by increasing the congestion window exponentially
and when the value of congestion window reaches
to predefined ssthresh then the congestion window
increases approximately by one segment per round
trip time (RTT) which is also called linear
increment in congestion window.

Figure 3: Slow Start and Congestion Avoidance cycle of
congestion window

This whole procedure is called congestion
avoidance. The process in which the algorithm's
phase switches from Slow Start phase to
Congestion Avoidance phase is called slow start
congestion avoidance cycle which is shown in

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

345

Figure 3. In congestion avoidance phase the
algorithm tries to increase the size of congestion
window in a more conservative manner than slow
start phase. Tahoe was major breakthrough in
congestion control and set the guidelines and
principles for the new TCP implementation.

2.1 DUAL TCP

TCP Tahoe gave great service to the Internet
community by solving the congestion in the
network, but in this solution there are many
drawbacks, the behavior of Tahoe algorithm
induced significant changes in network buffer
utilization, round trip time and packet losses.

DUAL TCP is proposed by Wang and Croweroft
[12]. It tries to refine the congestion avoidance
algorithm. DUAL TCP tries to reduce the
oscillatory patterns by using a proactive congestion
detection technique. Moreover, it proposed a
queuing delay parameter for detecting congestion
state in the network. Let us assume that there is no
change in intermediate router and receiver side
acknowledge each packet immediately that means
the state of network is congestion free, and RTTmin

is a minimum RTT noted by sender which indicates
that network is in congestion free state. If we
consider one more assumption that the value of
RTT is only increase with the increment of buffer
utilization and the difference between minimum
RTT and measured RTT value (queuing delay Q =
(RTT - RTTmin) can be used as indicator to measure
congestion level on the given path as shows in
Figure 4, moreover DUAL TCP algorithm also
measure the maximum RTT (RTTmax) value to
quantify the congestion level in the network and the
difference between minimum and maximum RTT
value is indication of maximum congestion level
(maximum queuing delay Qmax = (RTTmax -
RTTmin). Finally the fraction of maximum queuing
delay is worked as threshold in DUAL algorithm
and when this threshold exceeded, indicates that the
state of network is congested. In this proposed
algorithm the value of delay threshold is half on the
value of maximum queuing delay (Qthresh = Qmax/2)
and the level of congestion estimation is performed
per RTT on the basis of average RTT value (Q =
RTTavg - RTTmin). If the average threshold is

exceeded Q > Qthresh then the value of congestion
window decrease by 1/8 (multiplicative decrease
factor) which is shown in Figure 5.

Figure 4: Relation between RTT and congestion

In any TCP the flows cannot be able to utilize
available network resources fully, affectively and
fairly if the saturation point of the network is
estimated incorrectly. As far as TCP DUAL is
concerned if the value of threshold is
underestimated (Calculation of RTTmax is wrong)
then the network resources will be unutilized, on
the other hand if the threshold is over estimated
then it cause unfair distribution among the different
TCP flows. For a example, when a new DUAL
TCP flow will appear during the transmission of
other DUAL flows, in this case the new flow will
observe the higher RTTmin value and over estimate
the value of queuing delay threshold and the flows
having lower queuing delay (previous flows) have
high chances to Predict the congestion state and
trigger the congestion window reduction. During
this the other flow (new flow) will continuing
increasing its congestion window size without
noticing any abnormality in network. The new flow
can able to get large share of the network resources
as compared to old flows.

Figure 5: Congestion window behavior of TCP DUAL

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

346

2.3 TCP Reno

After detection of packet loss the size of congestion
window is reduced up to one packet in TCP Tahoe,
this behavior of congestion window leads towards
significant degradation of throughput in some
cases. For an example 1 percent packet loss during
the transmission may cause 75 percent throughput
degradation of TCP flows in Tahoe. For the
solution of this problem Jacobson revised the slow
start and congestion avoidance techniques and
proposed a mechanism which diffrencient the major
and minor congestion events. Packet loss detection
by retransmission time indicates that in certain time
interval (RTO - RTT) some major congestion event
has prevented and sender side should decrease the
size of congestion window up to minimal value.
Packet loss can also be detected by duplicate
acknowledgments. For an example sender side
received four ACKs first ACK containing new data
and other three ACK are the copies of first one
(duplicate ACK), these duplicate ACKs are the
indication of some packet loss or does not arrive. In
addition the sender side is not only detecting the
packet loss and also observing the delivery of data.
So packet loss is the indication that the network is
congested and the reaction of the loss can be
optimistic.

In TCP Reno fast recovery technique is used this
optimistic reaction [13] and the typical behavior of
its congestion window is shown in Figure 6. In the
fast recovery the size of congestion window is
halved and stops all increment in congestion
window until the recovery of error.

Figure 6: Congestion window behavior of TCP Reno

In other words the sender side stays in fast recovery
mode until it receives non duplicate ACK. The

stages of algorithm are shown in Figure 7, where
the size of congestion window is described in
different phases. In Figure 7 the reduction of
congestion window by multiplicative decrease
factor is shown, which describes the core concept
of optimistic network share reduction. After the
reduction in size of congestion window (cwnd to
cwnd/2) the algorithm not only retransmits the
unacknowledged data (fast retransmission) but also
fills the congestion window with duplicate packets
(from state 2 to 3 in Figure 7).

We know that one ACK means at least one packet
has delivered, so for the transmission of constant
number of packets we have to open a slot in
congestion window for transmission of new data
(state 4). This slot in congestion window is very
important because in the absences of this algorithm
TCP cannot be able to send new data before the
recovery of the error and the amount of data can be
decrease during the transmission. When the sender
side receives non duplicate ACK (in state 5) then
the algorithm turned towards the termination of
congestion avoidance phase by reducing the size of
congestion window by half of the original size. This
reduction in congestion window is reliable and
simple way to ensure the exit from fast recovery.

In short in TCP Reno the fast retransmit and fast
recovery techniques are allows the connection to
quickly recover the packet losses. But during the
multiple packet losses TCP Reno flow may suffer
from severe performance degradation because
algorithm retransmits the dropped packet per RTT
and further the size of congestion window may be
decrease more than one time. In this case TCP
Reno works at very low rate and decrease the
throughput significantly. In TCP Reno a single loss
is recovered per RTT, which improved not only the
efficiency of recovering period but also continue
the transmission of new data during the recovery.

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

347

Figure 7: Stages of congestion window of TCP Reno

2.4 TCP New Reno

TCP New Reno was proposed and released in 1996.
It is a new version of TCP Reno with some
modifications in fast re-transmit and fast-recovery
of TCP Reno. These sender side modifications are
proposed to overcome the Reno’s problems. Partial
acknowledgments are used in TCP Reno to exit
from fast recovery phase but it creates re-
transmission time out (RTO) during the multiple
packet losses. Instead of this, in TCP new Reno the
sender side does not exit from fast recovery mode
after receiving partial ACKs [14] [15]. It assumes
that a packet just after an acknowledged is lost and
re-transmits this lost packet. So during the multiple
packet losses the algorithm recover only one packet
per RTT in same congestion window by avoiding
multiple fast re-transmit of lost packets which
creates the re-transmission time out (RTO). TCP
new Reno continues the fast recovery process until
all the loss packets have acknowledged. The
implementation of mechanism in TCP New Reno is
described below.

2.4.1 Multiple Packet Losses

In TCP New Reno, packets having only high
sequence number will be sent during the fast re-
transmission process. New Reno uses the same
mechanism of re-transmission and fast recovery of
TCP Reno. However the difference between New
Reno and Reno is when a new ACK is received by
sender, new Reno algorithm checks if the ACK
have highest sequence number, when the fast re-

transmission mode was start then continue the
transmission and if the sequence number is not
highest then New Reno consider this ACK as
Partial ACK that means another packet is lost in the
same congestion window so it re-transmit the
dropped packet and re set the re-transmission timer
with exiting the fast recovery mode. On the other
hand new ACK received by sender having the
highest sequence number the New Reno algorithm
terminates the fast recovery mode and set the size
of congestion window to the slow start threshold
(ssthresh) and perform congestion avoidance
process.

2.4.2 False Fast Recovery

New Reno always records the highest sequence
number even transmitted packets after re-
transmission time out (RTO). After receiving the
duplicate ACK, New Reno runs a test to determined
whether it should enter in fast recovery mode or
not. If these ACKs have the same sequence number
which saved at the previous time out, then this is a
new start of fast recovery and New Reno enters in
fast recovery mode and perform related tasks and if
the sequence number is not similar as saved before,
then New Reno will not enter in fast recovery
mode. There is a small change in connection and
source in New Reno witch eliminate the waiting
time of TCP Reno for the re-transmission time out
during the multiple packet losses in the same
congestion window. TCP New Reno can avoid the
unnecessary congestion window reduction but it
may take many RTTs for recovery of lost packets.

2.5 TCP SACK

There is a another way to overcome the multiple
packet losses during the transmission is to inform
the sender side about all acknowledged packets and
TCP SACK uses this mechanism. TCP SACK uses
accumulated acknowledgment technique to
acknowledge successfully received packets [16].

This technique improves the robustness of
acknowledgment but in accumulated
acknowledgment mechanism when the packet loss
occurs then the source is unable to determine how
may packets have been transmitted so it can not be

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

348

able to recover more than one packet per RTT
during the transmission. In SACK technique there
are many SACK blocks and each block has a group
of data. The destination tells the source by using
ACK with SACK option that receiver receives the
out of order block of data. SACK blocks are used to
maintain the image of the receiver buffer after
received by sender side, for a example which
packet is received and which is lost at the receiver
end. A scoreboard is mentioned to record the
information of these transmitted and received data
with the help of last information in the SACK
option. Scoreboard records the sequence number
and flag bit of transmitted packet which shows that
packet is SACKED or not. Transmitted packet
having SACKED bit on, does not need to be
retransmitted but the packets with SACKED bit off
and also have less sequence number need to be re-
transmitted. TCP SACK and TCP Reno are using
the same congestion control techniques, but during
the multiple packet losses the TCP SACK behaves
differently as compared to TCP Reno. The TCP
Sack enhances the technique of fast re transmit and
fast recovery of TCP Reno and able to recover the
multiple packets losses within the one RTT in the
same congestion window.

However TCP SACK has two major issues. First is
in SACK option there are only 3 or 4 SACK blocks
are allowed and other problem is when the buffer
over flows at the receiver end, it will start to drop
the SACKED packets without informing to sender
and sender will not be able to re transmit these
packets.

2.6 TCP FACK

TCP FACK introduced the FACK (Forward
Acknowledgments) Congestion control technique
which proposes the recovery mechanisms to control
the outstanding packet rate and error recovery [17].
FACK technique uses selective ACKs to indicate
packet losses in flow control phase. It re-transmits
the lost packet timely as well. Re-transmitted data
reported as loss and loss cannot be recovered
instantly so the TCP FACK need to store
information related to re-transmitted data such as
the time of the last re-transmission by using time
out mechanism (RTO). The numbers of outstanding

packets are calculated in rate control mechanism by
using information extracting from SACKs, without
considering the congestion window inflation
mechanism the TCP FACK uses three variables as
shown in Figure 8.

Figure 8: Variables of FACK Algorithm

First is H which indicates the highest sequence
number of all transmitted data, second is F
indicates the forward sequence number of all
acknowledged packets and third is R having total
number of re-transmitted packets. A reliable
estimation of outstanding data packets on the given
path can be calculated by H-F+R. Sender side of
TCP can use this estimation in decision of sending
new data portion more precisely, when the
calculated size of total outstanding packet is less
than the size of congestion window. The recovery
time of packet is improved in TCP FACK as
compared to Reno or New Reno shown in
simulation results [17]. However the improvements
of TCP FACK have been recognized for long time
and also been the part of Linux kernel in version
2.1.92

Figure 9: Congestion window behavior of TCP FACK

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

349

2.7 TCP Vegas

TCP Vegas is proposed by [18] and introduced the
bandwidth estimation technique to avoid the
congestion in the network rather react after
congestion event. It calculates the total amount of
packets that sender side can send by the help of
measured RTT. TCP Vegas improves three
mechanisms as compared to TCP Reno, first is
improved slow start mechanism second is modified
congestion avoidance mechanism and third is a
novel re-transmission mechanism which are
discussed below. TCP Vegas congestion window
size adjustment technique also has three phases. In
Figure 10 the transmission process is shown of TCP
Vegas.

Figure 10: Vega’s transition state

2.7.1 Slow Start

During the slow start mode, TCP Vegas tries to
grape the bandwidth quickly and increase the size
of congestion window exponentially per RTT to
detect and avoid the congestion during this mode.
To avoid the congestion in network Vegas
algorithm update the actual and expected sending
rate per RTT, it calculates the amount of extra data
on the given network path and controls the size of
congestion window accordingly. Vegas algorithm
records the all RTTs and assigned the minimum
value of RTT to base RTT. Amount of extra data (∆)
in network pipe can be calculated by equation,
∆ = (Expected - Actual) × BaseRTT) where the
expected sending rate is calculated by the current

size of congestion window divided by base RTT
and actual sending rate is calculated by congestion
window divided by recently measured RTT. This
technique uses during the slow start mode of
transmission to decide the switching mode from
slow start mode to congestion avoidance mode. If
the calculated amount of extra data is greater than
the defined threshold γ, the Vegas reduce the size of
its congestion window by one-eighth and moves
from Slow Start (SS) mode to Congestion
Avoidance (CA) mode.

2.7.2 Congestion Avoidance

In congestion avoidance mode TCP Vegas does not
increase the size of congestion window
continuously. First it calculates the actual and
expected sending rate on the given path and then
controls the sending rate on the given path by
adjusting the size of congestion window. Vegas
keeps the size of congestion window same when
the calculated amount of extra data (∆) lies between
two predefined thresholds α and β .But when the
value of (∆) is greater than β which is the
indication of congestion, so the size of congestion
window is reduced (cwnd-1) and when the value of
(∆) is less than α, which is the indication of under
utilization of network so the size of congestion
window increase accordingly (cwnd+1) and when
the value of α is less than and equal to (∆) and (∆)
is less than an equation to β then the size of
congestion window remain unchanged
(α ≤ ∆ ≤ β). In Vegas the size of congestion
window is updated after every RTT.

2.7.3 Fast Re-transmission and Fast recovery

In TCP Vegas the three duplicate acknowledgments
are caused for re- transmission as in TCP Reno too.
Vegas enhance the re-transmission mechanism of
TCP Reno for the re-transmission of the dropped
packets quickly. Vegas calculates the RTT of every
sent packet based on fine-grained values and with
help of these fine-grained RTT measurements,
Vegas calculated the time out period of each
packet. After receiving the duplicate
acknowledgments, it checks the status of time out
of oldest unacknowledged packets, if the time out
period of this packet has expired then the packet is

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

350

re-transmitted. This modification leads to packet re-
transmission after just one or two duplicate
acknowledgments on receiving non duplicate
acknowledgment after fast re-transmission. The
algorithm again checks the expiration of the timer
and then may re-transmit another dropped packet.
So expired fine-grained timer is the condition for
re-transmission of dropped packet after receiving
certain acknowledgments. This mechanism
improves the loss detection and recovery from
multiple dropped packets without restarting the
slow start mode. The size of congestion window is
reduced to avoid congestion after packet re-
transmission by receiving duplicate
acknowledgments.

There are two situations for TCP Vegas to set the
size of congestion window. In first case if the
dropped packet re-transmitted once then the
algorithm reduce the size of congestion window up
to three fourth of the previous size otherwise Vegas
consider that network is under severe congestion
and reduce the size up to one half of the current
congestion window size.

2.8 TCP Veno

TCP Veno is proposed by [9] and modifies the TCP
Reno’s congestion control technique for achieving
the good throughput utilization. For the early
detection of congestion TCP Veno uses the buffer
estimation mechanism of TCP Vegas. TCP Veno(
Vegas and reNO) introduced the two modifications.
First modification is in the presence of excessive
buffer utilization (∆ > β) estimated by Vegas buffer
estimation mechanism; TCP Veno limits the
increment in size of congestion window during
congestion avoidance mode. In other words when
the Vegas estimation technique detects congestion
the source starts conservative increment to probe
network resources. Second modification is to
reduce the congestion window after entering in the
fast recovery phase only when the buffer estimation
mechanism indicate the congestion. So after
detecting the loss and when (∆ > β) then the size of
congestion window will be halved, on other hand
the size of congestion window is reduced up to 80
percent when only packet loss is detected. The
dynamics of congestion window of TCP Vegas are

shown in Figure 11. In short the TCP Veno
congestion control technique slightly improved as
compare to TCP Reno. Veno flow stayed longer in
congestion avoidance mode having larger
congestion window, however there is no effect of
these modifications on TCP fairness.

Figure 11: Congestion window behavior of TCP Veno

2.9 TCP Vegas A

Under certain network scenarios and circumstances,
TCP Vegas has many internal problems and this all
happened due to wrong assumption that RTT will
always change with the change of buffering. In
short when RTT will increase due to routing change
then the Vegas algorithm will make a wrong
decision which leads towards the reduction in flow
rate.

Figure 12: Estimation error when the path has changed

To describe this problem figure 12 is considered
with low RTT (DSL connection) and high RTT
(satellite link) paths. When the route change from
low RTT to high RTT having congestion window
size equal to cwnd then Vegas algorithm may make
a wrong decision and can exceed a threshold.
Another assumption of calculating the same RTTmin

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

351

of competing flow on the same path. To illustrate
this let’s take an example of a network scenario
having two TCP Vegas flows. First flow has been
transmitting the data for a long time and other flow
just started its transmission. Naturally old flow has
more chances for observing the minimum RTT as
compared to new flow, so both flows estimate
different congestion state after calculating different
minimum RTTs. As shown in Figure 13 according
to the old flows the network is congested but the
estimation of new flow is that the network is in
congestion Free State, so there are bright chances
for new flow to grape network resources as
compared to old one. Vegas A is introduced by [19]
to solve these problems of TCP Vegas. Infect
Vegas A enhanced the congestion control
mechanism of Vegas with all adaptable mechanism.
Basically the threshold parameters of TCP Vegas
are adjusted considering the steady state of the
actual transmission. When Vegas A algorithm
detects a increment in the given bandwidth during
the stable state of the network (α ≤ ∆ ≤ β) then it
assumes that the path is changed and it shifts the
control to upper zone (α = α+1) and (β = β+1),
control is shifted downwards after detecting any
abnormality, for a example when estimation is
showing the congestion free state (∆ < α) but
actually the sending rate is decreasing moreover the
control is always shifted downwards after the
estimation of actual congestion. Vegas A
introduced additional conditions for congestion
window increment mechanism.

Figure 13 Estimation of error in the presence of high
RTTmin

According to these conditions the congestion
window is only increase in three situations. In first
case the value of lower threshold α should be
minimum with no congestion estimated on the
given path. In second case when the actual sending
rate is increased with no congestion estimated (∆ <
α) and third is when the actual sending rate is
decrease with flow having steady state (α < ∆ < β).
The decrement in the network should be occur
when the state of network is congested (∆ > β) or
when actual sending rate decrease with congestion
free state of the network. Experiments show [19]
that Vegas A improve the design of TCP Vegas in
various aspects. It does not change Vegas
properties of stabilizing throughput in a steady state
and slow start does not suffer during change in
RTTs.

Table: 1 Features of TCP variants for Congestion Control

TCP
Variants

Year Base Addition/Enhancement in
Features

Status Implementation
Win Linux Mac BS

D
TCP Tahoe 1988 RFC793 Slow Start, Congestion Avoidance,

Fast Retransmit
Obsolete 1.0 4.3

TCP-DUAL 1992 Tahoe Queuing Delay as congestion
indication for congestion
avoidance

Experime
ntal

TCP Reno 1990 Tahoe Fast Recovery Standard 95/N
T

1.3.90 4.3
Fr2.
2

TCP New
Reno

1999 Reno Fast recovery for multiple packet
losses

Standard 2.1.36 10.4.
6

Fr 4

TCP SACK 1996 RFC793 Extended information in feedback
messages

Standard 98 2.1.90 10.4.
6

F2.
1

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

352

N1.
1
S2.
6

TCP FACK 1996 Reno,
SACK

Packet loss recovery technique
based on TCP SACK

Experime
ntal

2.1.92 N1.
1

TCP Vegas 1995 Reno Bottleneck buffer utilization as a
primary feedback for the
Congestion Avoidance and
secondary for the Slow Start

Experime
ntal

2.2.10

TCP Veno 2002 New
Reno,
Vegas

Increase/decrease parameters
based on Reno in congestion
avoidance phase.

Experime
ntal

2.6.18

TCP Vegas
A

2005 Vegas Adaptive bottleneck buffer state
aware
Congestion Avoidance

Experime
ntal

3. HIGH-SPEED NETWORK AND
CONGESTION CONTROL

Developed TCP variants (Reno, New Reno, and
Sack) became insufficient with the emergence of
high speed networks for using network resources
effectively. All the congestion control techniques
which are in section II aiming to improve the
efficiency of network for transferring the data,
without discussing the basic principle on which it
relay, which was defined in 1988 in TCP Tahoe
that in congestion avoidance phase probing of the
network resource should be conservative. In TCP
this principle is realized with congestion window
which is increased by one packet per RTT if there
is no congestion detected. This behavior of
congestion window works well when the capacity
of the network and delay are small but in high
speed networks it does not work well. To illustrate
this problem (some time called BDP problem) let
us take a example of an flow which is trying to
grape all network resources. The minimum time
required for this is D ×cwndRTTs,
when there is no packet loss. So a network having
10GiBit/s capacity with 100ms delay and with
maximum packet size of 1500 bytes, it would take
two hours to obtain all resources [20] [24]. In this
section many TCP variants with congestion control
techniques are discussed aiming to perform well in
high speed networks more over in Table 2 the
summary of these TCPs with features are discussed.

3.1 High-Speed TCP

High-Speed TCP (HS-TCP) proposed by [20] [21]
after identify the efficiency problem in fast fat
networks. HS-TCP is an experimental algorithm for
congestion control technique with many objectives,
which are link efficiency and fairness. To achieve
the goals HS-TCP change the increase factor α of
congestion window during the congestion
avoidance mode and decrease factor beta after
detecting loss with the function α(w) and β(w) for
the size of congestion window. These functions are
stated to achieve the above mentioned objectives
defined in term of required loss rate and size of
congestion window as shown in Figure 14.

Figure 14: HS-TCP objectives

HS-TCP should use 10Gbps link with loss rate not
more than behave like standard New Reno [22]
with loss probability not more than 10-3. So when
the value of congestion window is less than or
equal to 38 to 70 packets then the value of function
α(w) and β(w) are vary from 1 and 0.5 respectively

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

353

and then the value is 0.1 when the size of
congestion window is more than 84K packets. HS-
TCP grapes the network resources more quickly as
compared to Reno and behaves conservatively after
loss detection. The congestion window behavior of
HS-TCP is shown in Figure 15.

Figure 15: Congestion window behavior of HS-TCP

There is another problem for TCP in high-speed
networks which are during the slow start mode the
size of congestion window increases exponentially
which may leads towards extensive packet losses.
For the solution of this problem Floyd [23]
introduced a mechanism when the congestion
window increase up to 100 packets during the slow
start mode (Limited Slow Start), but this limitation
has not any significant effect on performance of the
network. In the presence of sever congestion HS-
TCP behaves like Standard TCP Reno that means it
inherits all Reno's characteristics. We are not
considering the fairness comparison of HS-TCP
and TCP Reno because Reno cannot use the
network resources efficiently but Intra fairness of
HS-TCP is important. HS-TCP flows achieves good
fairness having same RTT but unfair in the presence
of different RTTs. This problem is come from TCP
Reno and may be solved by tuning the AIMD
algorithm.

3.2 Scalable TCP (STCP)

Scalable TCP (STCP) was proposed by [24] which
is an alternative solution of HS-TCP to grape the
network resources more efficiently. STCP rejects
the complex calculation of AIMD parameters (in
HS-TCP) and introduce new algorithm for the
increment and decrement of the congestion window

called Multiplicative increase and Multiplicative
decrease (MIMD). In congestion avoidance mode
STCP increases its congestion window w by a
fraction α per RTT (w=w+α×w) where the value of
α is 0.01. After packet loss detection it moves in
fast-recovery mode and decrease the size of
congestion window by a different fraction called β
(w = w – β × w) where the value of β is 0.125.

The behavior of congestion window of STCP looks
similar to HS-TCP, but STCP improves the
increase and decrease phases as shown in Figure 16
although the proposed modification solved the
target problem by changing the increase and
decrease factors but it also create many critical
problems for a example in Figure 16 clearly shows
the stat of network and can easily move towards
congestion in presence of even one STCP flow,
which is generally not accepted for many networks.
Second, inter fairness behavior of STCP is similar
to HS-TCP means there is no improvement in inter-
fairness , third the MIMD technique does not
provide intra protocol fairness because when the
two competing STCP flows are detected loss with
same RTT then the flow having larger initial share
will always took the advantage on having short
share. In short we can say that the STCP is
extremely unfair protocol.

Figure 16: Congestion window behavior of S-TCP

3.3 Hamilton TCP (H-TCP)

Leith and Shorten [25] introduced another
congestion control algorithm for TCP aiming to
improve the RTT fairness (inter and intra). It uses
the elapsed time (∆) since the last congestion event
occurs for the estimation of congestion window size
in congestion avoidance mode. Due to dependency

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

354

on function of elapsed time (∆) the H-TCP flows
experiences same network resources and same
congestion window increment. In short we can say
that H-TCP flows are fair with each other in the
same network path as shown. Moreover it shows
that after detection of packet loss congestion
window decrease by half equally. In H-TCP the
increment in congestion window per RTT is defined
by α (∆), which is a polynomial function over
elapsed time (∆) when the last congestion event
occurred. The increment in congestion window is
calculated by equation α(∆)= 1 + 10(∆ - ∆low) +
0.5. (∆ - ∆low)2. In this equation whenever (∆), (∆low)
and the value of α (∆) would be 1 and ∆low is a
predefined threshold of H-TCP. We can note here
that according to the α (∆) calculation, H-TCP still
leads towards the RTT unfairness shown in Figure
17, for a example the α (∆) is calculated per RTT
at time 0, T1 and T2 then we can clearly observe
that the flow with longer RTT always losses as
compared to flow having shorter RTT. For the
solution of this issue H-TCP introduced another
technique of tuning the α (∆) with reference

RTT(RTTref) by .
H-TCP modified the decrease rule during the
congestion avoidance phase. After the loss event H-
TCP estimates the throughput of the flow B (k) and
make a comparison with estimation of preceding
loss event B (k-1), If the calculated value of
B (k) – B(k-1)/B(k-1) is smaller than 0.2 then the
reduction in size of congestion window is
determined by the ratio RTTmin/RTTmax and when
more than 0.2 then 0.5 parameter is used.

Figure 17: RTT unfairness between two flows of H-TCP

3.4 TCP Hybla

TCP Hybla was proposed by [26] resolve the
problem of RTT fairness in TCP New Reno, where
the flows having shorter RTT have always
advantage as compared to longer RTT. The
modifications are made in TCP New Reno 's Slow
Start and congestion avoidance phases and make
them Sami indepanded of RTT. For the normal
increment in the size of congestion window a
scaling factor ρ was introduced which is calculated
by ρ = RTT/RTTref where RTTref is reference of the
RTT (for example 30ms), so the increment style of
congestion window for TCP Hybla is shown in
equation 1 for slow start phase and in equation 2 for
congestion avoidance phase. The technique is
described in Figure 18 where three competing flows
with different RTTs are shown. Due to high value
of RTT the ratio of ρ become high and in result the
size of congestion window is increased more
rapidly after receiving each Acknowledgment.
Moreover when flows have same time period then
the value of congestion window is different for the
growth of congestion window.

Anyhow if we calculate the ratio between RTT and
congestion widow (upper bound), we can observe
that all flows are transmitting the data at similar
rate. Hyble proposed another two mechanisms for
the congestion control. First is pacing technique
[27] for the transmission of data and second is
packet pair algorithm [28] for the estimation of
initial slow start threshold. Pacing technique sets
the minimum delay between two consecutive
transmitted packets to overcome the burst nature of
TCP and packet pair mechanism gives the
estimation of capacity of available network path
because the advance knowledge of the capacity
may help to improve the convergence speed and
scalability in high speed bandwidth delay product
networks (BDP). However many experiments [26]
has proved that the TCP Hyble improved the RTT
friendliness, but Hybla is developed to turned back
to standard TCP mode (Reno congestion control
principle) when the RTT of flow is less than

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

355

predefined reference value and this behavior limits
the Hybla to deploy in long delay networks (for a
example Satellite link).

Figure 18: Evolution of congestion window of TCP
Hybla

3.5 BIC TCP

Xu et al [29] described that HS-TCP and STCP
have severe unfairness problem. To illustrate, when
two competing flows detect packet loss
simultaneously then according to the HS-TCP
algorithm (HS-TCP flow) with RTT y will get the
larger share of the network and according to STCP
algorithm (STCP flow) with small RTT can get all
network resources but the flow having larger RTT
cannot be able to get any network resource. Both
TCP variants have problem regarding discovery of
network resources. To solve this unfairness
problem TCP BIC (Binary Increase Congestion
Control) was proposed. Basically TCP BIC is an
extension of TCP New Reno with a new technique
called Rapid Convergence. This technique uses the
binary search for obtaining the optimal value of
congestion window rapidly according to the
network resources. The typical behavior of binary
search in TCP BIC is shown in Figure 19.

Figure 19: Binary search of TCP BIC

In TCP BIC the size of congestion window is
updated between minimum wmin and maximum wmax

after receiving all acknowledgments (at the start the
value of wmin is one and wmax has some high value)
After receiving the successful acknowledgment the
value of wmin increase by the value of previous
value of congestion window and after detecting
packet loss the BIC algorithm set the value of wmax

to current value of congestion window and moves
towards the fast recovery mode (similar to New
Reno). Moreover for the improvement of
convergence speed in less loss rate network, BIC
algorithm reduce the value of multiplicative
decrease parameter β from 0.5 to 0.125 (w=w-
0.125.w) due to binary search algorithm the
convergence time is very high in high BDP
networks, which may leads towards the large
number of packet losses. The congestion window
behavior of TCP BIC is shown in Figure 20.

Figure 20: Congestion window growth of TCP BIC

To solve this problem BIC not only uses the
Limited Slow Start technique of HS-TCP but it also
controls the rapid increment in convergence time
when the search range is too big. In short BIC
defined a parameter Smax which limits the rapid

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

356

convergence on the other hand when the range is
too small then BIC defined a parameter Smin for the
increment of the congestion window and in last
when the value of current congestion window
became near or exceed from target value of
congestion window then BIC uses Limited Slow
Start mode and set a new upper bound and again
start the binary search. The TCP BIC technique for
optimal value of congestion control is a novel
technique in loss based congestion control
approaches. According to many experiments [30]
[31] in many network scenarios TCP BIC showed
low RTT fairness and inter fairness (fairness with
other TCPs).

3.6 TCP CUBIC

CUBIC TCP [30] is an enhanced version of TCP
BIC proposed to remove the RTT unfairness.
CUBIC introduced the RTT independent congestion
window growth function and for this growth
CUBIC uses the H-TCP congestion window
approach as CUBIC function of elapsed time (∆)
when the last congestion event occurred as shown
in equation 3 where the value of C is predefined, β
is parameter of multiplicative decrease factor in fast
recovery process and wmax is a congestion window
size just before the loss event. CUBIC not only
shows good RTT fairness as the congestion window
is independent to RTT but also improves the intra
fairness and scalability of TCP BIC. In CUBIC the
growth of congestion window is very fast when the
value of w is far from predefined target value wmax

and when the value of w is near to wmax the growth
is very conservative.

Figure 21: Congestion window behavior of TCP CUBIC

In Figure 21 the behavior of CUBIC congestion
window is shown. Where in step one the target
window is unknown can be discover by using
CUBIC function. For the discovery of target
window wmax CUBIC starts conventional slow start
mechanism. In second step congestion window
smoothly touches the target window wmax and target
window will be updated if loss is detected before
touches the wmax. If this congestion was temporary
then the behavior of congestion window is shows in
step 3. Moreover CUBIC TCP provides a technique
to ensure the improved performance of congestion
window that standard TCP (Reno) because the
value of multiplicative decrease factor β is different
in CUBIC as compared to Reno β CUBIC not equal
to β Reno). The improved performance and
fairness of CUBIC is proved by number of
experimental studies [30] [32] and by real
environment scenarios. Currently CUBIC TCP is a
second most used congestion control algorithm of
TCP and default TCP for Linux operating system
since 2006. Therefore CUBIC has many issues
related to resource utilization and packet losses in
high-speed bandwidth delay network.

3.7 Fast TCP

Fast TCP is introduced by Jin et al [33] [34] and
used the idea of queuing delay of Vegas as
congestion indication. It introduced the periodic
congestion window updating based on delay
estimation of the network. However there is a basic
difference between Vegas and Fast. In Fast there is
a fix value (e.g., each 10 ms) for the updating of the
congestion window. Fast TCP calculates the new
target congestion window by equation 4 having
simple delay estimation w shows the current value
of congestion window, Retain is minimum RTT of
current RTT and α is tune able parameter of the
Protocol. According to this equation 4 if the
network state is congested RTT > RTTmin then
FAST will decrease the size of congestion window
otherwise increase the congestion window by pre-
defined value of . Value of create a drastic
effect of two parameters of Protocol: Stability and
Scalability. For a example if the value of is high

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

357

then it can easily scale in any BDP networks but it
will face convergence problem (when
w=w×RTTmin/RTT+α). On the other hand when the
value of α is small then Fast can easily stabilized
but it will face the problem of scalability. Therefore
the selection of α’s value is still an open issue for
researchers. According to the authors of FAST the
value of α should be constant for the better
performance, moreover FAST uses the exponential
smoothing mechanism for the calculation of
congestion window value. Simulation and Real
world tests are showed many serious issues with
stability, scalability, RTT fairness and intra fairness
[34] [35]. FAST technique is totally depend upon
the true minimum RTT value which is very hard to
calculate in some network scenarios moreover the
RTT is not a good substitute for the queuing delay
in the presence of reverse traffic or when there is a
change in route. Finally the defined congestion
window rule for updating in TCP FAST is not
friendly with standard TCP (Reno, New Reno).

3.8 TCP Libra

TCP Libra is a congestion control variant proposed
by Marfia et al [28] to solve the scalability
problems and improve the RTT fairness. Libra
mechanism is based on New Reno and modifies the
congestion avoidance technique for congestion
window. In Libra the target value of congestion
window is calculated by well known packet pair
technique [36]. In Libra's congestion avoidance
phase the value of congestion window is increased
by equation 5. Where the RTT is the current
estimated RTT, γ and k1 are predefined parameters
(e.g,. 3 and 4 respectively) and the value of C is
responsible for the scalability of the Libra and also
represent the capacity of the link and P is the
penalized factor which controls the increase rate
when the network is facing congestion. Penalized
factor P can be calculated by equation 6. Where K2

is a constant value and Q and Qmax are estimated
current and maximum queue delays. In equation 5
k1.C uses to scale the increment in the available link
and factor P control the Libra for the reduction of
network resources, if the calculated level of

buffering (Q.Qmax) increases then the last part of the
equation (RTT2/(RTT+γ)) is responsible for the
RTT fairness of Libra. Moreover Libra also
modifies the multiplicative decrease rule in fast
recovery mode w=w-β×w, where the β scales with
equation (θ/RTT+ γ) in this equation the values of
θ and γ are constant. This scaling factor is derived
analytically [28]. According to the Libra the
recommended value for θ and γ is 1 second. In
Libra when the current value of estimated RTT is
large (congestion in the network) then the scaling
factor will reduce the value of β further. Number of
experiments and simulations show that Libra
improves the link utilization and fairness properties
of TCP in BDP networks but it does not work well
in other congestion control mechanisms.

3.9 TCP New Vegas

Sing and Soh [37] found many advantages on delay
based algorithm of congestion control proposed in
TCP Vegas, therefore they also found some
problems in Vegas. First is it cannot be able to
utilize fully high BDP network links, second is on
the restart modes (slow start and Fast recovery) its
congestion control algorithm generates too much
traffic which leads towards the decrement of
throughput [13] [38].

TCP New Vegas was proposed to grape the link
effectively in BDP networks and to reduce the
convergence time. It defined the new mode called
Rapid Window Convergence. The inside idea is that
the algorithm does not stop the slow start phase
when the estimated buffer value reaches to its limit
or exceeds from per-defined threshold (∆>α), it
continues the slow start phase and congestion
window grows exponentially for probing network
resources. In detail when the value of estimated
buffer reaches to its limit then the New Vegas 's
algorithm saves the current value of congestion
window in a special veritable called wr and moves
towards Rapid Window Convergence. In this mode
the congestion window increases x packets after
each RTT as shown in equation 7.

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

358

Where n represents the number of time when early
congestion happened and algorithm moves towards
the Rapid Window Convergence mode. According
to this proposal [37] when the value of n becomes
more than 3 then it close the Rapid Window
Convergence and switches to Vegas congestion
avoidance mode and after detecting packet loss it
behaves like Vegas. For the solution of second
problem New Vegas algorithm uses packet pacing
technique to control the burst traffic after re-
initialization of slow start and fast recovery modes.
This algorithm sets the minimum delay between
two consecutive packets during transmission [39]
[40]. Although according to literature pacing
technique has negative impact on TCP Reno's
performance but Authors of New Vegas
experimentally proved that in the presence of delay
base congestion control, packet pacing has positive
impact.

Figure 22: Congestion window behavior of TCP-AR

3.10 TCP- Adaptive Reno
TCP-AR (Adaptive Reno) was proposed by
Shimonishi and Murase [41] to improve the
performance of TCP and friendliness to standard
TCP in high speed networks. It extends the
congestion avoidance phase of TCPW-BBW with
scalable congestion window. Moreover it defined
two components for the increment of congestion
window. First is Wbase which is slow constant
increase component (increased by 1 per RTT) and
second is Wprobe which is scalable increase
component. Scalable component has two important
properties. First when the network sate is
congestion free then this function gives value near

to Westwood-like and second when the network is
congested then the value of scalable component is
zero. Figure 22 shows the behavior of congestion
window of TCP-AR. According to experiments it is
proved that TCP-AR improved the network
utilization and intra-fairness.

3.11 TCP Fusion
TCP Fusion is proposed by Kaneko et al [42] to
improve the performance of TCP. It combines the
idea of Vegas (used network buffering estimation),
TCP DUAL’s queuing delay technique and
Westwood’s achievable rate mechanism. Fusion
algorithm introduced three different linear functions
and its switching is depending upon the queuing
delay threshold value. If the value of queuing delay
is less than the predefined value of threshold (zone
A figure 23) then the size of congestion window
will increase at fast rate per RTT by predefined
fraction of Westwood 's rate estimate (scalable
increase) and when the value of queuing delay is
more than 3 times to predefined threshold (zone C
in figure 23) then the congestion window will
decrease according to number of packets buffered
in the network (for a example Vegas estimate) and
when the value of queuing delay lies between 1 and
3 times then the congestion window remains
unchanged.

Moreover Fusion algorithm changes the constant
value of β in fast recovery phase to the value
β=max(0.5,RTTmin/RTT). Many experimental tests
have shown that Fusion improves the link
utilization and fairness properties as compare to
other algorithms (FAST, C-TCP, BIC, and HS-
TCP).

Figure 23: Congestion window behavior of TCP Fusion

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

359

3.12 TCP Africa

TCP Africa (Adaptive and Fair Rapid Increase
Congestion Avoidance) is proposed by King et al
[43] to solve many problems related to previous
congestion control algorithms like link utilization,
RTT fairness (inter and Intra) in BDP networks.
Africa combines the two mechanisms, first is
aggressiveness of HS-TCP when the sate of
network is congestion free and conservative
behavior of standard New Reno when the network
is congested.

Figure 24: Congestion window behavior of TCP Africa

The idea is borrowed from TCP Vegas to detect
state of the network either it is congestion free or
congested by comparing the estimate of network
buffering (∆) with some predefined constant α .
More precisely when there is little buffering (∆<α)
then TCP Africa moves towards fast mode by
applying the HS-TCP’s congestion avoidance and
Fat Recovery rules. These rules decide the
increment and decrement of the congestion window
as shown in Figure 24. Otherwise it will move
towards the slow start mode of the Reno.(increase
by one and decease by half). According to its
authors TCP Africa showed good network
utilization in high speed networks, low rate of
packet losses as compared to HS-TCP and STCP
and good fairness (inter and intra) by extensive
experimental analysis but unfortunately TCP Africa
has not been implemented and tested in real
networks.

3.13 Compound TCP (C-TCP)

Compound TCP (C-TCP) was presented by Tan et
al [44] to improve the efficiency, RTT fairness and
TCP fairness. Its congestion control mechanism is
very similar to TCP Africa. It combines the delay
base component for the indication of congestion
with conventional Reno congestion control
mechanism which is scalable in BDP networks.

C-TCP introduced another scalable component wfast

for the calculation of congestion window (w=wReno

+ wFast), but congestion window is only updated
through this equation when the Vegas estimate (∆)
show little buffering in the network (∆<α) and α is
predefined constant) and when the value of estimate
become larger than α then the scalable component
reduced the size of congestion window by a value
proportional to the estimate itself (wfast = wfast – ζ.∆)
where ζ is predefined constant). C-TCP uses the
transition between Reno Slow mode and scalable
H-TCP for the reduction of congestion window just
like slow and fast mode in TCP Africa.

As a result the dynamics of congestion window of
both C-TCP and TCP Africa are very similar as
shown in Figure 25. Experimental analysis for both
simulation and real world has proved that C-TCP
showed good link utilization in high BDP network
with good RTT fairness (inter and intra). That's why
C-TCP is default TCP for Microsoft Windows
operating system and most developed congestion
control algorithm all over the world.

Figure 25: Congestion window dynamics of Compound
TCP

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

360

3.14 TCP Illinois

Liu et al [45] noted the congestion control
algorithms based on delay (Vegas and Fast) which
is used as primary indication of congestion can
achieve better efficiency as compare to that
algorithms which are based on packet loss (Reno
HS-TCP, STCP).

Therefore the performance of delay based
algorithms may suffer due to noisy delay
measurements for an example due to heavy
opposite transmission. To solve this problem TCP
Illinois was proposed. TCP Illinois is similar to
Africa and C-TCP and based on New Reno. Its
behavior is very aggressive when the state of the
network is congestion free and during congestion
events it behaves very gentle. Its algorithms defined
both the congestion window w and increase
parameter α in congestion avoidance phase (w = w
+ α per RTT) and decrease parameter β in Fast
Recovery (w = w – β.w) after detecting packet loss
by 3 duplicate ACKs) as a special functions of
queuing delay. The increase parameter α is
inversely proportional to queuing delay and
decrease factor β is directly proportional as shown
in Figure 27. The minimum and maximum values
of α, β and queuing delay are defined in algorithm
to achieve better performance.

Figure 26: Congestion window behavior of TCP Illinois

In Linux operating system Illinois algorithms
defined values of amax=10, amin= 0.3, Bmin=0.125,
bmax =0.5, Q1=0.01, Q2=0.1. Qmax and Q3 =0.8.Qmax

where the Qmax is maximum queuing delay
calculated over the lifetime of the connection.
According to this algorithm increase and decrease

factors are updated one per RTT. However the value
of α can be maximum during number of
consecutive RTT (for a example 6) and the value of
queuing delay is less than predefined threshold Q1

and when the size of congestion window is less
than predefined threshold wt then algorithm moves
towards the compatibility phase (α =1 and β =0.5).
This move is similar to STCP and HS-TCP,
improves the fairness properties. Figure 26 shows
the dynamics of TCP Illinois's congestion window.
However the experimental results are showed that
TCP Illinois behaved very well in high BDP
network along good RTT fairness.

Figure 27: Behavior of additive increase alpha (α) and
multiplicative decrease beta (β) with respect to queuing

delay Q

3.15 YeAH TCP

Baiocchi et al [46] proposed a congestion control
algorithm YeAH TCP (Yet Another High Speed)
by combining the packet loss and delay
measurement approaches for the indication of
congestion. This algorithm uses the technique of
Slow New Reno and fast STCP in congestion
avoidance and fast recovery phases just like TCP
Africa.

In a former way the congestion window increases
by one packet per RTT and after loss it decreases by
half of its current value. YeAH TCP uses two
mechanisms for the switching of modes, first is the
Vegas estimation of packets buffered in the
network and second is TCP DUAL's estimation of
congestion level in the network. For the calculation
of queuing delay YeAh TCP uses the minimum
measured RTT instead of average RTT and for
calculation of congestion level it uses the fraction
of minimum RTT instead of Maximum
RTT(Q/Qmax). In short when the YeAh TCP
calculates low level buffering in network (∆ <

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

361

α.Q/Qmax) where α is predefined threshold) and
queuing delay estimation detects low level of
congestion (Q/RTTmin < fi), where fi is predefined
threshold) then it behaves like as STCP otherwise
slow Reno mode activates. According to
Experimental analysis YeAh TCP shows high
efficiency in BDP networks more over it is
confirmed that the combination of loss base and
delay component can improve the RTT fairness
(inter and intra).

Table: 2 Features of TCP variants for Congestion Control in High Speed delay Networks

TCP
Variants

Yea
r

Base Addition/Enhancement in Features Status Implementation
Wi
n

Linu
x

Ma
c

BS
D

HS-TCP 2003 NewRen
o
Additive

Additive increase and multiplicative
decrease factors of congestion
window, Limited Slow Start

Experime
ntal

2.6.1
3

STCP 2003 NewRen
o

Multiplicative increase and
multiplicative decrease parameters in
congestion avoidance phase

Experime
ntal

2.6.1
3

H-TCP 2004 NewRen
o

Increase factor of congestion window
with respect to elapsed time,
Adaptation of multiplicative decrease
factor,

Experime
ntal

2.6.1
3

TCP Hybla 2004 NewRen
o

Scaling the increase factor in Slow
Start and Congestion Avoidance
phase, Packet Pacing, Estimation of
Slow Start threshold

Experime
ntal

2.6.1
3
2.6.1
2

TCP BIC 2004 HS-TCP Binary search for the congestion
window growth, Limited Slow Start

Experime
ntal

2.6.1
3

TCP CUBIC 2008 BIC Cubic growth function for congestion
window.

Experime
ntal

2.6.1
6

FAST TCP 2003 Vegas Growth of congestion window at
constant rate

Experime
ntal

TCP Libra 2005 New
Reno

Estimation of link capacity by using
packet pairs, Control the congestion
window increment by using queuing
delay.

Experime
ntal

TCP Vew
Vegas

2005 Vegas Rapid window convergence, Packet
pacing, Packet pairing

Experime
ntal

TCP-AR 2005 Vegas Congestion window increment by
using queuing delay

Experime
ntal

TCP Fusion 2007 Westwoo
d, Vegas

Congestion window increment by
using queuing delay

Experime
ntal

TCP Africa 2005 HS-TCP,
Vegas

Switching between fast and slow
phase by using Vegas estimation of
network state

Experime
ntal

Compound
TCP

2005 HS-TCP,
Vegas

Calculation of slow and scalable
components of congestion window

Experime
ntal

Vist
a,
XP

2.6.1
4,
2.6.2
5

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

362

TCP Illinois 2006 New
Reno,
DUAL

Increase and decrease factors as
functions of queuing delay.

Experime
ntal

2.6.2
2

YeAH TCP 2007 STCP,
Vegas

Switching between slow and fast
phases by using DUAL and Vegas
type estimation.

Experime
ntal

2.6.2
2

4. CONCLUSION

In this study we have discussed many types of
congestion control approaches and noted that the
focus of research has changed with the
enhancement in Internet, from the problem to
eliminate the congestion collapses to problem to
use the network resources efficiently and
effectively in different network environments.

In the first section we discussed the introduction of
congestion and its problems. In section II we
discussed about the congestion collapses and that
kind of proposals with techniques which builds the
concept of the end to end congestion control
principal and solve the problem of congestion
collapse. In first proposal, TCP Tahoe proposed
the basic method to probe the network resources
with using packet loss for the detection of
congestion and the limit of the network. Although
this technique solves the problem of congestion but
it could not able to use network efficiently. As we
discussed some solutions for the efficiency problem
like, (1) enhance the congestion control principal
by making the assumptions about the network limit
(TCP Reno, TCP New Reno); or (2) refine the
protocol by enhancing the reporting technique of
the receiver side and allows sender to estimate the
network limit (TCP SACK, TCP FACK) or by
developing delay measurement technique for the
indication of congestion or for the estimation of
network state (TCP DUAL, TCP Vegas, TCP
Veno).

In section III we discussed new challenges for the
TCP congestion with the advancement of high
speed delay network and most recent past
proposals. The basic aim of these proposals is to
solve the problem of poor utilization of TCP flows
in high speed delay networks. For the solution of
poor utilization many proposals (HS-TCP, STCP, H
TCP) are discussed with aggressive policies to

probe the network resources. But unfortunately the
aggressiveness of these techniques leads towards
inter and intra RTT unfairness. Later proposals
(TCP BIC, TCP CUBIC) used the aggressive
behavior only when there is no any congestion or
congestion indication in the network and after
indication of congestion by packet loss, behaved
conservatively to probe the available network
resources. Other proposals (TCP FAST, TCP
Africa, TCP-AR, C-TCP, TCP Libra, TCP Illinois,
TCP Fusion, and TCP YeAh) used delay
measurements for the indication of congestion in
the network. Although these are many
disadvantages of these two techniques and also
there is not any consensus in research community
that which approach is good for the current Internet.
Currently C-TCP is used in Microsoft Windows
operating systems and TCP CUBIC is used in
Linux operating systems.

REFERENCES

[1] J. Postel, “RFC793—transmission control
protocol,” RFC, 1981.

[2] A. Al Hanbali, E. Altman, and P. Nain, “A
survey of TCP over ad hoc networks,” IEEE
Commun. Surveys Tutorials, vol. 7, no. 3, pp.
22–36, 3rd quarter 2005.

[3] C. Lochert, B. Scheuermann, and M. Mauve, “A
survey on congestion control for mobile ad
hoc networks,” Wireless Communications and
Mobile Computing, vol. 7, no. 5, p. 655,
2007.

[4] J. Widmer, R. Denda, and M. Mauve, “A survey
on TCP-friendly congestion control,” IEEE
Network, vol. 15, no. 3, pp. 28–37, May/June
2001.

[5] H. Balakrishnan, V. N. Padmanabhan, S. Seshan,
and R. H. Katz, “A comparison of
mechanisms for improving TCP performance
over wireless links,” IEEE/ACM Trans.
Netw., vol. 5, no. 6, pp. 756–769, December
1997.

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

363

[6] K.-C. Leung, V. Li, and D. Yang, “An overview
of packet reordering in transmission control
protocol (TCP): problems, solutions, and
chal- lenges,” IEEE Trans. Parallel Distrib.
Syst., vol. 18, no. 4, pp. 522–535, April 2007.

[7] S. Low, F. Paganini, and J. Doyle, “Internet
congestion control,” IEEE Control Syst.
Mag., vol. 22, no. 1, pp. 28–43, February
2002.

[8] G. Hasegawa and M. Murata, “Survey on
fairness issues in TCP congestion control
mechanisms,” IEICE Trans. Commun.
(Special Issue on New Developments on QoS
Technologies for Information Networks), vol.
E84-B, no. 6, pp. 1461–1472, June 2001.

[9] C. P. Fu and S. C. Liew, “TCP Veno: TCP
enhancement for trans- mission over wireless
access networks,” IEEE J. Sel. Areas
Commun., vol. 21, no. 2, February 2003.

[10] P. Karn and C. Partridge, “Improving round-
trip time estimates in reliable transport
protocols,” in Proc. SIGCOMM, 1987.

[11] V. Jacobson, “Congestion avoidance and
control,” ACM SIGCOMM, pp. 314–329,
1988.

[12] Z. Wang and J. Crowcroft, “Eliminating
periodic packet losses in 4.3– Tahoe BSD
TCP congestion control,” ACM Computer
Communication Review, vol. 22, no. 2, pp. 9–
16, 1992.

[13] M. Allman, V. Paxson, and W. Stevens,
“RFC2581—TCP congestion control,” RFC,
1999.

[14] K. Fall, S. Floyd, Simulation-based
comparisons of Tahoe, Reno, and SACK
TCP, ACM Computer Communication
Review 26 (3) (1996) 5–21.

[15]A. Veres, M. Boda, The chaotic nature of TCP
congestion control, in: Proceedings of IEEE
INFOCOM, 2000, pp. 1715–1723.

[16] M. Mathis, J. Mahdavi, S. Floyd, and A.
Romanov, “RFC2018—TCP selective
acknowledgment options,” RFC, 1996.

[17] M. Mathis and J. Mahdavi, “Forward
acknowledgement: refining TCP congestion
control,” in Proc. conference on applications,
tech- nologies, architectures, and protocols for
computer communications (SIGCOMM),
New York, NY, USA, 1996, pp. 281–291.

[18] L. Brakmo and L. Peterson, “TCP Vegas: end
to end congestion avoidance on a global
Internet,” IEEE J. Sel. Areas
Commun.,vol.13, no. 8, pp. 1465–1480,
October 1995.

[19] K. Srijith, L. Jacob, and A. Ananda, “TCP
Vegas-A: Improving the performance of TCP
Vegas,” Computer Communications, vol. 28,
no. 4, pp. 429–440, 2005.

[20] S. Floyd, “RFC3649—HighSpeed TCP for
large congestion windows,” RFC, 2003.

[21] S. Floyd, HighSpeed TCP and Quick-Start for
Fast Long-Distance HighSpeed TCP and
Quick-Start for fast longdistance networks
(slides), TSVWG, IETF, March 2003.

[22] S. Floyd, T. Henderson, and A. Gurtov,
“RFC3782—the NewReno modification to
TCP’s fast recovery algorithm,” RFC, 2004.

[23] S. Floyd, “RFC3742—Limited slow-start for
TCP with large conges- tion windows,” RFC,
2004.

[24] T. Kelly, “Scalable TCP: improving
performance in highspeed wide area
networks,” Computer Communications
Review, vol. 32, no. 2, April 2003.

[25] D. Leith and R. Shorten, “H-TCP: TCP for
high-speed and long- distance networks,” in
Proceedings of PFLDnet, 2004.

[26] C. Caini and R. Firrincieli, “TCP Hybla: a TCP
enhancement for heterogeneous networks,”
International J. Satellite Communications and
Networking, vol. 22, pp. 547–566, 2004.

[27] A. Aggarwal, S. Savage, and T. Anderson,
“Understanding the perfor- mance of TCP
pacing,” in Proc. IEEE INFOCOM, vol. 3,
March 2000, pp. 1157–1165.

[28] G. Marfia, C. Palazzi, G. Pau, M. Gerla, M.
Sanadidi, and M. Roccetti, “TCP Libra:
Exploring RTT-Fairness for TCP,” UCLA
Computer Science Department, Tech. Rep.
UCLA-CSD TR-050037, 2005.

[29] L. Xu, K. Harfoush, and I. Rhee, “Binary
increase congestion control for fast, long
distance networks,” in Proc. IEEE
INFOCOM,vol. 4, March 2004, pp. 2514–
2524.

[30] I. Rhee and L. Xu, “CUBIC: a new TCP-
friendly high-speed TCP variant,” SIGOPS
Operating Systems Review, vol. 42, no. 5, pp.
64– 74, July 2008.

[31] S. Ha, Y. Kim, L. Le, I. Rhee, and L. Xu, “A
step toward realistic performance evaluation
of high-speed TCP variants,” in Fourth
Interna- tional Workshop on Protocols for
Fast Long-Distance Networks, Nara, Japan,
March 2006.

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

364

[32] A. Baiocchi, A. P. Castellani, and F. Vacirca,
“YeAH-TCP: yet an- other highspeed TCP,”
in Proc. PFLDnet,ISI,Marina Del Rey (Los
Angeles), California, February 2007.

[33] C. Jin, D. Wei, S. Low, G. Buhrmaster, J. Bunn,
D. Choe, R. Cottrel, J. Doyle, W. Feng, O.
Martin, H. Newman, F. Paganini, S. Ravot,
and S. Singh, “FAST TCP: from theory to
experiments,” December 2003.

[34] D. X. Wei, C. Jin, S. H. Low, and S. Hegde,
“FAST TCP: motiva- tion, architecture,
algorithms, performance,” IEEE/ACM Trans.
Netw., vol. 14, no. 6, pp. 1246–1259, 2006.

[35]S. Belhaj, “VFAST TCP: an improvement of
FAST TCP,” in Proc. Tenth International
Conference on Computer Modeling and
Simulation, 2008.

[36] R. Kapoor, L.-J. Chen, L. Lao, M. Gerla, and
M. Y. Sanadidi, “CapProbe: A simple and
accurate capacity estimation technique,” in
Proceedings of SIGCOMM, Portland,
Oregon, USA, August/September 2004.

[37] J. Sing and B. Soh, “TCP New Vegas:
Improving the Performance of TCP Vegas
Over High Latency Links,” in Proc. 4th IEEE
International Symposium on Network
Computing and Applications (IEEE NCA05),
2005, pp. 73–80.

[38] R. Braden, “RFC1122—Requirements for
Internet Hosts - Communi- cation Layers,”
RFC, 1989.

[39] L. Zhang, S. Shenker, and D. Clark,
“Observations on the dynamics of a
congestion control algorithm: The effects of
two-way traffic,” ACM SIGCOMM
Computer Communication Review, vol. 21,
no. 4, pp. 133– 147, 1991

[40] D. Wei, P. Cao, and S. Low, “TCP Pacing
Revisited,” in Proceedings of IEEE
INFOCOM, 2006.

[41] H. Shimonishi and T. Murase, “Improving
efficiency-friendliness trade- offs of TCP
congestion control algorithm,” in Proc. IEEE
GLOBE- COM, 2005.

[42] K. Kaneko, T. Fujikawa, Z. Su, and J. Katto,
“TCP-Fusion: a hybrid congestion control
algorithm for high-speed networks,” in Proc.
PFLD- net, ISI, Marina Del Rey (Los
Angeles), California, February 2007.

[43] R. King, R. Baraniuk, and R. Riedi, “TCP-
Africa: an adaptive and fair rapid increase rule
for scalable TCP,” in Proc. IEEE INFOCOM,
vol. 3, March 2005, pp. 1838–1848.

[44] K. Tan, J. Song, Q. Zhang, and M. Sridharan,
“A compound TCP approach for high-speed
and long distance networks,” July 2005.

[45] S. Liu, T. Basar, and R. Srikant, “TCP-Illinois:
A loss and delay-based congestion control
algorithm for high-speed networks,” in Proc.
First International Conference on
Performance Evaluation Methodologies and
Tools (VALUETOOLS), 2006.

[46] A. Baiocchi, A. P. Castellani, and F. Vacirca,
“YeAH-TCP: yet an- other highspeed TCP,”
in Proc. PFLDnet,ISI,Marina Del Rey (Los
Angeles), California, February 2007

