
Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

446

YOKING OBJECT ORIENTED METRICS THROUGH
MUTATION TESTING FOR MINIMIZING TIME PERIOD

RAMIFICATION
1Chandu P.M.S.S., 2Dr.T.Sasikala

1. Research Scholar, Department of CSE, Sathyabama University, Chennai, India.
2. Principal, SRR Engineering College, Chennai, India.

E-mail: 1chandupmss@gmail.com, 2sasi_madhu2k2@yahoo.co.in

ABSTRACT

Object Oriented Programming largely depends on the testing processes. Testing is of vital importance and
is being carried out at three levels namely system, unit and integration verification. The three approaches
Structural, black-box, error-driven approach is normally considered as efficient approaches. In the proposed
system, we probe into object-oriented metrics which are forcefully yoked through mutation testing
processes using Selenium tool and the primary focus is on checking the time consumption in the effective
evoking of results. However maximizing the effectiveness of software has been principle objective of the
proposed work. To derive a non-existing software test case and to ascertain quality of programs Mutation
method is used. Selenium an automatic tool through open source technology is implemented in this process
which provides various set programming equipments. Each and every equipment evokes an unique mode
of support testing being generated by the tool. In this proposed system the mutation mode of testing the
objects is carried out by means of selenium tool.
Keywords: Testing, Implementing, Metrics, Automation, Mutation

1. INTRODUCTION:

Testing process is the nucleus for a software
program development. The existing testing
processes depict an unbalanced application and
invariable time period hence it is prominent to have
a system that evokes effective, balanced output.
The result is more effective and reaches the client
within a specified span of time with minimum or no
errors. Entire functionality of the program and the
software is tested whereas the oldest software
building approaches gives a detailed description
about the usual analyzing set that leads to
comprehend outcome of the building phase.

2. SOFTWARE TESTING:

Program building process depends on testing
processes to determine the output without errors.
[1] The accuracy of the Test cases and its logical
perfection leads the effective functioning of the
software. To validate software and to eke out the
flaws in software, software testing is usually carried
out. The testing process takes into account a span
of time allotted and available resources and hence
perfection of the software cannot be ascertained
completely using such testing. Software
development is a vast area whereas software testing
is applied in most cases in lieu of developing it.

The principle objective of life cycle testing is to
check effort testing from the beginning and to limit
the time involved in evolving out debugging and
the development of a testing phase.

3. SOFTWARE METRICS:

Functionality and source code testing is the existing
technique. The relationship between two variables
is often denoted with a number termed as metrics.
A given attribute, its system, component its
quantitative measure are all analyzed. The ultimate
goal of software metrics is to hold predominance in
testing phase which also acts as a fault proneness
and software quality indicators [4]. Equivalence
partitioning testing, error guessing, decision table
analysis and state transition analysis are the main
arguments to be tested. These are done through
black box examination whereas in the white box
testing Path analysis, branch coverage examination,
statement analysis, data flow analysis are tested.
This sort of testing is done through a separate tool
through which the functionality of the verification
process is maximized. The software verification
process is utilized in the testing mechanism that has
its own merits and demerits. The tools’ usage is
practiced but in certain occasions it may not bring
out the result which we desire. Object oriented
metrics provides the maintenance of the software.

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

447

[5] The data members and the activities that are
related to the software programs are determined
using the metrics mechanism. The testing includes
main factors such as coupling measurement,
number of lines of code, program execution time
and cohesion metrics are measured quantitatively.
A hoard is delivered to evoke and analyze the class
that should be verified and there is an occurrence of
stint to complete evaluation. [7] Data flow testing is
integrated as a first step and subjected for both
individual and interacting with the member
functions to contribute to child class and parent
class analysis by hierarchical testing methodology.
In the next phase a testing approach is included.

Object oriented programs are nothing but larger
procedural components and their methods [4] an
aspect based terminology is used in Object oriented
fundamentals with modularizing and crosscutting
concerns into object oriented programs are provided
by vitally combined equipments. Fundamental
communication elements and the developing rules
are applied to different methods and are measured
by more than one model. Some methods depend on
software metric evaluation and it can be applied to
programs by using various paradigms or in a multi
paradigm environment. The verbal skill tactics is
not related to the member’s functions or language
in some programming.

For detecting the programming errors the output as
a sequence is generated in an effective way. In
most of the cases it generates the sequence that
covers the constraints at least once in an effective
way of fault identification in the coding. [1] Testing
techniques like totaling and checking the condition
at the end of each statement and a test database or
also the combination of both increases the bugs
identification mechanism

The capability of judging the building phase of the
software and its quality is measured by the program
and it is the most important phase of the software
construction life cycle. [6] The important
complications in now a day’s software practices are
the density, information and control questions the
software in a very effective way. In addition to
this, program metrics was observed that initiates the
tester to evaluate the non-recurring execution flow
paths through the program that adds value to the
value of the software.

4. MUTATION TESTING

A testing process in which the source code is
analysed and test cases are capable of denoting the

errors is often termed as mutation testing. Unit
testing is done through this white box testing genre.
The overall objective of the program should not be
disturbed hence mutant program is kept small. To
access the quality of the test cases is the principle
goal of mutation testing this is also robust to fail
mutant code. It is also denoted as fault based
testing strategy which was proposed earlier in 1971.
It was felt expensive and so lost its popularity. In
this modern era it has regained its momentum and
hence Java and XML largely depend on this mode.
The substitution of simple code and syntactic
operation is the key for it. Re execution of test
cases in the mutated program for generating
mutants that are un captivated previously is an
unique feature of this mode of testing. [5].

5. EXISTING METHODOLOGY:

In the existing testing technique testing done by
metrics includes the maintenance and management
effort that is based on the evaluation of the system
quality and the user interface management
system[2]. Another inheritance procedure is used by
iterating the testing data for a base class again and
again and it is updated to the sub class. In the later
stages they also utilize six type of metrics for the
purpose of evaluation they are response for a class,
coupling between objects, methods per class,
number of sub class, lack of cohesion in between
methods and the depth of inheritance tree.

DEMERITS OF EXISTING METHODOLOGY:
 This existing technique does not work well
with the real time experiments.
 These techniques do not focus on all
object oriented concepts other than inheritance
 Time consumption for examining the code
is more in the existing techniques.

6. PROPOSED METHODOLOGY:

Selenium tool is used to test the web application
and mutation testing is performed in the proposed
methodology. A test complexity estimator is used to
help the tester to evaluate how much testing is
needed in this process and this also asses the
process of retesting or verifying. The sub class
methods in an object are counted and added to the
difficulty evaluation process only when they are not
examined at the parent class level.

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

449

7.4 Software Metric Evaluation:

In fig 2.4 evaluation of Software metric will
validate the tested code and identify the errors in
the code. This will improvise the quality assurance
and development of new software. The results of
the tested code will be generated and the
performance of testing is also mentioned.

In Fig 3 is the output of the fourth module where
performance of the selenium is obtained in the form
of graph.

8. GRAPH:

In Fig 4 is the final output of the process is the
graphical representation where x-axis indicates the
methods and y-axis indicates the accuracy, where
the existing system is compared with the proposed
system. In the existing system Jmeter is the tool
which is used and in the proposed system selenium
tool is used. The above graph depicts that selenium
i.e., proposed system has greater accuracy than the
existing system which uses Jmeter.

9. FUTURE ENHANCEMENT:

Selenium tool is used to test the web application in
order to prove the efficiency of mutation testing to
improve the proposed system. In the proposed
system we have implemented selenium tool with
mutation testing for the process of examination, in
future some additions tools are utilized in mutation
testing examination process to test the object
oriented code.

CONCLUSION:

The final conclusion of the research work is hereby
delivered that the automation testing like selenium
and Jmeter takes less amount of time than manual
testing but manual testing can be effectively fast
enough to cope up with automation testing.
Whereas the selenium performance is little faster
than jmeter .The accuracy on both the testing is
slightly enhanced by the selenium when compared
to the jmeter . However The testing process utilized
in this project is hereby concluded that it is quick,
efficient, has more accuracy and also reduces the
time complexity. This methodology increases the
performance and reduces the maintenance of the
software.

REFERENCES:
[1] S. Pasupathy, DR. R. Bhavani, ‘ Analysing The

Efficiency Of Program Through Various
OOAD Metrics’ ,Vol. 61 No.2 , March
2014.,JATIT.

[2] Ruchi Kulkarni, Samidha Diwedi Sharma ,
“Object Oriented Software Modularization
Quality Measurement Based On API and
Information Theoretic Metrics” , Vol. 01,Issue
04,pp 550-553 june 2014.

[3] Richard Baker ,Ibrahim Habli (2013), ‘An
Empirical Evaluation of Mutation Testing for
Improving the Test Quality of Safety-Critical
Software’ , IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, VOL. 39, NO.
6.

Metrics are evaluated on the identified
errors

Identified errorsValidate the data and produce the results

ResultsResults are compared to find the
performance and time complexity

Performance and timecomplexity
Fig 2.4

Fig 3 Performance of selenium

Fig 4 Comparision of selenium and jmeter

Journal of Theoretical and Applied Information Technology
31st July 2015. Vol.77. No.3

© 2005 - 2015 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

450

[4] Gao, J. San Jose State Univ., San Diego, CA,
USA (2012), ‘Cloud Computing Technology
and Science (CloudCom)’, 4th International
Conference,pp.464-471

[5] Norbert Pataki, Adam Sipos, and Zoltan
Porkolab” Measuring the Complexity of
Aspect-Oriented Programs with Multiparadigm
Metric” Supported by GVOP-3.2.2.-2004-07-
0005/3.0. 2004

[6] Mary Jean Harold and John D. McGregor”
Incremental Testing of Object-Oriented Class
Structures”1989

[7] F.J. Daniels K.C. Tai” Measuring the
Effectiveness of Method Test Sequences
Derived from Sequencing Constraints”
supported by a NASA and in part by NSF grant
CCR-9320992.

[8] Wei li, salli henry” Object Oriented Metrics
Which Predict Maintainability”TR-93-05.1993.

[9]S. Gambir, "Testing Strategies for Object
Oriented Systems", IRACST - International
Journal of Computer Science and Information
Technology & Security (IJCSITS), Vol. 2, No.
2, pp. 459-462, April 2002.

[10] S. R. Chidamber, C. F. Kemerer, “A Metrics
Suite for Object-Oriented Design”, IEEE
Transactions on Software Engineering, Vol.20,
No. 6, pp. 476-492, June 1994.

[11] E. Weyuker, “Evaluating Software Complexity
Measures”, IEEE Transactions on Software
Engineering, Vol. 14, No. 9, pp. 1357-1365,
September 1988.

[12] T. JI. McCabe, “Design Complexity
Measurement and Testing”, ACM 32:1415-
1425, 1989.

[13] S. C. Ntafos, “On Required Element Testing”,
IEEE Transactions on Software Engineering”,
SE-10(6):795-803, 1984.

[14] S. Rapps, E. J. Weyuker, “Selection Software
Test Data using Data Flow Information, IEEE
Transactions on Software Engineering, SE-
11(4):367-375, 1985.

[15] W. Li and S. Henry, Object-oriented metrics
that predict maintainability, J. Systems and
Software 23:111-122, 1993.

[16] M. Barrold, J. D, McGregor and K. Fitzpatrick,
“Incremental Testing of Object-Oriented Class
Structure”, Proceedings of the 14th

International Conference on Software
Engineering, pp. 68-80, 1992.

