
Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

254

FAULT RECOVERY ALGORITHM USING KING SPARE
ALLOCATION AND SHORTEST PATH SHIFTING FOR

RECONFIGURABLE SYSTEMS
1 PRADEEP C 2 Dr. R. RADHAKRISHNAN 3 Dr. PHILIP SAMUEL

1Associate Professor, Department of ECE, SAINTGITS College of Engineering,Kottayam,India
2Principal, Sri Shakthi Institute of Engineering &Technology, Coimbatore,India

3Associate Professor, Division of IT, Cochin University of Science and Technology, Cochin,India

Email: 1pradeepcee@gmail.com , 2rlgs14466@rediffmail.com , 3philips@cusat.ac.in

ABSTRACT

Field Programmable Gate Arrays (FPGAs) have the capability of reconfiguring in-field and at runtime that helps in
fault recovery. FPGAs are used to implement complex functions in applications such as nuclear systems, space
missions, communication systems etc where system reliability is very critical. Such systems must be designed with the
capability of fault tolerance. A wide range of fault tolerance techniques have been proposed for FPGAs ranging from
architectural redundancies to fully online adaptive implementations. This paper presents an algorithm for efficient fault
recovery using king spare allocation technique and Dijkstra’s shortest path shifting. This algorithm can be applied to
any modern FPGA that has partial reconfiguration (PR) capability. PR allows to modify parts of the design of the
operating FPGA without affecting the other parts. The normal system operation can be ensured in noisy environment
using this algorithm. This fault recovery algorithm is demonstrated using Matlab.

Keywords:- Field Programmable Gate Arrays (Fpgas), Fault Tolerance, Transient Fault, Permanent Fault, Spare,
Shifting.

1. INTRODUCTION

 Reliable performance of the hardware
has been the requirement of the electronic system
since the first electronic systems were
constructed. Improper functioning of the logic
circuits in the digital systems can result in
permanent or transient deviations of the values of
logic variables from the designed values [1].
Permanent faults alter the inplemented logic
functions permenently due to the in the logic
circuit components. Transient faults are caused
either by external influences such as noise in
power supply, electromagnetic interference, etc.
or by temporary circuit malfunctions such as
overload, overheating conditions etc. Transient
faults results in temporary changes in logic circuit
properties. To achieve reliability for systems
operating in remote /hostile areas various self-
repairing methodologies are investigated.

 Fault tolerance is a very important
characteristic of modern electronic system,
especially where immediate human intervention is
not possible. The greater the benefits the
electronic systems provide, the greater will be the
harm when their function gets altered or when
they fail. Avizienis in 1967 formulated the

concept of fault tolerance as “We say that a
system is fault-tolerant if its programs can be
properly executed despite the occurrence of logic
faults” [2].

 Dual modular redundancy (DMR) and
triple modular redundancy (TMR) were used in
the early stages for the development of fault
tolerant systems [3], [4]. Three equivalant
hardware models are implemented and the faulty
cell is identified by comparing the outputs of
same module is compared in TMR method.The
major drawbacks of this method are
areaoverhead, limited resolution and cost of
implementation.Also the fault is identified only
up to the functional module level.

 Self-repair is an important property
found in living organisms. Processes used by the
carbon based living organisms cannot be directly
applied to silicon based digital systems due to the
complexity of the biological mechanisms. The
Embryonics (embryonic electronics) is the
application of concepts inspired from biological
cell in the design of fault tolerant systems [6], [7].

 In thses methods the functionality of the
fauly bock is performed by a spare block and the

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

255

faulty block will be isolated.Multicellular
organization, cellular division and cellular
differentiation are the three features of the
embryonics project. Adaptive hardware systems
that perform error detection and recovery through
dynamic routing, reconfiguration and on-chip
reprogramming were suggested [8]. Lookup table
(LUT) based self healing digital systems were
designed that replaces a faulty cell with spare cell
[9], [10].

The functional blocks of FPGA is
partitioned in to working area and self testing area
in the methods proposed in [11]-[13].Fault
testing and diagnosis is performed in the working
area without interrupting the normal working of
the system.The entire FPGA will be tested
without any additional system down time to
maintain high fault tolerance.This method also
enables the reuse of faulty logic block.

To achieve fast fault recovery
precompiled configuration technique has been
investigated in [14], [15]. Here reprogramming
was not necessary as the alternative
configurations was prepared in advance. But it
was a tedious task to prepare all the configuration
versions so as to cover the possible faulty cases.

In this paper, the proposed system make
use of king spare allocation technique and
Dijkstra’s shortest path shifting to carry out self
repair. This algorithm provides an efficient

method for enhancing the system reliability by
providing self-repairing capabilities with
minimum overhead. Eight functional cells share a
single spare cell. The spare cell differentiates as a
functional cell when a fault is detected.

The rest of the paper is organized as
follows. Section II discusses the previous
worksThe previous works are discussed in
Section II.The fault recovery procedure in the
proposed work is discussed in Section III.A
comparison of proposed work with previous work
is presented in Section IV. The simulation result
of proposed algorithm is geven in Section V and
the paper concludes with metioning the future
scope in Section VI .

2. PREVIOUS WORKS

Self-propagation and self-healing
characteristics of biological organisms were used
in the design of digital systems by Lala [9], [10].
The rerouting in the self healing approach is
demonstrated in Fig.1. In this architecture all the
router cells are identified as R, functional cells as
F and spare cells as S. When a functional cell is
faulty, a suitable spare is selected to replace the
faulty cell. Here the spare cells and the router
cells has some additional decision making
circuitry to decide on which spare cell to replace
the faulty cell as each functional cell is
surrounded by two spare cells

 (a) (b)

Figure 1: Fault Recovery in Self Healing Approach (a) State Before The Fault Occurrence. (b) State After The Fault
Occurrence. S1 is Replaced By F2.

In a method proposed by Kim, S.et al. in
[16] fast fault recovery of digital sytem is
presented. The architecture was inspired from the
concept of paralogous genes [17]. A Working
module consist of 16 working cells, 16
redundancies and 4 stem cells and each working
cell has its own fault detection circuit. Here a
faulty working cell is instantly replaced by its

redundancy thereby restoring the normal
operation immediately. Each functional cell has a
spare and the inputs are pre-routed to both. But
still an external router is required to decide which
cell need to be active either the original cell or the
spare cell. In case of permanent fault the stem
cells which are initially empty become redundant
for any working cell.

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

256

Figure 2: Architecture of Working Module [16]

3. PROPOSED WORK

This self-repairing algorithm makes use
of king spare allocation technique. Here a spare
cell is shared by eight working cells. In the chess
game, the King has the capability of protecting
the 8 cells surrounding the cell in which it is
located [18]. The allocation technique resembles
this and hence the name. Eight working cells and
one spare cell together constitute a section. Fig.2
shows four such sections. If a spare is available in
a section then whenever a working cell in that
particular section is faulty, the spare is
differentiated to replace the faulty cell regardless
of whether the fault is transient or permanent. But
if a spare is unavailable in a particular section,
then self test is first performed and if the fault is
permanent we perform the shifting to the nearest
available spare else the cell undergoes delayed
transient fault recovery. This algorithm can
recover a number of transient faults as we opt for
delayed transient fault recovery in the absence of
spare. The permanent fault coverage is limited to
the number of spares available.

Figure 3: King Spare Allocation.

When a fault is detected in a working cell, i.e.
if “fault = 1” then the spare of that section
differentiates as the new working cell if the spare
is available. The faulty cell then undergoes self
test. If ST OK = 1, then the fault is transient and

the spare cell undergoes dedifferentiation and the
faulty cell is again configured as a working cell.
If fault = 1 is detected in a working cell and if
there is no spare available in that section. Then
self test is performed on the faulty cell to identify
the type of fault. If the fault is transient the
system selects delayed transient fault recovery to
reduce the routing complexity. But if the fault is
permanent, Dijkstra’s shortest path algorithm is
used to determine the shortest path to the
available spare in other sections. Once the
shortest path is determined it is checked whether
all the cells in that path is fault free (i.e. determine
the shortest fault free path). If the shortest path is
fault free then we performing the shifting of cells
along that path else we identify second shortest
fault free path and so on. The pseudo code of this
algorithm 1.

Algorithm 1: Pseudo code of fault recovery
algorithm.

1: if Fault info = 1 then
2: Identify the faulty Cell
3: Check for the Spare Availability
4: if Corresponding section spare available then
5: Spare differentiates as working cell.
6: Faulty cell undergoes self-test to identify

the
type of fault.

7: if ST OK =1 then
8: Recovery of faulty cell and

differentiation
of spare cell.

9: Go to Step 14
10: if Corresponding section spare is not

available
 & ST OK = 1 then
11: Delayed Recovery of faulty cell.
12: end if
13: end if
14: Go to Step 1
15: Check spare availability in any section.
16: if Spare is available then
17: Determine the shortest fault free path to
 spare.
18: Perform shifting if fault free path exist.
19: Go to step 6
20: Faulty cell undergoes apoptosis.
21: end if
22: end if
23: end if
24: Error
25: End

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

257

This self-repairing algorithm involves
greatly reduced overhead but at the expense on
increased routing complexity. The entire system
can recover upto four permanent faults and an
unlimited number of transient faults.

3.1 Dijkstra’s Shortest Path Routing

Algorithm.

Dijkstra's algorithm is a graph search
algorithm. This algorithm solves the single-source
shortest path problem. Dijkstra’s algorithm finds
the shortest path between two specified vertices
(nodes) [19],[20]. The starting node is called as
the initial node. Dijkstra's algorithm will assign
some initial distance values and will try to
improve them step by step.

Step 1: Every node is assigned a tentative
distance i.e. zero for the initial node and infinity
for all other nodes.

Step 2: All the nodes are marked as unvisited.
Set the initial node as current. An unvisited set
consisting of all nodes except the initial node is
created.

Step 3: Consider all unvisited neighbors for
the current node and calculate their tentative
distance. If this distance is less than the
previously recorded tentative distance, then
overwrite that distance. A neighbor is not marked
visited at this time even though it is examined and
it remains in the unvisited set.

Step 4: Mark the current node as visited and
remove it from the unvisited set when all of the
neighbors of the current node have been
considered. A visited node will never be checked
again.

Step 5: Stop if the smallest tentative distance
among the nodes in the unvisited set is infinity or
if the destination node has been marked visited.
The algorithm has finished.

Step 6: Select the unvisited node that is
marked with the smallest tentative distance, and
set it as the new "current node" then go back to
step 3.

4. COMPARISON WITH PREVIOUS
WORKS

The cell replacement and rerouting process of
the proposed system is different from that of the

previous works. The proposed algorithm is
compared with the self-healing approach by P.K
Lala et al. and the paralogous genes inspired
algorithm by Kim, S et al. The three approaches
are compared for a 6 X 6 square matrix as shown
in table 1.

Table 2: Hardware Comparison Of Three Architectures
In 6 X 6 Matrix Array Of Cells.

Approach Total

No. of
cells

No. of
functio
nal cells

No. of
Spare
cells

No. of
Router
cells

Proposed
system

36 32 4 _

Self
Healing
System

36 18 9 9

Paralogous
genes

inspired
system

36 16 16 + 4
(Redu
ndant
cells +
stem
cells)

_

4.1. Overhead

In our analysis spare cells are considered as
overhead whereas the router cell is not considered
as overhead [9]. The percentage overhead of the
proposed system is calculated and a coparison
with other methods are shown in figure 4 and
figure 5.

4.2 Fault Coverage.

The proposed architecture has 4 spare cells
and hence it can recover from 4 permanent faults
and from an unlimited number of transient faults.
In the self healing approach, the functional cell
can tolerate only one fault (soft errors) since it
cannot use another spare cell after it is once
recovered but this approach has simultaneous
fault coverage equal to the number of spare cells.
The self healing approach does not support
permanent fault tolerance. The paralogous genes
inspired approach can recover from an unlimited
number of transient faults and from 5 permanent
faults for a working cell.

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

258

Figure 4: Area Overhead Figure 5: Permanent Fault coverage

5. EXPERIMENTAL RESULTS

The functioning of the proposed self-repairing
algorithm is also demonstrated using Matlab. The
four spare cells and 32 working cells are
implemented as rectangles. Figure 6 shows the
cell arrangement with four sections.

Figure 6: Cell arrangement

The working cells are labeled using numbers
starting from 1 to 32. Section I consist of working
cells 1 to 8 and the spare cell labeled as A.
Section II consist of working cells 9 to 16 and the
spare cell labeled as B. Section III consist of
working cells 17 to 24 and the spare cell labeled
as C. Section IV consist of working cells 25 to 32
and the spare cell labeled as D.

5.1 Transient Fault Recovery With Section
Spare Availability.

Consider the case with cell 1 faulty. When a
faulty cell is detected if the spare cell of that
section is available then the spare cell
differentiates as the new working cell. Here spare
A is available hence it differentiates as the

working cell 1 and the faulty cell undergoes test
(T). Now, if the fault is identified as transient the
cell 1 recovery and spare dedifferentiation occurs
as shown in Figure 7.

5.2 Transient Fault Recovery With No Section
Spare Availability.

Consider the case with cell 1 faulty. Here
spare A is not available as it is differentiated as
cell 3 (due to a permanent fault at cell 3) hence
the faulty cell undergoes test (T). Now, if the fault
is identified as transient the cell 1 recovers after a
delay, i.e. it undergoes delayed transient fault
recovery as shown in Figure 8.

5.3 Permanent Fault Recovery With Section
Spare Availability.

Consider the case with cell 1 faulty. Here
spare A is available hence it differentiates as the
working cell 1 and the faulty cell undergoes test
(T). Now, if the fault is identified as permanent
the faulty cell 1 becomes unavailable as is labeled
as P as shown in Figure 9.

5.4. Permanent Fault Recovery Without
Section Spare Availability.

Consider the case with cell 6 faulty. Here
spare A is not available as it is differentiated as
cell 1 (due to a permanent fault at cell 1) and the
faulty cell undergoes test (T). Now, if the fault is
identified as permanent Dijkstra’s algorithm is
used to identify the shortest fault free path to the
available spares. Here the nearest spare is
identified as B. Rerouting and reconfiguration of
cells is performed as shown in Figure 10.

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

259

 (a) (b) (c)

 Figure 7: Transient Fault recovery with section spare availability

 (a) (b) (c)

 Figure 8: Transient Fault recovery without section spare availability

 (a) (b) (c)
 Figure 9: Permanent Fault recovery with section spare availability

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

260

 (a) (b) (c)
 Figure 10: Permanent Fault recovery without section spare availability

6. CONCLUSION AND FUTURE WORK

An alogorithm for self repair with leass area
overhead and high fault coverage is presented in
the paper. This algorithm makes use of king spare
allocation technique to achieve the desired
objective of reduced overhead. In the absence of
suitable spare in a

faulty section this algorithm performs shifting to
achieve fault recovery. This algorithm is a
suitable option to design digital system with built
in self repair capabilities if we cannot afford high
area overhead.

As a future work the above algorithm can be
implemented in selfreparable embedded system
core which uses the FPGA with dynamic partal
reconfiguration facility.

REFERENCES

[1]. A. Avizienis, “Design of Fault- Tolerant
Computers,” Fall Joint Computer
Conference, 1967, pp. 733–743.

[2]. [2] A. Avizienis,“Toward Systematic Design
of Fault- Tolerant Systems,” IEEE Computer,
pp. 51–58, April. 1997.

[3]. R. E. Lyons and W.Vanderkulk, “The use of
triple modular redundancy to improve
computer reliability,” IBM J., vol. 6, no. 2,
pp. 200–209, Apr. 1962.

[4]. M. Abramovici and C. Stroud, “BIST-based
test and diagnosis of FPGA logic
blocks,”IEEE Trans. on VLSI Syst., vol. 9,
no. 1, pp. 159-172, 2001.

[5]. Edward Stott, Pete Sedcole, Peter Y. K.
Cheung, “Fault Tolerant Methods For
Reliability In FPGAs”, Field Programmable
Logic and Applications, 2008. FPL2008.

International Conference , pp. 415–420, Sept.
2008.

[6]. D. Mange, E. Sanchez, A. Stauffer, G.
Tempesti, P. Marchal, and C. Piguet,
“Embryonics: A new methodology for
designing field-programmable gate arrays
with self-repair and self-replicating
properties,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 6, no. 3, pp. 387–
399, Sep. 1998.

[7]. D. Mange, M. Sipper, A. Stauffer, and G.
Tempesti, “Towards robust integrated
circuits: The embryonics approach,” Proc.
IEEE, vol. 88, no. 4, pp. 516–541, Apr. 2000.

[8]. W. Barker, D. M. Halliday, Y. Thoma, E.
Sanchez, G. Tempesti, and A. M. Tyrrell,
“Fault tolerance using dynamic
reconfiguration on the poetic tissue,” IEEE
Trans. Evol. Comput., vol. 11, no. 5, pp.
666–684, Oct. 2007.

[9]. P. K. Lala and B. K. Kumar, “An architecture
for self-healing digital systems,” J. Electron.
Test.: Theory Appl., vol. 19, no. 5, pp. 523–
535, Oct. 2003.

[10]. P. K. Lala, B. K. Kumar, and J. P.
Parkerson,“On self-healing digital system
design,” ELSEVIER Microelectron. J., vol.
37, no. 4, pp. 353–362, Apr. 2006.

[11]. M. Abramovici, C. Stroud, and J. Emmert,
“On-line BIST and BIST based diagnosis of
FPGA logic blocks,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 12, no.
12, pp. 1284–1294, Dec. 2004.

[12]. J. M. Emmert,C. E. Stroud, and M.
Abramovici, “Online fault tolerance for
FPGA logic blocks,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 15, no.
2, pp. 216–226, Feb. 2007.

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

261

[13]. M. Abramovici, C. Stroud, S. Wijesuriya, C.
Hamilton, and V. Verma, “Using Roving
STARs for on-line testing and diagnosis of
FPGAs in fault-tolerant applications,” in
Proc. Int. Test Conf., 1999, pp. 973–982.

[14]. J. D. Hadley and B. L. Hutchings,
“Designing a partially reconfigured system in
FPGAs for fast board development and
reconfigurable computing,” in Proc. SPIE
2607, 1995, pp. 210–220.

[15]. E. J. McDonald, “Runtime FPGA partial
reconfiguration,” IEEE A&E Syst. Mag., vol.
23, no. 7, pp. 10–15, Jul. 2008.

[16]. Kim, S. et al. "A Hierarchical Self-Repairing
Architecture for Fast Fault Recovery of
Digital Systems Inspired From Paralogous
Gene Regulatory Circuits", IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. vol. PP,
Issue. 99, pp. 1-14, Dec. 2011.

[17]. R. Kafri, M. Levy, and Y. Pilpel,“The
regulatory utilization of genetic redundancy
through responsive backup circuits,” PNAS,
vol. 103, no. 31, pg. 11653–11658, Aug.
2006.

[18]. R.V.Kshirsagar and S. Sharma, “Fault
Tolerance In FPGA Through King Shifting”,
International Journal Of Advances In
Engineering & Technology, May 2012,
ISSN: 2231-1963.

[19]. E.W.Dijkstra, “A Note on two problems in
Connexion with Graphs”, Numerische
Mathematik, Vol.1, pp. 269-271,1959.

[20]. N. Ravi Shankar and V. Sireesha, “Using
Modified Dijkstra’s Algorithm for Critical
Path Method in a Project Network”,
International Journal of Computational and
Applied Mathematics, ISSN 1819-4966,
Volume 5 Number 2 (2010), pp. 217–225.

