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ABSTRACT 
 

This article proposes a method called residual fair sharing algorithm for scheduling of tasks in a 
heterogeneous grid environment. The proposed Residual Fair Sharing scheduling scheme is fairer and 
exploit the available multiprocessor Grid resources with less sensitive to processor capacity variations than 
max-min sharing scheme. The simulations have been conducted by thousands of tasks of varying size and 
workload variance, submitted to a multiprocessor computing system comprising of hundreds of processors 
of varying capacity. The experimental study revealed that the residual sharing algorithm performs better 
with respect to max min algorithm especially; there is a noticeable reduction in the time complexity 
between the two algorithms. However, in all conditions, the proposed Residual algorithm is more effective 
and outperforms max min algorithm.  
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1. INTRODUCTION  
 

Heterogeneous computing systems received a lot 
of attention in recent years and currently are 
experiencing another revival with the popularity of 
‘Grid Computing’ systems. Such computing 
environments consist of a variety of resources 
interconnected by a high-speed network. Many 
parallel and distributed applications can take great 
advantage of this computing platform. However, 
resource allocation imposes strains particularly on 
scheduling. Task scheduling problems have been 
extensively studied for many years. Because the 
task scheduling problem is NP-complete, 
algorithms that generate near optimal schedules 
have a high time complexity. Conversely, for any 
upper limit on time complexity, the quality of the 
schedule in general will also be limited proposed 
[1-5] and also suggested that a trade-off between 
performance and time complexity. 

The main purposes of scheduling algorithms are 
to minimize resource starvation and to ensure 
fairness amongst the users requesting the resources. 
Such algorithms may be static (with a fixed 
scheduling table) or dynamic (changes as per user’s 
request) explained [2]. [3] has explained dynamic 
scheduling offers more efficiency than static 

scheduling. It is also proven by stochastic 
evaluation that dynamic scheduling works well with 
real time systems [4]. Fair scheduling has been one 
of the recent evolutions in dynamic scheduling 
methods developed [5] and have been much 
evaluated for real time systems [6-8]. The 
incorporation of fair scheduling to GRID is 
relatively a new horizon of scheduling strategy 
which offers an efficient method of resource 
allocation to multiple users across heterogeneous 
GRID environment. The proposed method is an 
effort to widen this horizon and to improve the 
efficiency of fair scheduling in GRID environment. 

Many formal notions of fairness, such as 
proportional fairness, utility fairness, general 
weighted fairness, and max-min fairness, have been 
proposed in the research literature for the allocation 
of a single shared resource among competing 
entities [9-12]. The notion of max-min fairness is 
among the more popular notions, and an allocation 
is said to be max-min [13-15] fair if an attempt to 
increase the allocation of any unsatisfied entity 
necessarily results in the decrease of the allocation 
to some other entity with a smaller or equal 
allocation. This allocation sometimes penalizes the 
users which usually demand more [16-18]. In the 
proposed method a new notion called as residual 
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fairness scheduler to minimize the effect of large 
consumer penalization problem is suggested. 

2. PROBLEM FORMULATION 

This section presents two different 
formulations for the proposed problem. 
 
2.1 Max Computation Capacity 
 Let N be the number of tasks that have to 
be scheduled. The workload wi of task Ti, i=1, 2 . . . 
N, as the duration of the task when executed on a 
processor of unit computation capacity. The task 
workloads are assumed to be known a priori to the 
scheduler and are provided by a prediction mechanism 
such as script discovery algorithms [5]. Assume that 
the tasks are non-preempt-able, so that when they 
start execution on a machine, they run continuously 
on that machine until completion.  
It also assumes that time sharing is not available 
and a task served on a processor occupies 100 
percent of the processor capacity. Assume a 
multiprocessor system of M processors and that the 
computation capacity of processor j is equal to cj 
units of capacity. Ref [15] defined the computation 
capacity of a processor is the available capacity of 
the processor, and it does not include capacity 
occupied by local tasks. 
 The total computation capacity C of the 
Grid is defined as  
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 Let dij be the communication delay 
between user i and processor j. More precisely, dij is 
an estimate of the time that elapses between the 
time a decision is made by the resource manager to 
assign task Ti to processor j and the arrival of all 
files necessary to run task Ti to processor j. Each 
task Ti is characterized by a deadline Di that defines 
the time by which it is desirable for the task to 
complete execution. Assume that, Di is not 
necessarily a hard deadline. In case of congestion, 
the scheduler may not assign sufficient resources to 
the task to complete execution before the deadline. 
Di together with the estimated task workload wi and 
the communication delays dij to obtain estimates of 
the computation capacity that task Ti would have to 
reserve to meet its deadline if assigned to processor 
j. If the deadline constraints of all tasks cannot be 
met, the target is that a schedule that is feasible 
with respect to all other constraints is still returned, 
and the amounts of time by which the tasks miss 
their respective deadlines is determined in a fair 

way, until the completion of the tasks that are 
already allocated to processor j.  
 In the fair scheduling algorithm, the demanded 
computation rate Xi of a task Ti will play an 
important role and is defined as  
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X i can be viewed as the computation 

capacity that the Grid should allocate to task Ti for 
it to finish just before its requested deadline Di if 
the allocated computation capacity could be 
accessed. The computation rate allocated to a task 
may have to be smaller than its demanded rate Xi. 
This may happen if more jobs request service than 
the Grid can support (congestion), in which case, 
some or all of the jobs may have to miss their 
deadline. The fair scheduling algorithms are 
attempted to degrade the tasks’ rate in a fair way. 
The scheduling algorithms that we have proposed 
consist of decrementing the residue in a fair manner 
from the tasks that request more than the average 
available resource. 

  
2.2 Arrival Model 
 The arrival model is adopted in the 
experimental simulations in this research as 
suggested in [5]. Initially, the normalized load of 
the grid infrastructure is defined as the ratio of the 
tasks’ demanded computational rates Xi over the 
total processor capacity C offered by the grid 
infrastructure 
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From the equation (3), it is clear that a GRID 

with load ρ is able to serve, on the average, N tasks of 
workload wi, deadlines Di, and ready times δi within a 
time interval of Ξ = ρ * E {D i - δi}, where E {.} 
denotes the expectation operator. As a result, arrival of 
an average number of N tasks within a time interval of 
Ξ = ρ * E {D i - δi} does not change the load ρ of the 
Grid. In the arrival model adopted, in this 
research, it is assumed that the N tasks arrive in the 
Grid into groups of N / β tasks and also that the 
probability of each group of N / β tasks to arrive in 
the Grid during an interval (0, t0) of duration t0 
follows the Poisson distribution.  
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Figure 1: Architecture of a data Grid 
 
 
3. PROPOSED METHODOLOGY 
 

This section presents the Proposed 
Residual Fair Sharing Algorithm (RFS), before that 
the existing max-min fair scheduling algorithm is 
revisited as it will be used as the comparison 
method with the proposed algorithm in this paper. 
Figure 1, shows the architecture of a data Grid. 

  
 Nikolaos et al [5] presented max-min fair 
scheduling algorithm. The demanded computation 
rates Xi, i = 1, 2, . . . N, of the tasks are sorted in 
ascending order, say       X1 < X2 < … < XN. 
Initially, we assign capacity C/N to the task T1 with 
the smallest demand X1, where C is the total grid 
computation capacity. If the fair share C/N is more 
than the demanded rate X1 of task T1, the unused 
excess capacity of C/N - X1 is again equally shared 
to the remaining tasks N - 1 so that each of them 
gets an additional capacity (C/N+(C/N-Xi))/(N-1). 
This may be larger than what task T2 needs, in 
which case, the excess capacity is again equally 
shared among the remaining N - 2 tasks, and this 
process continues until there is no computation 
capacity left to distribute or until all tasks have 
been assigned capacity equal to their demanded 
computation rates.  
  

When the process terminates, each task 
has been assigned no more capacity than what it 
needs, and, if its demand is not satisfied, no less 
capacity than what any other task with a greater 
demand has been assigned. This scheme is called 
max-min fair sharing since it maximizes the 
minimum share of a task whose demanded 
computation rate is not fully satisfied. 
The MMS algorithm is given in the following 
equation  
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The main disadvantage of max-min 

sharing algorithm is the unnecessary penalization of 
users demanding more resources. To overcome this 
inherent weakness of max-min sharing, a novel 
method of residual sharing is proposed in this 
research. 

 
3.1   Proposed Residual Fair Sharing Algorithm  
        (RFS) 
 Residual sharing algorithm can be 
explained as the demanded computation rates Xi, i 
= 1, 2, . . . N, for N users. Initially, the equal fair 
rates are determined as C/N, where C denotes the 
maximum processing capacity of the GRID. The 
overall residue R=Σ Xi – C is the difference 
between total demand of the users and the 
Maximum processing capacity. 
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 For users request whose demand rate Xi is 
less than this equal fair rate C/N, their requested 
demand are satisfied to the fullest. Hence, their 
requested demands are allocated. All the other users 
demanding more than the equal fair rates, the 
overall residue is distributed equally among the 
users. The residue is equally reduced from their 
respective demands to match the maximum 
processing capacity. This residual method of 
scheduling has no iteration as compared to max-
min fair sharing which depends on successive 
iteration for effective schedule.  
 
 Mathematically, the Residual Fair Sharing 
algorithm can be defined as, 
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The pseudo-code of the residual fair share 
algorithm is given as below: 
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Step 1: Read the No. of users, their demands and 
Overall processing capacity. 

Step 2: Compute the overall demand ΣX i. 

Step 3: If X i < C then Allocate resource and Goto 
Step 8 

Step 4: Compute the Overall Residue, Ri. 

Step 5: Find the fairness value Fi for the users.  

Step 6: If requested demand Xi is less than 
fairness F then allocate requested demand 
Else Allocate the fair Residue to users 
demanding more than the fair demand 

Step 7: else Check if overall capacity equals the 
allocated demand 

Step 8: Stop 
 
 
4. EVALUATION OF SCHEDULING 
  
 For efficient evaluation of the scheduling 
algorithm, the utility function seek to optimize must 
be identified. The ultimate goal is to appropriately 
assign all tasks that are demanding resource so that 
the required constraints are satisfied. The 
constraints may be execution time, earliest start 
time, communication delay, allocation delay, etc. 
sometimes the solution to such problems may yield 
many feasible schedules, for such cases   find an 
efficient fairness charging policy [5].  
 

Success index Si is a common measure for 
evaluating the scheduling performance .It is defined 
as the ratio of the number of tasks that are feasibly 
scheduled (that is, the tasks whose time constraints 
are met) over the total number of tasks requesting 
service. This measure treats all tasks equally, 
regardless of their workload, and it does not take 
into account the users’ contribution to the Grid 
infrastructure or the price that a user pays for the 
service he receives.  

 
 Another performance measure is the total 
workload of all feasibly scheduled tasks. Here, the 
charging policy is implemented per workload unit, 
and it is more beneficial to serve tasks of heavy 
workload than tasks of low workload. In such a 
case, the fees charged are proportional to the 
customer task workload, so it is preferable to serve 
a few customers who are willing to pay a lot, rather 
than a lot of customers who are willing to pay only 
little for their services. Another criterion is the 
average deviation which is defined as the gross 
percentage of error deviations for each tasks for 
which the demand rate is not fully satisfied.  

5. EXPERIMENTAL VALIDATIONS 
 

 The residual fair scheduling algorithm is 
simulated by using GridSIM 4.1. Rajkumar Buyya 
et al. (2005) developed the GridSIM 4.1 tool kit. 
The existing and proposed methods are tested in the 
same simulated environment with dynamic load 
variation and increased user demands as indicated 
in Table I and the individual performance of the 
two algorithms are indicated in Tables II and III.  
The max-min fair sharing outperforms all other 
scheduling algorithm as Minimum effective 
execution time (MEET), Earliest deadline first 
(EDF) and Earliest completion time first (ECT). 

 
The experiments are conducted in both 

LINUX and WINDOWS environment to ascertain 
their platform independence. In all test, both the 
algorithms are highly stable and reliable given in 
Table 1.  

 
Table 1: No of Users And Complexity Time For Fair 

Sharing Algorithm 

 
 

Table 1 shows the 1024 user demand request, 
maximum capacity of 7400 takes 100015ms and 
overall success percentage is 94.51%. 

 
Table 2 shows the 8 user demand request, fair 

rate iterations, demand allocated and success ratio 
for maximum capacity of 60. 

 
 
 
 
 
 
 
 
 
 
 
 

Sl. 
No  

No. of 
users  

Max  
capacity  

Fair scheduling 
Time 

complexity (ms)  

Overall 
Success 

% 
1 4 30 641 95 
2 8 60 925 94.85 
3 16 120 1594 94.63 
4 32 240 3772 94.69 
5 64 480 4242 94.7 
6 128 960 8515 94.71 
7 256 1920 20785 94.67 
8 512 3140 45026 94.56 
9 1024 7400 100015 94.51 
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Table 2: Fair Sharing Algorithm with Max Capacity: 
60 

Use
r  

Deman
d 

request  

Fair 
Rate  
Itera

-
tion 
1 

Fair 
Rate  
Itera

-
tion 
2 

Fair 
Rate  
Itera

-
tion 
3 

Deman
d 

Allo-
cated  

Succe
ss  

Ratio 
% 

1 10 7.5 2.5 0 10 100 
2 9 7.5 1.5 0 9 100 
3 15 7.5 3 1 11.5 76.67 
4 14 7.5 3 1 11.5 82.14 
5 3 3 0 0 3 100 
6 4 4 0 0 4 100 
7 5 5 0 0 5 100 
8 6 6 0 0 6 100 

 
Table 3 shows the 8 user demand request, 

residual fair rates and success ratio for maximum 
capacity of 60. It is clear that residual fair 
scheduling algorithm satisfy all the users demand.  
  

The major contribution of this research is 
the enormous reduction in time complexity between 
the two algorithms. Figure 2 the proposed residual 
fair algorithms takes 20000ms whereas existing 
fairs share algorithm takes 100000ms. The 
performance of the proposed method is 80% better 
than existing fair share algorithm. This is mainly 
because of the absence of iteration loops which 
consume a major amount of the algorithm time.  

 
Table 3: Residual Fair Algorithm with Max 

Processing Capacity 60 
User  Demand 

Request  
Residual Fair 

rate  
Success 
Ratio 

1 10 8.5 85 
2 9 7.5 83.33 
3 15 13.5 90 
4 14 12.5 89.29 
5 3 3 100 
6 4 4 100 
7 5 5 100 
8 6 6 100 

 
 Figure 3 indicates the overall success 
index variation with the number of users. There is a 
marginal variation in the satisfaction levels of user 
demands between the two algorithms. The max-min 
fair share algorithm outperforms the residual 
sharing algorithm, but the increase in very 
minimum and can be neglected when compared to 
the phenomenal reduction in time complexity of the 
algorithm. 
 

 

Figure 4 shows that success index 
variation of fair share algorithm and residual 
scheduling algorithm. The proposed new 
comparison parameter is called as success index. 
Success index of an algorithm is defined as the ratio 
of overall success percentage (user satisfaction 
level) to the time complexity involved in the 
scheduling. The success index of the residual 
sharing algorithm has value 0.0500 compared to 
that of the max-min fair share algorithm has value 
0.0010. It is proved that the proposed method has 
higher success index. 

 
The overall processing capacity of the grid 

environment also plays an important role in 
comparison of the algorithms. It is noticed that the 
time complexity of both the algorithms increase 
exponentially as the overall processing capacity 
increases. Figure 5 indicates the difference in the 
time complexities between the two algorithms. It is 
visible that the residual sharing algorithm 
outperforms the max-min fair share algorithm by a 
huge margin.  
 

From Figure 6 it is evident that the success 
ratio marginally decreases as the overall processing 
capacity increases but as the GRID environment 
scales in its processing capacity, the marginal 
decrease can be neglected. It is also to be noted that 
the individual success rates for users requesting 
very high demands are more for residual fair 
sharing than max-min fair sharing algorithm. 
 
6.  CONCLUSION 
  

The proposed method of scheduling called as 
residual fair sharing algorithm for scheduling of 
tasks in a heterogeneous grid environment and the 
results are compared with the conventional max-
min scheduling algorithm. The experimental study 
revealed that the residual sharing algorithm 
performs better with respect to max min algorithm 
especially; there is a noticeable reduction in the 
time complexity between the two algorithms. The 
simulations have been conducted by thousands of 
tasks of varying size and workload variance, 
submitted to a multiprocessor computing system 
comprising of hundreds of processors of varying 
capacity. Experimental results and comparisons of 
the two scheduling schemes indicate that our 
proposed Residual Fair Sharing scheduling scheme 
is fairer and exploit the available multiprocessor 
Grid resources. The experiments also indicate that 
the Residual fair sharing algorithm is less sensitive 
to processor capacity variations than max-min 
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sharing scheme. However, in all conditions, the 
proposed Residual algorithm is more effective and 
outperforms all the traditional scheduling 
algorithms. 
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Figure 2: Time Complexity Variation 

 

Figure 3: Overall Success Variation 
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Figure 4:  Success Index Variation 

 

Figure 5:  Dynamic Load Variation 
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Figure 6:  Success Ratio with Increasing Dynamic Load 

 

 
 
 
 
 
 
 
 
       

 


