
Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

420

RESIDUAL SHARING ALGORITHM FOR DYNAMIC
SCHEDULING OF RESOURCES TO MULTIPLE USERS
ACROSS HETEROGENEOUS GRID ENVIRONMENT

1K. M. NASIMUDEEN, 2 T. ARULDOSS ALBERT

1PhD Research Scholar, Dept of CSE, Anna University Regional Centre Coimbatore, INDIA
2Associate Professor, Dept of CSE, Anna University Regional Centre Coimbatore, INDIA

E-mail: 1kmnasimudeen@gmail.com , 2tadavt@gmail.com

ABSTRACT

This article proposes a method called residual fair sharing algorithm for scheduling of tasks in a
heterogeneous grid environment. The proposed Residual Fair Sharing scheduling scheme is fairer and
exploit the available multiprocessor Grid resources with less sensitive to processor capacity variations than
max-min sharing scheme. The simulations have been conducted by thousands of tasks of varying size and
workload variance, submitted to a multiprocessor computing system comprising of hundreds of processors
of varying capacity. The experimental study revealed that the residual sharing algorithm performs better
with respect to max min algorithm especially; there is a noticeable reduction in the time complexity
between the two algorithms. However, in all conditions, the proposed Residual algorithm is more effective
and outperforms max min algorithm.

Keywords: Dynamic Scheduling, Heterogeneous GRID Environment, multiprocessor computing system
Residual Sharing Algorithm

1. INTRODUCTION

Heterogeneous computing systems received a lot
of attention in recent years and currently are
experiencing another revival with the popularity of
‘Grid Computing’ systems. Such computing
environments consist of a variety of resources
interconnected by a high-speed network. Many
parallel and distributed applications can take great
advantage of this computing platform. However,
resource allocation imposes strains particularly on
scheduling. Task scheduling problems have been
extensively studied for many years. Because the
task scheduling problem is NP-complete,
algorithms that generate near optimal schedules
have a high time complexity. Conversely, for any
upper limit on time complexity, the quality of the
schedule in general will also be limited proposed
[1-5] and also suggested that a trade-off between
performance and time complexity.

The main purposes of scheduling algorithms are
to minimize resource starvation and to ensure
fairness amongst the users requesting the resources.
Such algorithms may be static (with a fixed
scheduling table) or dynamic (changes as per user’s
request) explained [2]. [3] has explained dynamic
scheduling offers more efficiency than static

scheduling. It is also proven by stochastic
evaluation that dynamic scheduling works well with
real time systems [4]. Fair scheduling has been one
of the recent evolutions in dynamic scheduling
methods developed [5] and have been much
evaluated for real time systems [6-8]. The
incorporation of fair scheduling to GRID is
relatively a new horizon of scheduling strategy
which offers an efficient method of resource
allocation to multiple users across heterogeneous
GRID environment. The proposed method is an
effort to widen this horizon and to improve the
efficiency of fair scheduling in GRID environment.

Many formal notions of fairness, such as
proportional fairness, utility fairness, general
weighted fairness, and max-min fairness, have been
proposed in the research literature for the allocation
of a single shared resource among competing
entities [9-12]. The notion of max-min fairness is
among the more popular notions, and an allocation
is said to be max-min [13-15] fair if an attempt to
increase the allocation of any unsatisfied entity
necessarily results in the decrease of the allocation
to some other entity with a smaller or equal
allocation. This allocation sometimes penalizes the
users which usually demand more [16-18]. In the
proposed method a new notion called as residual

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

421

fairness scheduler to minimize the effect of large
consumer penalization problem is suggested.

2. PROBLEM FORMULATION

This section presents two different
formulations for the proposed problem.

2.1 Max Computation Capacity
 Let N be the number of tasks that have to
be scheduled. The workload wi of task Ti, i=1, 2 . . .
N, as the duration of the task when executed on a
processor of unit computation capacity. The task
workloads are assumed to be known a priori to the
scheduler and are provided by a prediction mechanism
such as script discovery algorithms [5]. Assume that
the tasks are non-preempt-able, so that when they
start execution on a machine, they run continuously
on that machine until completion.
It also assumes that time sharing is not available
and a task served on a processor occupies 100
percent of the processor capacity. Assume a
multiprocessor system of M processors and that the
computation capacity of processor j is equal to cj
units of capacity. Ref [15] defined the computation
capacity of a processor is the available capacity of
the processor, and it does not include capacity
occupied by local tasks.
 The total computation capacity C of the
Grid is defined as

)1(
1
∑

=

=
M

j
jCC

 Let dij be the communication delay
between user i and processor j. More precisely, dij is
an estimate of the time that elapses between the
time a decision is made by the resource manager to
assign task Ti to processor j and the arrival of all
files necessary to run task Ti to processor j. Each
task Ti is characterized by a deadline Di that defines
the time by which it is desirable for the task to
complete execution. Assume that, Di is not
necessarily a hard deadline. In case of congestion,
the scheduler may not assign sufficient resources to
the task to complete execution before the deadline.
Di together with the estimated task workload wi and
the communication delays dij to obtain estimates of
the computation capacity that task Ti would have to
reserve to meet its deadline if assigned to processor
j. If the deadline constraints of all tasks cannot be
met, the target is that a schedule that is feasible
with respect to all other constraints is still returned,
and the amounts of time by which the tasks miss
their respective deadlines is determined in a fair

way, until the completion of the tasks that are
already allocated to processor j.
 In the fair scheduling algorithm, the demanded
computation rate Xi of a task Ti will play an
important role and is defined as

)2(
)(D

w

i

i

i
i d

X
−

=

X i can be viewed as the computation

capacity that the Grid should allocate to task Ti for
it to finish just before its requested deadline Di if
the allocated computation capacity could be
accessed. The computation rate allocated to a task
may have to be smaller than its demanded rate Xi.
This may happen if more jobs request service than
the Grid can support (congestion), in which case,
some or all of the jobs may have to miss their
deadline. The fair scheduling algorithms are
attempted to degrade the tasks’ rate in a fair way.
The scheduling algorithms that we have proposed
consist of decrementing the residue in a fair manner
from the tasks that request more than the average
available resource.

2.2 Arrival Model
 The arrival model is adopted in the
experimental simulations in this research as
suggested in [5]. Initially, the normalized load of
the grid infrastructure is defined as the ratio of the
tasks’ demanded computational rates Xi over the
total processor capacity C offered by the grid
infrastructure

)3(1

C

X
N

i
i∑

==ρ

From the equation (3), it is clear that a GRID

with load ρ is able to serve, on the average, N tasks of
workload wi, deadlines Di, and ready times δi within a
time interval of Ξ = ρ * E {D i - δi}, where E {.}
denotes the expectation operator. As a result, arrival of
an average number of N tasks within a time interval of
Ξ = ρ * E {D i - δi} does not change the load ρ of the
Grid. In the arrival model adopted, in this
research, it is assumed that the N tasks arrive in the
Grid into groups of N / β tasks and also that the
probability of each group of N / β tasks to arrive in
the Grid during an interval (0, t0) of duration t0
follows the Poisson distribution.

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

422

Figure 1: Architecture of a data Grid

3. PROPOSED METHODOLOGY

This section presents the Proposed
Residual Fair Sharing Algorithm (RFS), before that
the existing max-min fair scheduling algorithm is
revisited as it will be used as the comparison
method with the proposed algorithm in this paper.
Figure 1, shows the architecture of a data Grid.

 Nikolaos et al [5] presented max-min fair
scheduling algorithm. The demanded computation
rates Xi, i = 1, 2, . . . N, of the tasks are sorted in
ascending order, say X1 < X2 < … < XN.
Initially, we assign capacity C/N to the task T1 with
the smallest demand X1, where C is the total grid
computation capacity. If the fair share C/N is more
than the demanded rate X1 of task T1, the unused
excess capacity of C/N - X1 is again equally shared
to the remaining tasks N - 1 so that each of them
gets an additional capacity (C/N+(C/N-Xi))/(N-1).
This may be larger than what task T2 needs, in
which case, the excess capacity is again equally
shared among the remaining N - 2 tasks, and this
process continues until there is no computation
capacity left to distribute or until all tasks have
been assigned capacity equal to their demanded
computation rates.

When the process terminates, each task
has been assigned no more capacity than what it
needs, and, if its demand is not satisfied, no less
capacity than what any other task with a greater
demand has been assigned. This scheme is called
max-min fair sharing since it maximizes the
minimum share of a task whose demanded
computation rate is not fully satisfied.
The MMS algorithm is given in the following
equation

0 n

)k(O X if)k(O

)k(O X if X

)n(r n

0k
i

n

0k

n

0k
ii

i ≥













≥

≤
=

∑∑

∑

==

=

(4)

The main disadvantage of max-min

sharing algorithm is the unnecessary penalization of
users demanding more resources. To overcome this
inherent weakness of max-min sharing, a novel
method of residual sharing is proposed in this
research.

3.1 Proposed Residual Fair Sharing Algorithm
 (RFS)
 Residual sharing algorithm can be
explained as the demanded computation rates Xi, i
= 1, 2, . . . N, for N users. Initially, the equal fair
rates are determined as C/N, where C denotes the
maximum processing capacity of the GRID. The
overall residue R=Σ Xi – C is the difference
between total demand of the users and the
Maximum processing capacity.

)5(
1
∑

=

−=
n

i
i CXR

 For users request whose demand rate Xi is
less than this equal fair rate C/N, their requested
demand are satisfied to the fullest. Hence, their
requested demands are allocated. All the other users
demanding more than the equal fair rates, the
overall residue is distributed equally among the
users. The residue is equally reduced from their
respective demands to match the maximum
processing capacity. This residual method of
scheduling has no iteration as compared to max-
min fair sharing which depends on successive
iteration for effective schedule.

 Mathematically, the Residual Fair Sharing
algorithm can be defined as,

(6)0

)(
 X if)(

)(X if X

)(n

0k
i

0

n

0k
ii

≥




















 −≥

≤
=

∑∑

∑

==

= n

N

RkC
kO

kC

nr

k

n

k

i

The pseudo-code of the residual fair share
algorithm is given as below:

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

423

Step 1: Read the No. of users, their demands and
Overall processing capacity.

Step 2: Compute the overall demand ΣX i.

Step 3: If X i < C then Allocate resource and Goto
Step 8

Step 4: Compute the Overall Residue, Ri.

Step 5: Find the fairness value Fi for the users.

Step 6: If requested demand Xi is less than
fairness F then allocate requested demand
Else Allocate the fair Residue to users
demanding more than the fair demand

Step 7: else Check if overall capacity equals the
allocated demand

Step 8: Stop

4. EVALUATION OF SCHEDULING

 For efficient evaluation of the scheduling
algorithm, the utility function seek to optimize must
be identified. The ultimate goal is to appropriately
assign all tasks that are demanding resource so that
the required constraints are satisfied. The
constraints may be execution time, earliest start
time, communication delay, allocation delay, etc.
sometimes the solution to such problems may yield
many feasible schedules, for such cases find an
efficient fairness charging policy [5].

Success index Si is a common measure for
evaluating the scheduling performance .It is defined
as the ratio of the number of tasks that are feasibly
scheduled (that is, the tasks whose time constraints
are met) over the total number of tasks requesting
service. This measure treats all tasks equally,
regardless of their workload, and it does not take
into account the users’ contribution to the Grid
infrastructure or the price that a user pays for the
service he receives.

 Another performance measure is the total
workload of all feasibly scheduled tasks. Here, the
charging policy is implemented per workload unit,
and it is more beneficial to serve tasks of heavy
workload than tasks of low workload. In such a
case, the fees charged are proportional to the
customer task workload, so it is preferable to serve
a few customers who are willing to pay a lot, rather
than a lot of customers who are willing to pay only
little for their services. Another criterion is the
average deviation which is defined as the gross
percentage of error deviations for each tasks for
which the demand rate is not fully satisfied.

5. EXPERIMENTAL VALIDATIONS

 The residual fair scheduling algorithm is
simulated by using GridSIM 4.1. Rajkumar Buyya
et al. (2005) developed the GridSIM 4.1 tool kit.
The existing and proposed methods are tested in the
same simulated environment with dynamic load
variation and increased user demands as indicated
in Table I and the individual performance of the
two algorithms are indicated in Tables II and III.
The max-min fair sharing outperforms all other
scheduling algorithm as Minimum effective
execution time (MEET), Earliest deadline first
(EDF) and Earliest completion time first (ECT).

The experiments are conducted in both

LINUX and WINDOWS environment to ascertain
their platform independence. In all test, both the
algorithms are highly stable and reliable given in
Table 1.

Table 1: No of Users And Complexity Time For Fair

Sharing Algorithm

Table 1 shows the 1024 user demand request,
maximum capacity of 7400 takes 100015ms and
overall success percentage is 94.51%.

Table 2 shows the 8 user demand request, fair

rate iterations, demand allocated and success ratio
for maximum capacity of 60.

Sl.
No

No. of
users

Max
capacity

Fair scheduling
Time

complexity (ms)

Overall
Success

%
1 4 30 641 95
2 8 60 925 94.85
3 16 120 1594 94.63
4 32 240 3772 94.69
5 64 480 4242 94.7
6 128 960 8515 94.71
7 256 1920 20785 94.67
8 512 3140 45026 94.56
9 1024 7400 100015 94.51

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

424

Table 2: Fair Sharing Algorithm with Max Capacity:
60

Use
r

Deman
d

request

Fair
Rate
Itera

-
tion
1

Fair
Rate
Itera

-
tion
2

Fair
Rate
Itera

-
tion
3

Deman
d

Allo-
cated

Succe
ss

Ratio
%

1 10 7.5 2.5 0 10 100
2 9 7.5 1.5 0 9 100
3 15 7.5 3 1 11.5 76.67
4 14 7.5 3 1 11.5 82.14
5 3 3 0 0 3 100
6 4 4 0 0 4 100
7 5 5 0 0 5 100
8 6 6 0 0 6 100

Table 3 shows the 8 user demand request,

residual fair rates and success ratio for maximum
capacity of 60. It is clear that residual fair
scheduling algorithm satisfy all the users demand.

The major contribution of this research is
the enormous reduction in time complexity between
the two algorithms. Figure 2 the proposed residual
fair algorithms takes 20000ms whereas existing
fairs share algorithm takes 100000ms. The
performance of the proposed method is 80% better
than existing fair share algorithm. This is mainly
because of the absence of iteration loops which
consume a major amount of the algorithm time.

Table 3: Residual Fair Algorithm with Max

Processing Capacity 60
User Demand

Request
Residual Fair

rate
Success
Ratio

1 10 8.5 85
2 9 7.5 83.33
3 15 13.5 90
4 14 12.5 89.29
5 3 3 100
6 4 4 100
7 5 5 100
8 6 6 100

 Figure 3 indicates the overall success
index variation with the number of users. There is a
marginal variation in the satisfaction levels of user
demands between the two algorithms. The max-min
fair share algorithm outperforms the residual
sharing algorithm, but the increase in very
minimum and can be neglected when compared to
the phenomenal reduction in time complexity of the
algorithm.

Figure 4 shows that success index
variation of fair share algorithm and residual
scheduling algorithm. The proposed new
comparison parameter is called as success index.
Success index of an algorithm is defined as the ratio
of overall success percentage (user satisfaction
level) to the time complexity involved in the
scheduling. The success index of the residual
sharing algorithm has value 0.0500 compared to
that of the max-min fair share algorithm has value
0.0010. It is proved that the proposed method has
higher success index.

The overall processing capacity of the grid

environment also plays an important role in
comparison of the algorithms. It is noticed that the
time complexity of both the algorithms increase
exponentially as the overall processing capacity
increases. Figure 5 indicates the difference in the
time complexities between the two algorithms. It is
visible that the residual sharing algorithm
outperforms the max-min fair share algorithm by a
huge margin.

From Figure 6 it is evident that the success
ratio marginally decreases as the overall processing
capacity increases but as the GRID environment
scales in its processing capacity, the marginal
decrease can be neglected. It is also to be noted that
the individual success rates for users requesting
very high demands are more for residual fair
sharing than max-min fair sharing algorithm.

6. CONCLUSION

The proposed method of scheduling called as
residual fair sharing algorithm for scheduling of
tasks in a heterogeneous grid environment and the
results are compared with the conventional max-
min scheduling algorithm. The experimental study
revealed that the residual sharing algorithm
performs better with respect to max min algorithm
especially; there is a noticeable reduction in the
time complexity between the two algorithms. The
simulations have been conducted by thousands of
tasks of varying size and workload variance,
submitted to a multiprocessor computing system
comprising of hundreds of processors of varying
capacity. Experimental results and comparisons of
the two scheduling schemes indicate that our
proposed Residual Fair Sharing scheduling scheme
is fairer and exploit the available multiprocessor
Grid resources. The experiments also indicate that
the Residual fair sharing algorithm is less sensitive
to processor capacity variations than max-min

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

425

sharing scheme. However, in all conditions, the
proposed Residual algorithm is more effective and
outperforms all the traditional scheduling
algorithms.

REFRENCES:

[1] Q. Ma and P. Steenkiste. QualityofService

Routing for Traffic with Performance
Guarantees. In IFIP Fifth
InternationalWorkshop onQuality of
Service,pages 115– 126, NY, NY, May 1997.

[2] Q. Ma, P. Steenkiste, and H. Zhang. Routing
HighBandwidth Traffic in MaxMin Fair Share
Networks. In ACMSIGCOMM ’96, pages 206–
217, Stanford, CA,August 1996.

[3] D. Stiliadis andA.Varma. Framebased
FairQueueing: A New Traffic Scheduling
Algorithm for PacketSwitched Networks. In
ACM SIGMETRICS 96, Philadelphia, PA, May
1996.

[4] Yu, Jia, and Rajkumar Buyya. "A taxonomy of
scientific workflow systems for grid
computing." Sigmod Record 34.3 (2005): 44-
49.

[5] Doulamis, Nikolaos D., Anastasios D.
Doulamis, Emmanouel A. Varvarigos, and
Theodora A. Varvarigou. "Fair scheduling
algorithms in grids." Parallel and Distributed
Systems, IEEE Transactions on 18, no. 11
(2007): 1630-1648.

[6] Doulamis, Nikolaos D., Anastasios D.
Doulamis, Emmanouel A. Varvarigos, and
Theodora A. Varvarigou. "Fair scheduling
algorithms in grids." Parallel and Distributed
Systems, IEEE Transactions on 18, no. 11
(2007): 1630-1648.

[7] Shivaprakasha, K. S., and Muralidhar Kulkarni.
"Energy Efficient Routing Protocols for
Wireless Sensor Networks: a Survey."
International Review on Computers & Software
6.6 (2011).

[8] Dong, Fangpeng, and Selim G. Akl.
"Scheduling algorithms for grid computing:
State of the art and open problems." School of
Computing, Queen’s University, Kingston,
Ontario (2006).

[9] Xu, Zhihong, Xiangdan Hou, and Jizhou Sun.
"Ant algorithm-based task scheduling in grid
computing." Electrical and Computer

Engineering, 2003. IEEE CCECE 2003.
Canadian Conference on. Vol. 2. IEEE, 2003.

[10] Di Martino, Vincenzo, and Marco Mililotti.
"Sub optimal scheduling in a grid using genetic
algorithms." Parallel computing 30.5 (2004):
553-565.

[11] He, Ligang, Stephen A. Jarvis, Daniel P.
Spooner, Xinuo Chen, and Graham R. Nudd.
"Dynamic scheduling of parallel jobs with QoS
demands in multiclusters and grids." In
Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing, pp. 402-409.
IEEE Computer Society, 2004.

[12] Ilavarasan, E., and P. Thambidurai. "Genetic
Algorithm for Task Scheduling on Distributed
Heterogeneous Computing System."
International Review on Computers & Software
1.3 (2006).

[13] D. Stiliadis and A. Varma. A General
Methodology for Designing Efficient Traffic
Scheduling and Shaping Algorithms. In
Proceedings of IEEE INFOCOM’97, Kobe,
Japan,April 1997.

[14] A. Parekh and R. Gallager. A Generalized
Processor Sharing Approach to Flow Control in
Integrated Services Networks – The Single
Node Case. In Proceedings of IEEE INFOCOM
’92, pages 915–924, May 1992.

[15] J. Anderson and A. Srinivasan. Early-Release
Fair Scheduling. In Proceedings of the 12th
Euromicro Conference on Real-Time Systems,
Stockholm, Sweden, June 2000.

[16] J. Anderson and A. Srinivasan. Mixed
Pfair/ERfair Scheduling of Asynchronous
Periodic Tasks. In Proceedings of the IEEE
Euromicro Conference on Real-Time Systems,
June 2001.

[17] G. Banga, P. Druschel, and J. Mogul. Resource
Containers: A New Facility for Resource
Management in Server Systems. In Proceedings
of the third Symposium on Operating System
Design and Implementation (OSDI’99), New
Orleans, pages 45–58, February 1999.

[18] S. Baruah, J. Gehrke, and C. G. Plaxton. Fast
Scheduling of Periodic Tasks on Multiple
Resources. In Proceedings of the Ninth
International Parallel Processing Symposium,
pages 280–288, April 1996.

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

426

Figure 2: Time Complexity Variation

Figure 3: Overall Success Variation

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

427

Figure 4: Success Index Variation

Figure 5: Dynamic Load Variation

Journal of Theoretical and Applied Information Technology
 20th March 2014. Vol. 61 No.2

© 2005 - 2014 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

428

Figure 6: Success Ratio with Increasing Dynamic Load

