
Journal of Theoretical and Applied Information Technology
 31st August 2013. Vol. 54 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

401

A SUSTAINABLE APPROACH TO AUTOMATE USER
SESSION BASED STATE MACHINE GENERATION FOR

AJAX WEB APPLICATIONS

1ANUJA ARORA, 2MADHAVI SINHA
1 Jaypee institute of information Technology, CSE/ IT Deptt.

2Birla Institute of technology, Mesra

E-mail: 1anujaarora2909@gmail.com, 2madhavisinha@sify.com

ABSTRACT

A whole new generation WEB 2.0 is being written to take advantage of extreme dynamism as in AJAX.
AJAX is used to build rich internet applications that are more interactive, responsive, and easy to use. With
the advent of Ajax which involves extreme dynamism, novel problems add to those already known in the
Web testing area. For Testing an AJAX application, a sustainable approach is required to detect faults
embedded area. Faults embedded areas are those areas where states of web application will get changed.
Here, in this research paper, our focus will be on generating state machine of dynamic behavior of an AJAX
web application. To detect faults in any web application optimum approach is model based testing. Here
intention is to generate effective state machine which will be able to detect all dynamic states of user
session applied on web application. Therefore, we designed a framework to generate state machine of user
sessions performed on web application. A prototype tool is developed to automate and validate the whole
process. We applied whole process on five case studies and results have shown that we are able to
successfully detect whole Events, dynamically changing DOM Elements and all dynamically generated
States.

Keywords: User Session based Testing; State Machine based Testing ; Dynamic Object Model; Web
Testing.

1. INTRODUCTION

Recently, web applications reached to a new
level of achievement. As earlier internet was just
information based and data driven, nowadays
instead of just serving data and flow of information
is now interactive and social in nature. Web2.0
technology includes advanced and sophisticated
user interaction because of introduced new
technologies like AJAX. A web technology that has
gained a striking position under the umbrella of
Web 2.0 is AJAX (Garett, 2005[1]), in which a
intelligent combination of JavaScript, Document
Object Model(DOM) manipulation, along with
asynchronous server communication is used to
achieve high level of user interaction. Garrett [1]
introduced AJAX to label the architecture behind
the new generation of rich web application like
Google+, Google Suggest, Google Map. AJAX
boom come in limelight after various dynamic
Google web application appeared. Anyone, surfing
internet has already encountered AJAX through

various web applications like Facebook1, Google
Map2, Google Document3, Netflix4, Star Tribune
5and many more [2].

Unlike any standard request/response approach
found in a standard Web client, working of AJAX
is little different because of technological novelties
like web applications are free to interact with server
asynchronously. This asynchronous feature leaves
the user interface active and responsive and
combined with the possibility to update a page
dynamically through the DOM. AJAX is a client-
side approach and can interact with J2EE, .NET,
PHP, Ruby, and CGI scripts—it really is server-
agnostic. One of the real strengths of this approach
is that AJAX web application is fit for the
heterogeneous and autonomous environment, and

1 www.facebook.com
2 Maps.google.co.in
3 Docs.google.com
4 www.netflix.com
5 www.startribune.com

http://www.jatit.org/
mailto:anujaarora@sify.com
mailto:madhavisinha@sify.com
http://www.facebook.com/
http://www.netflix.com/

Journal of Theoretical and Applied Information Technology
 31st August 2013. Vol. 54 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

402

developers don’t need to learn some new
(technology, method or programming language) in
server-side technology.

AJAX is one of the key enabling technologies
currently used for building modern web
applications [1]. The use of AJAX technology
positively affects the user friendliness and
interactivity of web application [36]. Since Ajax
applications are heavily based on asynchronous
messages and runtime DOM manipulation, we
expect the faults associated with these two features
to be relatively more common and widespread than
in other kinds of web applications.

In this research work, out of all new
technology, focus will be on AJAX web application
testing because with the advent of AJAX, novel
testing problems raised and added to the list of
already existing problems in web testing area.
AJAX poses novel, additional problems with
respect to those already known in the web testing
area[18]. AJAX potentially brings an end to the
classical click-and-wait style of web navigation.
The level of runtime dynamic manipulation of
DOM tree as well as asynchronous client/ server
interaction makes it hard to test during testing
process [20]. AJAX is fault prone because of
stateful client, asynchronous communication, delta
updates, untyped JavaScript, client side DOM
manipulation, event handling, timing, back/
forward button and browser dependence.

The overarching contribution of this research
work is to automate strategies for detecting faults
embedded area by using proposed framework
generated state machine. These strategies are
implemented as modules that plug into a testing
framework customized for web applications. The
author provides context for the overarching
contributions by describing the automatically
generated state machine model for AJAX web
application. The prime purpose of modeling is to
represent the web application at a higher level of
abstraction. A state machine model can represent a
static or dynamic aspect of a web application.

In this research paper, a detailed structure of
State machine model is described which will
provide us faults embedded area in an AJAX web
application. Therefore, we bounded structure of this
paper to explain how to generate state machine of
dynamism of AJAX web application to detect fault

embedded area. This research paper structure is as
follows. We start out with section 2 about other
researchers’ contribution to test specifically AJAX
web application using state based testing. Section 3
provides framework of methodology to provide
state machine of any AJAX web application. Model
extraction is discussed in section 4 and then next
section 5 is about model generation. In this section
discuss about inferring state machine. Chosen
AJAX web application case studied to evaluate the
research work is being detailed in section 6. Section
7 is representing experiments performed and later
in section 8 proving result and experimental output
of proposed methodology on various chosen case
studies. Finally last section9 is about concluding
remarks.

2. RELATED WORK

To Test Web application under test, we are
formally using State machine instead of Use case
diagram or Control flow graph etc [33]. Test case
generation of a Web application under test is easier
and effective through state machine than any other
diagram. Indeed there are various diagrammatic
ways to represent web application but represent
dynamic behavior of web application with the help
of state machine is most efficient for testing. State
machine provides a convenient way to model
software behavior in a way that avoids issues
associated with the implementation [11]. Since, in
Ajax based Web application states of various
objects are changing as per user trigged event or
changes are reflecting from server side dynamically
that is why we are using state machine to show
state changes as per changed behavior of web
applications [12, 13].

Marchetto proposed state based testing
technique [12,13], to bridge the gap between
existing web testing techniques and new feature
provided by AJAX. Idea was that the states of
client side components of an AJAX application
need to be taken into account during testing phase
[33]. State based testing technique for AJAX is
based on the analysis of all the states that can be
reached by the client-side pages or server
performed action on the application during its
execution. Using AJAX, HTML elements—like
TEXTAREA, FORM, INPUT, A, LI, SELECT,

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st August 2013. Vol. 54 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

403

OL, UL, DIV, SPAN, etc.—can be changed at
runtime according to the user interactions or server
side action. In this testing the HTML elements of a
client-side page characterize the state of an AJAX
Web page, and their corresponding values are used
for building its finite state model.

Marchetto’s work:

Marchetto used traces of the application to
construct a finite state machine [12]. This technique
was based on the dynamic extraction of finite state
machine for a given AJAX application. Whereas in
Marchetto’s work, dynamic analysis was partial
that is why he was using manual validation or
refinement steps for model extraction. He accepted
in his work that FSM recovery needs an
improvement and is an unexplored area [12].
Dynamic extraction of states is quite tough to
explore and needs constant attention in AJAX
testing. Therefore, there was a need for Automatic
Dynamic analysis for model construction. Later in
his work Marchetto was mainly concerned to
identify sets of “semantically interacting” events
sequence, used to generate test suite of test cases
[35]. His intuition was that longer interaction
sequences have higher faults. The Conducted
experiments showing that longer interaction
sequence have higher fault exposing capability [7,
9, 34, 35, 39].

This technique generates high number of test
cases involving unrelated events, for minimizing
test cases using notion of semantically interacting
events. So here Marchetto’s main contribution is
for analysis of “semantically interacting” events
sequence and result proves that more faults at the
time of long interacting sequence analysis.
Sequences of semantically interacting events in the
model are used to generate test cases once the
model is refined by the tester.

A FSM based testing technique generates high
number of test cases. These high number of test
cases reaches to a State Explosion Problem. In
Marchetto’s work for minimizing test cases used
notion of semantically interacting Events. This
technique minimizes only asynchronous
communication test cases. In Marchetto’s work,
This AJAX testing approach covers only two
aspects of asynchronous communication swapped
callback and dependable request. Other AJAX

testing challenges like fetching of dynamic
constructed states, transition, dynamic DOM are
untouched till now. Other than this there is a need
of extracted FSM of an AJAX application through
dynamic analysis.

 Mesbah’s work:
Mesbah proposed an “Invariant based

Automatic testing of AJAX user interface”. In his
work, first task was crawling of the AJAX
application using CRAWLJAX tool, simulating real
user events on the user interface and infer the
abstract model from state flow graph [36, 37].
Mesbah’s suggested further AJAX research topic
out of that one was automatic invariant detection.
His invariant based testing was dependent on
CRWLAJAX. He accepted in his work that best
path seeding practice in web application is capture
and replay which he not applied in his work.
Mesbah proposed in his latest work[38] that
invariant based testing is a weak form of an oracle,
which can be used to conduct basic sanity check on
the DOM-tree or transition in the derived GUI state
machine. For dynamic extraction of states best
approach is using any capture and replay tool like
Selenium otherwise AJAX is too dynamic that not
able to test that correctly. Mesbah mentioned that
best practice to design a model is by using Capture
and replay. Our testing method will use capture and
reply. Indeed, there is a need for automatic dynamic
analysis using any Capture-Replay tool for model
construction. It will reach to the faulty state, trigger
faults in those states and propagate them so that
failure can be determined.

3. FRAMEWORK: GENERATE STATE

MACHINE MODEL OF AN AJAX WEB
APPLICATION.

This section presents a novel approach State-
Machine model framework. The work presented
here is based on the state-based testing approach,
originally defined for object oriented programs [3,
4]. The proposed framework constructs a state
machine model of an AJAX web application using
dynamic analysis and reconstruction of user
interface state change. Proposed model covers all
validation and verification of the static and dynamic
behavior of the web applications. Proposed state
machine model will show user triggered events,
Dom changing elements and their Event-Element

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st August 2013. Vol. 54 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

404

Relationship mapping for dynamic changes in
DOM at the time of state change in the web
application. The proposed Automatic Fault
Embedded Area Detection Model (AFEAD), its
conventions and its formal assembly on the basis
of Event Element Mapping Function is also
explained in this section.

A framework is a meta-level (high level of
abstraction) concept through which a range of other
concepts, models, techniques, methodologies can
either be clarified and/or integrated [5]. The
framework consist of guidelines for supporting the
various phases of software development process,
various tools for capturing information, modeling,
designing, generating test cases etc. On these
similar ways this section presents the ‘Automatic
fault embedded area detection model Framework’
for generating state machine of dynamic changing
behavior of web application which will further be
mapped with supporting testing framework. To
empirically explore the issues and challenges in
developing strategies to automatically generate
model of web applications and to enable evaluation
of the techniques developed in this research work
various prototype tools and manual evaluation of
some researches work have been considered [6-10].
Based on that, we designed an efficacious
framework and implemented a prototype of
proposed framework to automate the process of
generating state machine model of dynamic
behavior of an AJAX web application.

The prime origination of the proposed state
machine model framework was to automate the
fault embedded area detection process of the web
application. In case of AJAX web application, fault
embedded area are those areas where dynamic
changes will take place either because of server side
or from client side effects. Therefore, with the help
of prototype tool of proposed framework we are
trying to detect all places where faults will affect
the web application. The proposed methodology is
designed to automate the state machine generation
process and containing the following non functional
challenges to find out fault embedded area in AJAX
web application testing.

Effectiveness: The framework is able to detect
all events, dynamic DOM changes associated with
the events, able to detect states of web application
and finally generating state machine in efficient

manner. Framework is able to detect both client
side and server side changes in the web application.

Scalability: Proposed framework is able to
quantify faults in the web application. Scalability
exists in proposed framework in order to detect
concurrent changing states, event based system
changes, and state transitions of various web
applications. The key characteristic of the
framework is that incremental state machine
generation and states detection process does not
require additional functionality and extensive
modifications;

Flexibility: Framework elements like user
session recorder, DOM tree viewer, Event and
DOM change Violation detection can be replaced
depending on the web application development
platforms requirement. The framework
independently can handle diverse web application
technologies testing issues;

Generalization: Framework can be used to test
any web application. We tested various AJAX, Java
scripting, Java Servlet, JSP web applications.
Therefore using proposed framework, there is no
need to make changes to web application code for
testing. This framework can easily be extended to
other web technologies but not tried yet;

The underlying idea has been implemented in
the tool called USSMG (User Session based State
Machine Generator) which is one prototype tool of
complete AFEAD framework and this USSMG
Tool containing various subparts like: User Session
Recorder, Event-Element relationship, DOM tree
generator, State machine Generator. We have
performed number of experiments to check overall
performance of our USSMG tool on several AJAX
web applications, evaluated the efficiency in
retrieving all states, events, dynamic elements and
their relationships.

In the remainder of this research paper, we
discuss the framework’s major components: User
session recorder, Dynamic Object Model tree
generator, Event-Element Mapping Function, and
state machine generator. The flow and framework
between various elements- from collecting
Dynamic changes in web application to generating
State machine of user session trigged on the web
application and finally to detect faults embedded
area in the web application is shown in figure 1.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st August 2013. Vol. 54 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

405

4. MODEL EXTRACTION:

In AJAX applications, the state of the user
interface is determined dynamically; through event
driven changes in the browser’s DOM are visible
only after executing the related Java script code. In
this research work initial experiment was to model
DOM tree invariants in Finite state machine has
been performed. AJAX based state changes in user
interface reflect in DOM tree. Dynamic changes
caused either by server side or client side but these
events handled by AJAX engine. The client side
calls the server once an event has been triggered
and then modifies the document as per response.
Here we are mainly modeling changes where
response is linked with the request (modeling of all
server response linked with client calls).

Figure 2 shows the processing flow of
application to generate finite state machine of web
application under test (WAUT). In complete
process two modules have been developed: FSM
generator and FSM extractor. Here in figure2 both
tools working presented in separate boundaries.
Output of first FSM extractor boundary is two files:
scenario execution traces log file and DOM
elements and event extractor files. These files are
used as input for other boundary which is FSM
generator. In this research work introduced
mapping function is used to generate Finite state
machine on the basis of above mentioned two
generated files. Other than this in this research
work author using Selenium tool[26, 27] to record
user session and with the help of selenium tool
generated log files modeling dynamic behavior of
an application in finite state machine. At the end,
result will be in form of State transition text file
which will show finite state machine in GVEdit
tool of Graphviz [14]. Here, we briefly outline
Finite state machine extraction technique of Web
application under test. Here given approach has
been applied on many case studies and various
examples. In solution approach, trying to explain
approach with the help of head rush Ajax book
AJAX powered coffee Maker [15] and then in
experimental results showing results of Tudu
lists[16,17] case studies and further generated
Finite State machine of the following case studies
ajaxfilmdb[18], AJAX IM [19] and Break Neck
Pizza[15].

4.1 User session recorder to provide changing
behavior states of WAUT

Ricca and Tonella's [20] approach creates a
model in which nodes represent web objects (web
pages, forms, frames), and edges represent
relationships and interactions among the objects
(include, submit, split, link). One Limiting factor in
the use of web application testing techniques such
as Ricca and Tonella's is the cost of finding inputs
that exercise the system as desired. Selection of
such inputs is slow and must be accomplished
manually [20]. User-session based techniques can
help with this problem by transparently collecting
user interactions and transforming them into test
cases. Elbaum et al. [21,22] proposed a Web
application testing approach that utilizes data
captured in user sessions, stored in a modified log
file, to create test cases automatically.

Here for User session recording using Selenium
tool which is a functional testing tool and used here
to access the run time Dom and browser history in
Mozilla browser. In the proposed approach by
mapping selenium tool generated XML with
implemented DOM tree inspector, we test code of
the web application and find out where fault lies
with the help of generated state based machine of
that particular web application under test(WAUT).
Selenium Tool is used to record semantically
interacting user events carried out on the web
application under test, data is stored in log files and
these log files are used as input in extracting
dynamic content from the DOM tree.

The application execution is traced and the
execution is recorded in the log file. Execution
traces can be traced using log files generated by
real user interaction. Here using selenium tool
generated log files, Execution traces exist in log file
contains information about DOM states and call
back. No of possible concrete states in AJAX web
applications are huge and unbounded so can cause
state explosion problem. Due to resolve this
problem also, we have used User session Generated
state machine in incremental manner. Each time
generated state machine will be of a specific user
session therefore, state explosion problem [23, 24,
25] will not arise in this methodology.

This is automated process for extracting
dynamic states for model construction using user
session tool selenium and generated Dom tree. The
Selenium Tool generated log files are used as input

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st August 2013. Vol. 54 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

406

in extracting dynamic content from implemented
DOM tree. For each user request or state change,
system will analyze the modified DOM tree. The
application execution traced and execution is
recoded in a log file.

Figure3: JUnit Test Case of onClick event of Coffee
Maker web application

The proposed methodology starts from
identifying the sequence of semantically interacting
events from the Selenium TestRunner tool. Each
sequence of semantically interacting events <E1,

E2 ...En) used as a test case of length n means
involving the execution of n callbacks.

In AJAX applications, the state of user interface
is determined dynamically, so with the help of
Selenium tool user triggered event driven changes
in the Selenium generated HTML files are visible
after executing the linked Java Script code, but
those are only functional changes reflected by
selenium, by linking selenium with DOM tree we
can go for white box testing of the web application.
Dynamically generated Dom state does not link
automatically with the browser’s history. Here in
generated Tool, we are collecting all application
execution traces using selenium generated HTML
file as input and then matching user session events
with DOM viewer. Finally extract dynamic events,
other dynamic tags and complete DOM path of
those dynamic events and tags from DOM viewer.
The jUnit version of selenium generated log file of
coffee maker example is presented in figure 3.

4.2 Generated DOM TREE VIEWER and
Extracting components to find DOM Change
Violation:

In traditional web applications, each state is
represented by a URL and the corresponding web
page. Whereas, in Ajax web application, it is the
internal structure change of the DOM tree on the
user interface that represents a state change.
Therefore, to adopt a generic approach for all Ajax
sites, we define a state change as a change on the
DOM tree caused either by server side state
changes propagated to the client, or client-side
events handled by the Ajax engine.

The Document Object Model is a platform- and
language-neutral interface that will allow programs
and scripts to dynamically access and update the
content, structure and style of documents. The
DOM is an Application programming interface
(API) for valid HTML and well-formed XML
documents. It defines the logical structure of
documents and the way a document is accessed and
manipulated. For instance, consider a table, taken
from HTML document as shown in figure 4(a) and
DOM tree of that table presented in figure 4(b).

In the DOM specification, the term "document"
is used in the broad sense increasingly, XML is
being used as a way of representing many different
kinds of information that may be stored in diverse

package com.example.tests;
import com.thoughtworks.selenium.*;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import static org.junit.Assert.*;
import java.util.regex.Pattern;
public class Coffee Maker {
private Selenium selenium;
 @Before
 public void setUp() throws Exception {
 selenium = new DefaultSelenium ("localhost", 4444,
 "*chrome", "http://www.headfirstlabs.com/");
 selenium.start();
}
@Test
public void testCoffee Maker() throws Exception {
selenium.open("/books/hrajax/chapter03/coffee/coffee.html
?name=User2&size=small&beverage=mocha");
 selenium.type("id=name", "User1");
 selenium.click("css=input[type=\"button\"]");
 selenium.type("id=name", "User2");
 selenium.click("css=input[type=\"button\"]");
 selenium.type("id=name", "User3");
 selenium.click("css=input[type=\"button\"]");
 assertEquals("Sorry! Both coffee makers are busy.
 Try again later.",
 selenium.getAlert());
 assertEquals("User1, your coffee is ready!",
 selenium.getAlert());
 assertEquals("User2, your coffee is ready!",
 selenium.getAlert());
 selenium.click("css=input[type=\"button\"]");
 selenium.type("id=name", "User4");
 selenium.click("css=input[type=\"button\"]");
 selenium.type("id=name", "user5");
 selenium.click("css=input[type=\"button\"]");
 assertEquals("Sorry! Both coffee makers are busy.
 Try again later.",
 selenium.getAlert());
 assertEquals("User3, your coffee is ready!",
 selenium.getAlert());
 selenium.click("css=input[type=\"button\"]");
 assertEquals("User4, your coffee is ready!",
 selenium.getAlert());
 selenium.click("css=input[type=\"button\"]"); }
@After
public void tearDown() throws Exception {
selenium.stop();
}
}

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st August 2013. Vol. 54 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

407

systems, and much of this would traditionally be
seen as data rather than as documents.
Nevertheless, XML presents this data as
documents, and the DOM may be used to manage
this data [28].

Figure 4:
(a) Table

taken from
HTML

document
(b) Graphical representation of the DOM of the example

table
With the Document Object Model,

programmers can build documents, navigate their
structure, and add, modify, or delete elements and
content. Anything found in an HTML or XML
document can be accessed, changed, deleted, or
added using the Document Object Model. It is
based on an object structure that closely resembles
the structure of the documents it models. In the
implementation, The DOM tree viewer is
implemented using JGrapht Library [29], JTree [30]
library that displays a set of hierarchical data of a
web document. DOM tree viewer shows the
complete list of HTML elements of the current
page and ordered list of HTML tag related to the
element of the DOM structure of the target page.
Therefore, a specific HTML element at a particular
node in the Tree can be identified by path of the
tree. Figure5 presents the implemented DOM Tree
of an Online Pizza order web application. It
contains the data and shows the structure of data in
which it is designed.

Dynamic web application depends on
asynchronous requests, which leave the user
interface active and responsive, combined with the
possibility to update a page dynamically through
the DOM (Document Object Model). When client
receives a response, it updates the web document
by modifying one or more DOM objects. The
document can be further processed and the results
of that processing can be incorporated back into the
presented page.

Figure5: Tool Designed DOM tree of Coffee Maker

Application
The Dynamic objects are extracted from the

required web application file and the DOM tree is
constructed. Here Validating DOM is required
because malformed HTML code can induce many
errors, faults and browser portability issues and this
is required to check that designed Dom is able to
obtain what is needed. To prevent these faults, we
should check and test DOM effectively. For
validating DOM, we uses JTIDY[31], JTIDY
provides a DOM interface to the document that is
being processed. We validated designed DOM tree
inspector with JTIDY designed DOM tree. We
can’t use open source JTIDY because this will not
be able to execute our requirements. Implemented
DOM tree viewer enriched with the capability as
follows:

4.2.1 Navigation Bar:

User is able to navigate the web page to get idea
about element and associative events. Dom viewer

<TABLE>
 <TBODY>
 <TR>
 <TD>Shady
Grove</TD>
 <TD>Aeolian</TD>
 </TR>
 <TR>
 <TD>Over the River,
Charlie</TD>
 <TD>Dorian</TD>
 </TR>
 </TBODY>
 </TABLE>

http://www.jatit.org/
http://www.w3.org/TR/DOM-Level-2-Core/glossary.html#dt-model

Journal of Theoretical and Applied Information Technology
 31st August 2013. Vol. 54 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

408

provides the user list of DOM elements of target
page. Usually the list is very large. Therefore, to
understand the web page navigation process, when
user select element in DOM tree shown in the
DOM tree viewer or click on DOM element List,
tool highlight the selected DOM element area by
red line. This is a vice-a-versa process means
selected element will show DOM element area by
red line and even DOM area selected on web page
will also show elements coming inside that area see
in figure 6. Figure 6 highlights the selected <p> tag
by red line. Then, upon user click on display
element list, Elements are added to the state
element list.

Figure6: Navigation Bar of Break neck Pizza web

application

4.2.2 DOM State Event Selector
There is no straight way of acquiring all

clickable events solely by DOM TREE. Therefore
our user session recording approach makes use of a
set of all events, which are all exposed to an event
type.

Figure 7: onChange Element behaviour of Break neck
Pizza web application

In our coffeemaker example, we are using
‘onClick’ event to present our example. However,
the other event types can be used just as well to
analyze the effects on the DOM in the same
manner. We are extracting and obtaining all events
associated with an user session in automatic
manner. At the time of recording of user session
and changes will reflect in DOM tree, system will
extract Events either server side state changes
propagated to the client, or client-side events
handled by the Ajax engine.

DOM Events selection is very important part
for dynamic content testing in web application
because DOM events are making dynamic changes
in DOM elements values.

In AJAX web application even some specific
tags like div, P etc typically used for styling or
structuring have a relationship with events attached
to it. Events make elements capable for changing
the internal DOM state of the application when
response is linked with request.

DOM event selection of a particular state
provides all the properties/ behaviour of complete
list of DOM nodes available in that particular state.
By default, all the events will display in dynamic
events list of a particular state. To simplify the
event selection process, when one will click on a
particular event or element all properties associated
with that will be visible like node names and their
node values etc. See in figure 7, in the selection of
onChange event of ‘Order Pizza’ web application,
one pop window will display and show all the
properties of onChange event. Further these
properties will be useful at the time to create a
mapping between user session and DOM tree.

4.2.3 DOM State Element Selector

The total number of DOM elements and
possible concrete DOM states is usually huge and
unbounded. Hence, we consider only a restricted set
of DOM elements coming under DOM Pages of a
specific user session , also called ‘state elements’,
that mainly characterize the state of the application
GUI, and we consider user triggered states instead
of the concrete ones, following an approach similar
to the one implemented in the tool Adabu[32].

Here to extract all dynamic elements, we
implemented one event-element model to save
elements and events relationship mean on a specific

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st August 2013. Vol. 54 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

409

event what all elements would change their
behaviour. Here Implemented event-element model
will extract and create a list of element those are
changing behaviour with respect to associated
event. In this process extracted all events and
changed behaviour element using following
definition:
Definition I:
Let d be a DOM object.

ρ(d)=(param1…….paramn)
e(d) is set of events of a particular set of values

 of types of d.
e(d)=(event1,event2,…..,…eventm)
d.function, d.event is the event which starts

 d.function.
For each event there is one set
ρ(ele)=(element1,……elementn), set of

 elements changing dynamically on
 execution of an event.

4.2.4 COMPUTING EVENT-ELEMENT

MAPPING FUNCTION(EEMF)
Mapping function is simulating an environment

to map user trigged events with DOM Tree
inspector. Mapping function will automatically map
user session scenario with updated behaviour of
DOM. The mapping function reflexively will select
changed events and elements from DOM Tree
Inspector and will generate FSM test file based on
the execution trace of user session data. By using
the collected execution traces of the user session
log files, the Finite State Machine of the sample
Web Application is constructed where states
represent Document Object Model (DOM)
instances and the transitions of which represent the
effects of callback executions. So finally we are
getting a relationship mapping between events and
changed behaviour elements. This Event-Element
relationship mapping function is generated by
following definition.
Definition II:

)(Axevent∀ for all x elements event (A) is true
means all x element are dynamically changing on
change of event(A).

For event and element relationship using this
definition and storing event element relationship in
one file with the help of mapping function.
Mapping function is used to find HTTP Request
Violation. Mapping function provides relationship

in request with the corresponding DOM element
and from which Event that element is originated.
Once we know which element is causing the
request, we can analyze the behaviour and decide
whether a violation has occurred. Here in mapping
function, we intended to solve the issue, we
analyzed the DOM in every state and exposed
properties of the DOM that must be verified.

5. MODEL GENERATION:

In traditional web application, every web page
URL contains a state and represented by a resultant
web page, However in AJAX, Internal structure of
web page change means state change can be
identified only through DOM and changes reflects
on that same web page.

In the proposed approach, we exercise on the
event performed on the AJAX web application.
From these events, we construct Finite state
machine of dynamic behaviour of set of user
session performed on an Ajax web application. An
Overview of our approach is already visualized in
Figure1 AFEADM framework (Automatic Fault
embedded area detection Model) and processing
view of that has shown in figure 2. In this section,
we summarize the state machine generation from
the extracted important component like User
Session Recorder to give changing behavior and
then for those changing behavior extraction of Dom
change Violation and finally computing Event-
Element Mapping relation.

5.1 Inferring state machine:

The State machine is generated in the
incremental manner. The algorithm written to infer
the state machine is shown in Algorithm 1in figure
8. The start procedure (lines 1-7) takes care of
initializing the various components and processes
involved. The actual recursive extraction of states,
events and element procedure starts at line 10. Here
we are considering state machine as directed graph
where nodes representing states and edges
representing state transitions and output functions.
Nodes are labeled with state name, state (idle,
changed, etc) and finally nodes representing states
of all elements those can change their state and
what are the changes reflecting on the
corresponding elements dynamically.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st August 2013. Vol. 54 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

410

 As an example of generated Finite state
machine, Figure 9 depicts the visualization of the
state machine of a coffee maker example of AJAX
web application. It Illustrate how on a single web
page four different states has been processed.

Table1 depicts Finite state machine structure of
dynamism of coffee maker web application. In this
table, it’s showing changes in DOM structure at the
time of state change in web application. As in given
example, initially in stage 1 web application is in
state ‘ST_0’, both coffee Makers are in ‘idle’ state.
On click on ordercoffee Button, ‘onClick’event will
execute and run javaScript function ‘ordercoffee’
and changes will reflect on user interface, state
‘ST_1’ coffeemaker1 is in Busy state and preparing
coffee for user1, This is stage2.

In stage 3 that same time user2 ordered for a
coffee. In this stage, state ST_2, both coffee makers
coffeemaker1 and coffeemaker2 are in busy state.
In this situation, now user3 wants to order for a
coffee, but both coffeemakers are in busy state,
therefore AssertAlert@user3 means user3 is getting
alert, “Both Coffee Makers are busy”. This is
stage3, but in this stage no DOM change will
reflect on web application. Web application is on
that same previous state ST_2.

Here in this web application, we have one more
stage means state ST_3, when we are getting alert
and as well as state of web application is also
changing. This time coffee maker1 is in idle state
and coffeemaker2 is in busy state. Finally reaching
back to root state ST_0, when coffee 2 is ready.
Both coffeemaker are again in idle state which is
ST_0.

Figure 9: Onclick Element Behaviour State Machine Of

Coffee Maker Web Application

6. CASE STUDIES:

To validate proposed approach and to prove that
proposed methodology is able to obtain all non

functional challenges in practical sense, we applied
proposed methodology on various AJAX web
application case studies as shown in Table 2.

Our selection criteria used AJAX case sites
mentioned in table 2 because these sites changes
the state of the application using JavaScript,
Assigning events to HTML elements, Changing
Dom State at run time on the basis of client request
and changes affecting system asynchronously
through delta updates. The all sites are open source
sites and we have access to their source code. Last
two sites are small, But these sites are most useful
and having variety of dynamically handled events
and having their own importance at the time of
modeling the framework.

Table 2: Selected Case Studies And Examples

Our First Site FilmDB is Sourceforge.net open

source software community provided site. This is
built on PHP, MySQL and AJAX. This is a single
page site and broadly providing eight features:
View, Display, Info, buttons, Navigation, selection,
sorting and search without changing web page.

S.N
o

Case
study
Name

Source (url) Dom
size in
bytes

Description

1 Filmdb http://sourceforge.net/projec
s/ajaxfilmdb/

38914
bytes

AJAX-FilmDB is
designed in PHP/
MySQL /AJAX and
a film database
application.

2 Tudu list http://tudu.sourceforge.net/
http://www.julien-
dubois.com/tudu-lists

24009
bytes

Tudu Lists is an
J2EE application
for managing todo
lists. With Tudu
Lists, todo lists can
be easily accessed,
edited and shared
on the Web.

3 AJAX IM http://ajaxim.com/ 34578
bytes

Ajax IM
(“Ajax Instant
Messenger”) is a
browser-centric
instant messaging
framework.

4 Coffee
Maker

http://www.headfirstlabs.co
m/books/hrajax/chapter03/c
offee/coffee.html

574
bytes in
7 files

An AJAX powered
Coffee maker
application

5 Break
Neck pizza

http://www.headfirstlabs.co
m/books/hrajax/chapter02/br
eakneck/pizza.html

6033
bytes in
5 files

An Ajax powered
pizza delivery
application

http://www.jatit.org/
http://www.headfirstlabs.com/books/hrajax/chapter03/coffee/coffee.html
http://www.headfirstlabs.com/books/hrajax/chapter03/coffee/coffee.html
http://www.headfirstlabs.com/books/hrajax/chapter03/coffee/coffee.html
http://www.headfirstlabs.com/books/hrajax/chapter02/breakneck/pizza.html
http://www.headfirstlabs.com/books/hrajax/chapter02/breakneck/pizza.html
http://www.headfirstlabs.com/books/hrajax/chapter02/breakneck/pizza.html

Journal of Theoretical and Applied Information Technology
 31st August 2013. Vol. 54 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

411

Each feature contains variety of sub features like
one feature view provides four sub features: Poster
view, Film View, Row View and list view.

Our chosen second Case study ToDo List is
again a source forge provided site. Tudu Lists is a
J2EE application for managing todo lists of a user.
This web application is selected to show how J2EE
plate form can be used in AJAX web application.

Third case study is AJAX IM, an instant
message framework. This application create a real-
time (or near real-time) IM environment that can be
used in conjunction with existing community and
commercial software, or simply as a stand-alone
product.

Our chosen fourth and fifth case studies are
simple web application and having short code are
head rush book codes and mainly these case studies
are having vast role in designing the proposed
framework.

7. EXERIMENT PERFORMED

The starting point of our dynamic analysis is set
of execution traces, as one set of execution traces
shown in Table 3 of TuDu List an AJAX web
application that emulates simple To do list. This
TuDu List web application allows user to add a new
todo list, delete todo list, edit todo list etc and
further sub functionalities of each and every
feature. User session traces obtained from selenium
tool saved log file generated by real user
interaction, similar kind of user session traces
approach proposed by Elbaum [48].

Table 3: Add Todo User Session Traces Event
Sequence For Tudulist AJAX Web Application

Trace Sequence Event sequence
1 SHOW My ToDos

2 ADD a New List

3 ADD a New List

4 Quick ADD ToDo

5 Quick ADD ToDo

6 ToDo Completed

9 Reopen Todo

10 ToDo Completed

11 Delete Completed ToDos

The states of AJAX web application can be

inferred by analyzing Event-Element mapping

function formed by dynamically changing behavior
of DOM elements and user session traces recorded
by selenium tool. The representation of USSMG
tool designed state machine for mentioned traces is
shown in figure10. Here we are using TuDu AJAX
Web application’s execution traces to model and
present proposed state space reduction
methodology to avoid state space explosion
problem.

8. RESULT AND EXPERIMENTAL

OUTPUT:

All User session, DOM Inspector analyzed and
generated State machine. Generated coffee Maker
state machine of set of user session is shown in
figure9. Figure10 represents generated state
machine of ADD ToDo user session of TuDu list
case study.

Table 4 depicts results of designed framework
on various case studies. Table 4 presents detected
events, changing behavior DOM elements,
Detected States and tags those are changing their
value on the basis of retrieved user sessions.

As defined in Framework, the proposed
methodology is designed to automate the fault
embedded area detection and catering various non
functional challenges. Goal of experimental result
is also to validate results with respect to these
challenges. Fault seeding and Test case coverage
are results of whole work, therefore discussed in
section results. Here we are validating result of non
functional challenges:

8.1 NF1: Effectiveness

To check effectiveness of the designed
framework, we applied this complete process on 5
sites. Out of all 5, first 3 are successfully running
web applications and last two are small but
containing different ways of showing AJAX based
dynamism in web applications. Figure11 is
comparison graph of events and Figure12 is
comparison graph of states and these graph shows
that system is able to retrieve 90% states as
expected. Even we applied this complete process on
various other small size case studies as Board ‘R’
Us, Top 5 CD Listing and well known on faceCart
Ajax shopping cart also. For View module of case
study1 18 states are detected out of 20 states and
Total number of events was 16 and detected events

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st August 2013. Vol. 54 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

412

are 15. In case study 2 in three modules- Add, Edit
and Delete Number of able to retrieve all events as
expected but not able to form all states, it is
generate 30 states out of 35 states. Our chosen third
case study, reacted in a opposite manner, as number
of events were less in this and every time DOM
was changing, So this retrieved more number of
states as expected. In case of fourth and fifth case
study, it’s fetching all events and all number of
states.

Figure11: Comparison in detected and extracted events

Figure12 Comparison in detected and extracted States

8.2 NF2: Scalability

Proposed approach is capable to achieve any
number of states due to incremental approach
applied to generate state machine. To validate
scalability in proposed methodology, size of case
studies vary from 500 -15000 bytes. Figure 13 size
Graph shows size variation in selection of case
studies.

Figure13 chosen Case studies Size Graph
8.2 NF3: Flexibility

We have chosen case studies developed on
variety of platforms. Case study 2 is a J2EE
application, this application case study consist of

server side part written in J2EE and client side
portion written in Java script. Whereas all other
case study are in PHP and java script. Proposed
methodology is able to design correct state machine
for both kind of application.

9. CONCLUSION:

In this research paper, AJAX application
testing is directed towards revealing faults related
to incorrect manipulation of DOM. Therefore, aim
of this research paper was to design a state machine
which will be able to detect all states of AJAX web
application whenever there web application
behaviour will change. Result have shown that we
are able to detect all events and Dom changing
elements of user sessions and successfully able to
detect all states and on the basis of events able to
form state machine of chosen web application. We
detected event, elements and state using user
session tool and DOM manipulation tool and
validated results also at each and every step. A
prototype tool is also developed to apply this
process on multiple case studies. We applied tool
on 5 case studies and able to achieve correct and
efficient results. Till now, we applied this process
separately on modules of chosen WA. Further we
will apply this on whole web application and plug
in this prototype tool with testing tool and reveal
faults related to incorrect manipulation of the DOM
for AJAX web applications.

REFRENCES:

[1] Garrett, J., Ajax: a new approach to web

applications‟, Adapt. Path,2005,
http://adaptivepath.com/ideas/ajax-new-
approach-.web-applications,November 2011

[2] Sebestien Salva, Patrice Laurencot: Automatic
Ajax Application Testing. ICIW 2009:229-234

[3] R. Binder. State-based testing. Object
Magazine, July-Aug 1995.

[4] C. D. Turner and D. J. Robson. The state-based
testing of object-oriented programs. IEEE
Conference on Software Maintenance (ICSM),
September 1993.

[5] Jayaratna, N. “Understanding and Evaluating
Methodologies: NIMSAD, A Systematic
Framework,” McGraw-Hill Companies,
London, pp.288, 1994.

[6] Sreedevi Sampath, Valentin Mihaylov, Amie
Souter, and Lori Pollock. Composing a
framework to automate testing of operational
web-based software. In Proceedings of the 20th

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st August 2013. Vol. 54 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

413

IEEE International Conference on Software
Maintenance (ICSM), pages 104–113,
Washington, DC, USA, September 2004. IEEE
Computer Society.

[7] S. Sampath, V. Mihaylov, A. Souter, and L.
Pollock. A scalable approach to user-session
ased testing of web applications through
concept analysis. In Proceedings of the
Automated Software Engineering Conference,
September 2004.

[8] S. Sampath, A. Souter, and L. Pollock.
Towards defining and exploiting similarities in
web application use cases through user session
analysis. In Proceedings of the Second
International Workshop on Dynamic Analysis,
May 2004.

[9] Sara Sprenkle, Holly Esquivel, Barbara
Hazelwood, and Lori Pollock. WebVizOr: A
visualization tool for analyzing test results of
web applications. Technical Report 2006-335,
University of Delaware, 2007.

[10] Sara Sprenkle, Emily Gibson, Sreedevi
Sampath, and Lori Pollock. Automated replay
and fault detection for web applications. In
Proceedings of the International Conference on
Automated Software Engineering (ASE), pages
253–262, New York, NY, USA, November
2005. ACM Press.

[11] Anneliese Andrews, Jeff Offutt, and Roger
Alexander. Testing web applications by
modeling with FSMs. Software Systems and
Modeling,4(2):326–345, April 2005.

[12] Marchetto, A., Tonella, P., and Ricca, F.
(2008b). State-based testing of Ajax web
applications. In Proc. 1st IEEE Int. Conference
on Sw. Testing Verification and Validation
(ICST’08), pages 121–130. IEEE Computer
Society.

[13] Marchetto, A., Ricca, F., and Tonella, P.
(2008a). A case study-based comparison of
web testing techniques applied to ajax web
applications. Int. Journal on Software Tools for
Technology Transfer, 10(6):477–492.

[14] www.graphviz.org/
[15] http://headfirstlabs.com/books/hrajax/
[16] http://sourceforge.net/projects/tudu/
[17] http://www.julien-dubois.com/tudu-lists
[18] http://sourceforge.net/projects/ajaxfilmdb/
[19] http://www.ajaxim.com
[20] F. Ricca, P. Tonella, Analysis and testing of

Web applications, in: Proceedings of the
International Conference on Software
Engineering, IEEE Computer Society Press,
Los Alamitos (CA), 2001, pp. 25–34.

[21] S. Elbaum, S. Karre, and G. Rothermel.
Improving Web application testing with user
session data. In Proceedings of the 25th
International Conference on Software
Engineering (ICSE), pages 49.59, Portland,
USA, May 2003. IEEE Computer Society.

[22] S. Elbaum, G. Rothermel, S. Karre, and M.
Fisher. Leveraging user session data to support
web application testing. IEEE Transactions of
Software Engineering, 31(3):187. 202, March
2005.

[23] S. Park and G. Kwon. Avoidance of state
explosion using dependency analysis in model
checking control flow model. LNCS, 2006.

[24] Valmari, A.: The state explosion problem. In:
Lectures on Petri Nets I: Basic Models. Lecture
Notes in Computer Science, vol. 1491 pp. 429–
528. Springer, Berlin (1998)

[25] Clarke, E., Grumberg, O., Peled, D.: Model
Checking. MIT Publishers, Cambridge (1999)

[26] http://www.openqa.org/selenium/
[27] Prasanth Yalla, Dr. L S S Reddy, M.Srinivas,

T.Subha Mastan Rao. Framework for Testing
Web Applications using Selenium Testing tool
with respect to Integration Testing. IJCST Vol.
2, Issue 3, September 2011.

[28] www.w3.org.
[29] http://jgrapht.sourceforge.net
[30] http://docs.oracle.com/javase/1.4.2/docs/api/jav

ax/swing/JTree.html
[31] http://jtidy.sourceforge.net
[32] Dallmeier, V., Lindig, C., Wasylkowski, A.,

Zeller, A.: ‘Mining object behavior with
ADABU’. Proc. Fourth Int. Workshop on
Dynamic Analysis (WODA), Shangai, China,
2006

[33] T. Ball, D. Hoffman, F. Ruskey, R. Webber,
and L. White. State generation and automated
class testing. Software Testing, Verification
and Reliability (STVR), 10(3):149.170, July-
Aug 2000.

[34] Marchetto A, Tonella P (2010). Using search-
based algorithms for Ajax event sequence
generation during testing.

[35] Marchetto A, Tonella P (2009) Search-based
testing of ajax web applications. In: Proc. of
IEEE international symposium on search based
software engineering (SSBSE). IEEE
Computer Society, Windsor, pp 3–13

[36] Mesbah, A., Bozdag, E., and van Deursen, A.
(2008). Crawling Ajax by inferring user
interface state changes. In Proc. 8th Int.
Conference on Web Engineering (ICWE’08),
pages 122–134. IEEE Computer Society.

http://www.jatit.org/
http://www.graphviz.org/
http://www.w3.org/
http://docs.oracle.com/javase/1.4.2/docs/api/javax/swing/JTree.html
http://docs.oracle.com/javase/1.4.2/docs/api/javax/swing/JTree.html

Journal of Theoretical and Applied Information Technology
 31st August 2013. Vol. 54 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

414

[37] A. Mesbah and A. van Deursen. Invariant-
based automatic testing of Ajax user interfaces.
In Proceedings of the 31st International
Conference on Software Engineering
(ICSE’09), pages 210–220. IEEE Computer
Society, 2009.
Arie van Deursen and Ali Mesbah. Research
Issues in the Automated Testing of Ajax
Applications. In Proceedings 36th International
Conference on Current Trend in Theory and
Practice of Computer Science (SOFSEM), pp.
16-28. Lecture Notes in Computer Science
5901, Springer-Verlag, 2010.

[39] Anuja Arora , Madhavi Sinha, “Applying
variable chromosome length Genetic Algorithm
for testing Dynamism of Web Application,3rd
International Conference on Recent Trends in
Information Technology, Proceeding in IEEE
Xplore, July 2013 ISBN : 978-1-4799-1024-3/13
25-27 pp 539-545.

Fi
gu

re
 1

:
Au

to
m

at
ic

 F
au

lt
 e

m
be

dd
ed

 a
re

a
de

te
ct

io
n

m
od

el
 (A

FE
AD

M
) f

ra
m

ew
or

k
fo

r T
es

tin
g

AJ
AX

 W
eb

 A
pp

lic
at

io
n

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st August 2013. Vol. 54 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

415

If user session xml and
DOM tree xml does not

exist

If working on web
site first time

Load web application on
Mozilla Firefox

Perform user session on WA

[else]

User session
of WA

scenario

Start
Selenium tool

Start Model Generator tool

Load stored
user session

file of chosen
WA

Load stored
extracted DOM
events and
elements file

Start DOM tree
generator of WA

User
session

XML log
file

DOM elements and
events

Extract all elements and
events changing state as input

[loop]Add all
elements and events

[Else
]

Extracted DOM element and Events
File

Execute Mapping function

Store Dom elements
and events file

Map user session log files with
dynamic extracted data

FSM Text file

Start Model Extraction tool

Finite state
Machine of
WA

GV Edit tool

[else]

Figure2: Processing view of Finite State Machine Generation of Web Application

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st August 2013. Vol. 54 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

416

Figure8: Algorithm for inferring State Machine of an AJAX Web Application

Algorithm 1: Inferring State Machine
Input: Ajax web Application
Output: All recorded user session XML files; DOM tree inspector files for set of
DOM in for all User Sessions; Event-Element Mapping Function generated Event-
Element relationship metrics; State machine of dynamically changing behaviour.
1. procedure Start(url)
2. Browser initialize browser(url)
3. rsm initialize rootStateMachine()
4. statersm initialize State()
5. Navigate(rsm)
6. SaveAndcreate(selog.xml) //Save and create user session log file
7. end procedure
8.
9. procedure infersm(url, selog) //Event-Element mapping function
10. domrsm browser.fetchDom(selog.rsm)
11. se= parse(selog)
12. extract(seCommand)
13. while(selog!=EOF)
 // Store DOM for all selenium tool given command
14. StoreAndSave domcs[]=browser.fetchDom(selog.secommand)
15. if(Diff(domrsm,domcs[0])>0)
16. rsm.addState(domcs[0])
17 Extract element.list(changed tag.list, tag.value)
18. else
19. domrsm=domcs
20. endif
20. for(domcs.length)
21. if(Diff(domcs(i), domcs(i+1))> 0
22. rsm.addState(domcs)
 // If DOM Change from client side means User did some action
23. If(selog.secommand= “action”
24. event<-getselog.secommand
25. domcs.statename = ST_(name of secommand)
26. rsm.addEdge(event)
27. Extract ElementList(TagName, TagValue, TagIndex)
 //Server side changes reflect on WA
27. elseif(selog.secommand= “AssertAlert”)
28. rsm.addEdge(event@seTarget)
29. Extract ElementList(TagList, TagValue, TagIndex)
30. endif endif endif
33. endfor
34. endloop

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st August 2013. Vol. 54 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

417

Table 1: Extracted Structure Of Generated Coffee Maker Onclick Event State Machine

S No Initial State Final State Event Performed Changes in DOM State
1 ST_0 ST_0 onLoad() ST_0: html/body/div[4]@Idle,

html/body/div[8]@Idle
Coffeemaker1 Idle,
Coffee maker2 Idle

2 ST_0 ST_1 onClick() ST_0: html/body/div[4]@Idle,
html/body/div[8]@Idle
ST_1: html/body/div[4] @ Brewing USER1’s
small mocha, html/body/div[8]@Idle

Coffeemaker1 Busy, Coffee
maker2 Idle

3 ST_1 ST_0 Assert Alert() ST_1:html/body/div[4]@Brewing User1’s small
mocha, html/body/div[8]@Idle
ST_0: html/body/div[4]@Idle,
html/body/div[8]@Idle

Coffeemaker1 Idle,
Coffeemaker2 Idle

4 ST_1 ST_2 OnClick() ST_1:html/body/div[4]@Brewing User1’s small
mocha, html/body/div[8]@Idle
ST_2:html/body/div[4]@Brewing User1’s small
mocha,
html/body/div[8]@Brewing User2’s small mocha

Coffeemaker1 Busy,
Coffeemaker2 Busy

5 ST_2 ST_3 AssertAlert() ST_2: html/body/div[4]@Brewing User1’s small
mocha.
html/body/div[8]@Brewing User2’s small mocha
ST_3: html/body/div[4]@Idle,
 html/body/div[8]@Brewing User2’s small
mocha.

Coffeemaker1 Idle,
Coffeemaker2 Busy

6 ST_2 ST_1 AssertAlert() ST_2: html/body/div[4]@Brewing User1’s small
mocha.
html/body/div[8]@Brewing User2’s small mocha
ST_1:html/body/div[4]@Brewing User3’s small
mocha, html/body/div[8]@Idle

Coffeemaker1 Busy,
Coffeemaker2 Idle

7 ST_3 ST_2 onClick() ST_3: html/body/div[4]@Idle,
 html/body/div[8]@Brewing User2’s small
mocha.
ST_2: html/body/div[4]@Brewing User3’s small
mocha.
html/body/div[8]@Brewing User2’s small mocha

Coffeemaker1 Busy,
Coffeemaker2 Busy

8 ST_3 ST_0 AssertAlert() ST_3: html/body/div[4]@Idle,
 html/body/div[8]@Brewing User2’s small
mocha.
ST_0: html/body/div[4]@Idle,
html/body/div[8]@Idle

Coffeemaker1 Idle,
Coffeemaker2 Idle

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st August 2013. Vol. 54 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

418

Fi
gu

re
 1

0:
 U

SS
M

G
 to

ol
 g

en
er

at
ed

 S
ta

te
 M

ac
hi

ne
 o

f u
se

r s
es

si
on

 tr
ac

es
 m

en
tio

ne
d

in
 T

ab
le

3

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 31st August 2013. Vol. 54 No.3

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

419

Table 4 Results Of Generated State Machine Of Various Web Applications

Case
Study

Case
Study
Name

User
session
features

DOM
String
Size/ User
Session

Detected
Events

Expected
Events

Detected
DOM
Changed
Elements

Detected
States

Expected
States

1 FilmDB View 2000 bytes 23 25 48 41 47
2 TuDu

List
Add, Edit,
Detete

15054
bytes

32 32 63 63 65

3 AJAX
IM

Send
Message

10356
bytes

16 30 30 20

15

4 Coffee
Maker

Order
Coffee

574 bytes
in 7 files

 2 2 16 4 4

5 Break
Neck
Pizza

Order
Pizza

6033 bytes
in 5 files

 10 10 27 23 23

http://www.jatit.org/

	1ANUJA ARORA, 2MADHAVI SINHA
	4.1 User session recorder to provide changing behavior states of WAUT
	4.2 Generated DOM TREE VIEWER and Extracting components to find DOM Change Violation:
	4.2.1 Navigation Bar:
	4.2.2 DOM State Event Selector
	4.2.3 DOM State Element Selector
	4.2.4 COMPUTING EVENT-ELEMENT MAPPING FUNCTION(EEMF)

	5.1 Inferring state machine:
	8.1 NF1: Effectiveness
	8.2 NF2: Scalability
	8.2 NF3: Flexibility

