
Journal of Theoretical and Applied Information Technology
 20th May 2013. Vol. 51 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

333

 IMPROVED ALGORITHM FGF-LRU FOR I/O
PERFORMANCE OF LUSTRE

1 LI LINLIN, 2 SUN LIANGXU

1 Lecturer, School of Software, University of Science and Technology Liaoning, China
2 Lecturer, School of Software, University of Science and Technology Liaoning, China

E-mail: 1linlin20002_0@163.com, 2sunliangxumail@163.com

ABSTRACT

In Lustre parallel file system the I/O performance of coarse-grained data access is good, while the I/O
performance of fine-grained data access is relatively worse. Therefore optimizing the I/O performance of
fine-grained access is the key for the improvement of the system's overall I/O performance. This study
analyzed Lustre's I/O access mode, fine-grained I/O service procedure and page reclaim algorithm, and
proposed a Fine-Grained First LRU (FGF-LRU) algorithm. In this algorithm, fine-grained I/O pages are
retained in cache of OST and client as long as possible, to slow down the pages' sinking, and extend the
time that the pages are in main memory, and thereby, decrease the number of times of disk access and
reduce the disk access cost. Through comparison and analysis of the test data, the algorithm is confirmed
effective; I/O performance of fine-grained access is improved without affecting the coarse-grained I/O
performance, and the system overall I/O performance is improved.

Keywords: Parallel file system, Lustre, Fine-grained, I/O

1. INTRODUCTION

With the growth of the demands for massive data
storage and processing from large-scale
applications like internet and cloud computing, the
performance requirement of parallel computers'
storage system increases as well. In practice, most
parallel computers' storage system need to store
many small files besides large files; and the system
needs to read and write these small files often, or
perform fine-grained read/write to the large files.
The fine-grained read/write to large number of files
is not caused by occasional application error, they
are from different sources; this indicates that the
fine-grained read/write of files is common.
Therefore researches on the performance of fine-
grained read/write have important practical
meaning.

To make the structure of the parallel file system
more reasonable and the performance better, the
research on the parallel file system need to deal
with mainly the following three aspects of
problems:

1) Determine user I/O access mode. Different
user application has different I/O access mode. In
order to provide high-performance services,
determine to use what kind of optimization method
according to specific user access mode. It is

difficult to provide a more complete access mode
information and system design guideline for the
analysis work of the current I/O access mode.

2) Develop access parallelism. There are two
main methods to develop access parallelism: define
explicitly by users and excavate by the parallel file
system itself. But the above two methods have
advantages and disadvantages. The users often
cannot understand the distribution of the underlying
data; it is difficult to provide parallel information
for many access modes. For example, when the
access behavior of the user is complex, or the size
of the access data is small, or the distribution of the
access data is fine-grained, it is difficult to develop
access parallelism for the parallel file systems by
itself. Therefore, the best solution is to organically
combine the above two methods. But how to realize
is the current research difficulty.

3) Optimize parallel services. The key of
optimizing parallel services is to take full advantage
of the performance of system components,
eliminate bottlenecks and get maximum bandwidth
and minimum delay. For different data
distributions, the existing service mechanism often
doesn’t take into account system performance as a
whole and leads to the emergence of new bottleneck
component, such as the communication between
nodes when the data distribution is fine-grained.

http://www.jatit.org/
mailto:xxx@yahoo.co.in
mailto:xxx@yahoo.com

Journal of Theoretical and Applied Information Technology
 20th May 2013. Vol. 51 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

334

Therefore, based on considering the characteristics
of system components, the research on appropriate
parallel service mechanism is the key to achieving
optimization of parallel services.

Lustre[1]-[2] is an object-based file system
shown as Fig.1, composed by Metadata Server
(MDS), Metadata Target (MDT),Object Storage
Server (OSS) and Client. Client carries out file data
I/O interaction with the Object Storage Target
(OST) under OSS and namespace operation
interaction with MDS.

Figure 1. Lustre Components

Lustre is a high-performance open-source file
system, usually used in high-performance
computing environments. It is based on Linux,
designed, developed and maintained by Oracle,
with the participation of some individuals of open-
source communities and some companies also.
Lustre optimized the continuous coarse-grained
read/write of files, and it is able to provide great I/O
throughout rate for cluster systems.

In practical applications, access to bulk data has
high probability to be one-time access and takes
more resource, while accesses to small pieces of
data has high probability to be repeated but takes
less resource. This means in file read/write
process, fine-grained accesses are more likely to be
repeated than coarse-grained accesses, thus the low
performance of fine-grained access become the
bottleneck of Lustre's overall I/O performance
improvement.

2. RELATED WORK

For the problem about metadata prefetching of
server driver and the flat namespace caused by the
distribution storage architecture of Lustre, modify
the metadata of objects and add the fields which
reflect the relationships between objects in the
metadata of objects, when access to MDS to do the
operations of metadata each time, pre-fetch the

metadata of the objects relevant to the accessed
object this time, so as to decrease the access
number of MDS.

Lustre caches only in the client. When different
users access the same file from the same OST, need
to store a copy of the file in the file system cache of
the client. From a global point of view, this will
waste cache resources of the system and need
additional I/O bandwidth. For this problem, the
collaborative cache technology [3] is to design
cache from the global point of view and deal with
cache of all clients as a whole; one node not only
can use the cache resources of the node, but also
use the cache resources of other nodes. The
technology can take advantage of the cache
resource of cluster system and also save I/O
bandwidth of a small file.

When the I/O operation is running in the medias
whose storage speed level has a big gap such as
RAM and Disk, improve I/O performance often
with cache technology. According to the locality
principle, read the files which may be used by users
in a certain time period from the low speed storage
media such as Disk to the high speed storage media
such as RAM and cache as a copy in low speed
storage media. When the system is idle, write
asynchronously the copy in cache to the disk. The
majority of the file systems apply the cache
technology in different way to improve the I/O
performance in a certain extent.

In system running, the number of the clients may
change at any time, and the cache resource of each
client may be respectively different which cause
that management of cache resources is very
complex. In order to fully taking advantage of the
speed of cache storage media, the management and
maintenance of cache resources must be as simple
as possible. For this problem, in order to improve
the I/O performance of small file, design a cache
only for the I/O of small file in OST component, let
the I/O data of small file pass through the cache
firstly, and then write asynchronously to disk, while
the I/O operation of big file does not change[4].

3. PAGE RECLAIM MECHANISM

3.1. Page Reclaim Requirement

Operating system manages the physical memory
pages, and also allocates the memory. Applications
apply physical pages from the OS through memory
allocation functions, and after using, release these
physical pages through corresponding memory
release functions. However, some users would not
release the physical pages initiatively. If such pages

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th May 2013. Vol. 51 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

335

are always occupied and not been released, the
physical memory will run out eventually.
Therefore, for the physical pages which can't be
initiatively released, the OS needs to provide
appropriate functions to release them. In Linux, a
mechanism of page reclaim algorithm is provided
for such purpose.

3.2. Page Reclaim Algorithm

Page reclaim in Linux is based on the Least-
Recently-Used (LRU) algorithm, while LRU is
based on the fact that the pages been frequently
used recently are more likely be accessed again in
the near future; in contrast, pages that have not
been accessed for a long time would not be
accessed frequently in short time. Therefore, the
pages have been least accessed recently will be
swapped out when the physical memory is not
enough.

Linux added an "Accessed" bit in the page table
entry, when the page is accessed, this bit is set. The
bit been set indicates that the page is young and
should not be swapped out. Afterward in the
system's running, this page's age will be changed by
the system. Related operations in Linux mainly run
with two LRU linked lists and two page status
identifiers.
LRU linked lists include active linked list and
inactive linked list. Active linked list stores the
pages been accessed recently, and inactive linked
list stores the pages have not been accessed in a
period of time. This benefits the improving of the
efficiency and reduces of the moving time. Pages
are moved between the two two-way linked lists,
and the system would determine which list to put a
page in according to the active level of the page.
The least recently used pages will be put to the tail
of the inactive linked list one by one, and the
system would reclaim the pages from the tail of the
inactive linked list.

4. I/O GRAINED ANALYSIS

Using object storage technology, Lustre divides
each file into a number of segments of the same
size, and orderly stores them to designated OSTs;
all the segments on one OST for the same file are
treated as an object. For the data buffering and
network design, the data dividing strategy of Lustre
fits well for large-volume sequential for following
two reasons:

1) At one time point (or in a time period), if there
are I/O requests for multiple continuous bulk data,
and the requests are for different segments of the
file, then these requests will be distributed to
different OSTs and served by them in parallel. In

this I/O model, the bigger the granularity of the
access is, the more segments are assigned, then the
parallel degree of the system is higher, and the
aggregate I/O bandwidth is bigger.

2) During bulk data I/O operations, the OST-side
disk's magnetic head moves orderly, after one disk
addressing, the next data segment can be accessed
directly without re-addressing. This sequential data
transmission could reduce the frequency of the
magnetic head's moving and the cost of disk
addressing.

However most of the actual loadings are not pure
bulk data accesses, there's large number of I/O
accesses of small piece data also. In Lustre's
objective storage structure, data path and control
path are separated which is not good for fine-
grained I/O for the following 3 reasons:

1) Since metadata and file data are stored in
MDS and OST separately, interaction with MDS is
required before file access to obtain the location of
the file. For fine-grained I/O, comparing with
traditional local file system, this step costs
additional network transmission and metadata
server access. These two additional costs are quite
large for small data piece I/O. This is a common
problem in all object storage-based file systems.

2) The fine-grained I/O performance is not good,
additional bandwidth is required. Client cache is
only effective on local machine, and when different
clients access the same file at OST side, every
client needs to copy the data from OST to local
cache first. Even if the data is only a small part of
the page (which is common for small piece data
I/O), the whole page needs to be read from the OST
disk to cache before accessing. This process of
reading data from OST to client cache requires
additional bandwidth; the more frequent the fine-
grained I/O is, the more additional bandwidth is
required, and the lower the system's overall I/O
performance gets.

3) The performance of small piece data
read/write at OST-side file system is not good.
When reading and writing small piece data, the
latency caused by disk addressing takes a big part
of the total time cost of one small piece data I/O.
The fine- and coarse-grained mixed I/O model also
leads to disk fragment issue thus reduces the disk's
overall performance. This is determined by the
disk's physical characteristics, and it is a common
problem in the storage end of all file systems.

In conclusion, frequent fine-grained I/O impacts
the overall I/O performance greatly; the actual
runtime I/O bandwidth is less than the maximum
bandwidth available.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th May 2013. Vol. 51 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

336

5. FINE-GRAINED FIRST LRU (FGF-LRU)
ALGORITHM

5.1. I/O Grained Determination

In general, the response time T is the
combination of OST response time Tost, client delay
time TClient and OST network transmission time Tnet,
i.e. T=Tost+TClient+Tnet. When the accessed data is
over the size of one segment which means the data
is stored in more than one OST, because of the
segment parallel handling mechanism, each OST
handles the corresponding segment, so T=
TClient+Max(Tost +Tnet). This formula means that the
I/O response time of multiple segments is decided
by the longest OST response time. If the longest
OST response time is not reduced, it cannot make
any difference to the access' performance even
other OSTs' performances are improved. So once
the data access' granularity is over one segment, it
will greatly enjoy the benefits of parallel handling
and pre-read mechanism, thus have less demand of
the performance optimization for fine-grained I/O.

Therefore the impact of fine-grained access on
performance is closely related to the segment size,
which should be the determination standard of fine-
and coarse-grained.

Fine-grained: the number of bytes read/written
one time is smaller than the size of one segment;
Coarse-grained: the number of bytes read/written
one time is bigger than the size of one segment.

5.2. LRU Algorithm Analysis

The procedure of Linux' original LRU algorithm
is: add the newly allocated page descriptor to the
head of the inactive linked list; when the page is
been accessed, set its status to "referenced" or move
it to the active linked list; when free pages are not
enough and page declaim is needed, the system
scans the active linked list from the tail and put the
list item whose status is not "referenced" to the
head of the inactive linked list, then scan the
inactive linked list from the tail, reclaim the pages
in proper status until enough pages are reclaimed.

When a large amount of fine-grained accesses
are in the cache, a few coarse-grained accesses
would make a lot of them be swapped out. Then the
fine-grained requests of high access repeating
probability would have to do the network data
transmission and disk read/write again, which
affects the system's overall I/O performance
significantly. And coarse-grained accesses usually
read data in bulk continuously, this means that even
if the first read did not hit in the cache, the
prefetching mechanism of the file system could still
compensate the performance lost, however this

mechanism doesn't compensate the performance
loss of the fine-grained accesses with high
repeating probability.

Therefore, in order to improve the overall
performance, the fine-grained access pages should
be retained in cache longer, while coarse-grained
access pages should be swapped out first. However
the original Linux LRU algorithm performs LRU
ordering only according to the pages' access time,
and does not consider the impact of file accesses'
granularity on the access repeating possibility. The
coarse-grained access pages should be put to the
tail of LRU linked lists as far as possible, so that
the fine-grained access pages of high access
repeating probability won't be swapped out because
the coarse-grained access pages of low access
repeating probability occupied the cache, and
therefore improve the performance of fine-grained
I/O accesses.

5.3. FGF-LRU Algorithm Design

The main ideas of the Fine-Grained First LRU
(FGF-LRU) algorithm are:

1) When Client and OST response requests,
identify the requests' access granularity and handle
them respectively;

2) Extend the time of fine-grained accesses in
cache to increase the access hit rate, let as much
fine-grained accesses run in cache as possible.

FGF-LRU algorithm is based on LRU algorithm.
The procedures are:

1) For the pages in LRU linked lists, add an
identifier PG_finegrain, for marking different
access granularity;

2) Determine the access granularity in the files'
execution path. If file pages are read into cache
from disk in fine-grained mode, set this page's
PG_finegrain identifier, and put the page to the
head of the inactive linked list; If not, put the page
to the tail of the inactive linked list.

3) When moving pages from active linked list to
inactive linked list, move fine-grained pages as
normal, and move coarse-grained pages to the tail
of the list. This way when the system doesn't have
enough free pages, these coarse-grained pages will
be swapped out first.

5.4. FGF-LRU Algorithm Realization

The data transmission path of fine-grained access
is Client -> OST -> Cache. FGF-LRU algorithm is
divided into three modules accordingly. Combined
the function of managing the page identifier in
linked list, the realization of the algorithm involves
four modules: Client-side reading module, OST-

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th May 2013. Vol. 51 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

337

side reading module, LRU linked list moving
module and page identifier management module.

1) Client-side reading module: identify the
access granularity of system requests, and handle
the requests accordingly;

2) OST-side reading module: identify the access
granularity of Client requests, and handle the
request accordingly;

3) LRU linked list moving module: move pages
of different granularity from active linked list to
inactive linked list based on the idea of fine-grained
first;

4) Page identifier management module: manage
the checking, setting, and clearing of the page
structure flags field and fine-grained identifier.

Among these four modules, the Client-side
reading module, OST-side reading module and
LRU linked list moving module do not have direct
data exchange with each other, but all of them
would call the page identifier management module
directly. These four functional modules are closely
integrated with relative system components for the
realization of the FGF-LRU algorithm.

To accelerate the page LRU operations, a page
shouldn't be put into the inactive linked list every
time it is called. The reason is that the inactive
linked list and the active linked list are a shared
data structure protected by spin lock; frequent
modification to them means intense lock
competition. Per-CPU amount is a new feature of
Linux2.6 kernel, where each processor has its own
copy of the variables. The processors access their
own copy without locking; using their own cache
greatly improved the access and update efficiency.
Therefore a Per-CPU amount should be defined to
temporarily store the pages to be submitted to the
inactive linked list, and the stored pages will be add
to the actual inactive linked list when there is a
certain amount of them.

6. TEST AND ANALYSIS

6.1. Test Environment

Six PCs are prepared for the test, three of which
as OST and the other three as Client, MDS is on the
third OST. The OST (MDS) PCs' technical details
are 1.7GHz dual core CPU and 1G memory. The
Client PCs' technical details are 2.4GHz dual core
CPU and 2G memory. Network is Gigabit Ethernet,
with gigabit exchange board. OS for all PCs is Red
Hat Enterprise Linux 5, kernel is 2.6.38. Parallel
file system is Lustre 1.8.

6.2. Test Case Design

Response time and bandwidth are important
factors to measure a parallel file system's I/O
performance. Through the comparison of the
average response time and bandwidth before and
after the optimization, the effect of FGF-LRU
algorithm can be reflected. Define the generation
probability ratio of fine-/coarse-grained accesses as
m/n; and M large enough files are stored in the
system. Assume all the files are stored in a small
data range and would be accessed frequently.

With different fine-/coarse-grained accesses
generation probability ratios, gauge the response
time and calculate the average bandwidth.

The random algorithm of a file access is as
following:

1) Generate a random number r in the range of 0
to 100 using uniform distribution;

2) When r<m/(m+n)*100, this access is fine-
grained access, and it is coarse-grained access if
reverse;

3) If the access is fine-grained, choose one of the
M files randomly using uniform distribution, and
perform fine-grained access to the frequently
accessed data range; if reverse, randomly choose a
file and perform coarse-grained access.

Use Linux shell scripts to complete the test in
batch; use $RANDOM for the random number
generation, and dd command to gauge the
read/write time as below:
Read: $time dd if='input file' bs='segment size'
count='segment amount' of=/dev/null
Write: $time dd if=/dev/zero bs='segment size'
count='segment amount' of='output file'

6.3. Test Result and Analysis

To ensure the universality and randomness of the
test, the test was repeated many times so that it is
more actual application-like and ensure the data's
reliability.

Define the occurrence ratio of fine-grained and
coarse-grained read/write as m/n, and probability of
fine-grained access is m/(m+n). A single test
contains following steps:

1) Store 10 files of 1.5G in advance;
2) Conduct 100 times of random read/write test

to fine-grained probability 0.9, 0.8, 0.7, 0.6, 0.5,
0.4, 0.3, 0.2 and 0.1 separately and get 9 total
response time; calculate the 9 average total
bandwidth values (fine-grained bandwidth +
coarse-grained bandwidth);

3) Transform the total response time get in step 2
to fine-grained accesses total response time, and
calculate the average bandwidth of fine-grained
accesses.

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th May 2013. Vol. 51 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

338

Test data of overall average bandwidth and
optimization percentage of the read/write test are
shown in Fig.2 and Fig.3.

Figure 2. Read Operation Test Data

Figure 3. Write Operation Test Data

Test data of average fine-grained access response

time and optimization percentage of the read/write
test are shown in Fig.4 and Fig.5.

Figure 4. Fine-Grained Read Operation Test Data

Figure 5. Fine-Grained Write Operation Test Data

Test for the overall average bandwidth of

read/write operation shows that, for a certain fine-
grained probability, the optimized overall average
bandwidth is bigger than the average bandwidth
before; along with the decrease of the fine-grained
probability, the overall average bandwidth of both
before and after optimization gradually increase,
while the pre-post bandwidth difference and
optimization percentage gradually decrease,
approaching 0. The optimization effect when fine-
grained probability is 0.9 is the best. Re-test after
change the Client and reduce number of OSTs, the
data still show the same trends, indicating that for
different Client and different OST amount, the
FGF-LRU algorithm could optimize the system's
overall I/O performance.

Test for the average fine-grained access response
time of read/write operations shows that, for a
certain fine-grained probability, the average
response time after optimization is less than the
average response time before. When the fine-
grained probability decreases, the average response
time of both before and after optimization increase
gradually, and the pre-post response time difference
and optimization percentage decreases gradually.
The trends of read/write response time's increasing
along with the fine-grained probability's decreasing
after optimization are greater than the trends before
optimization, because that along with the fine-
grained probability's decrease, the probability of
network access requirement and disk read/write
requirement increase for every fine-grained access,
the response time tend to get close to the value of
before optimization. When the fine-grained
probability is 0.9, the optimization effect is the best.
The FGF-LRU algorithm significantly improves the
performance under big fine-grained access ratio; the
bigger the fine-grained access ratio is, the better the
optimization effect is. And when the fine-grained
access ratio gets smaller, the optimized

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th May 2013. Vol. 51 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

339

performance gets closer to the original
performance. This is reasonable since this
algorithm is designed for the performance
optimization of the situation that fine-grained
access repeats; if fine-grained access takes smaller
ratio, the optimization effect of this algorithm
would be weaker. Therefore, when fine-grained
access ratio is small, the system is more able to
bring the performance advantage of bulk sequential
data access handling of parallel system. And when
fine-grained access ratio is big, the FGF-LRU
algorithm can compensate the performance
shortage of parallel system on small piece data
handling.

7. CONCLUSIONS

This paper designed and realized a fine-grained
first LRU (FGF-LRU) page reclaim algorithm to
improve the fine-grained I/O performance of Lustre
parallel file system. The aim of the FGF-LRU
algorithm is to retain the fine-grained access pages
in the Cache of OST and Client, so that the sinking
of fine-grained access pages would be slowed
down, and the time of fine-grained access pages
stay in the main memory will be extended, in order
to reduce the number of disk accessing, thus cut
down the cost of the redundant accesses to disk.
Test of the algorithm confirms that the FGF-LRU
algorithm achieved the design purpose.

REFRENCES:

[1] Lustre: a scalable high-performance file

system [EB/OL]. Cluster File System, Inc.
http://www.lustre.org/docs/whitepaper.pdf.
2002.

[2] Peter J. Braarn. The Lustre Storage
Architecture, Cluster File Systems
Inc..ftp://crimson.ihg.uni-
duisburg.de/Linux/filesys/Lustre/lustre.pdf.
2004.08

[3] Phoenix, Arizonna. Lustre: A scalable high
performance distributed file system.
Supercomputing 2003, ACM/IEEE Conference.
Piscataway, NJ: IEEE, 2003, pp. 15-40.

[4] Li, Zhu., Zhou, Enqiang, Liao Xiangke. Filter
Cache: A Method for Improving I/O
Performance of Lustre File System [J]. Journal
of Computer Research and Development
2009,46:71-77.

[5] Huo Yanmei, Yang Kexin, Hu Liang,Ju Jiubin.
Overview of Parallel File System. Journal of
Chinese Computer Systems, 2008.29(9), pp.
1631–1636.

[6] Feiyi Wang, Sarp Oral, Galen Shipman.
Understanding Lustre File system Internals[R].
National Center for Computational Sciences,
2009.04

[7] Lin Yuzhang. Research on Cache Technique of
Parallel File System [D]. Huazhong University
of Science and Technology, 2004.

[8] Lin Songtao. Research on Parallel I/O
Techniques Based on Lustre File System [D].
National University of Defense Technology,
2004.

[9] James Hendricks, Raja R Sambasivan, Shafeeq
Sinnamohideen. Ganger. Improving small file
performance in object-based storage, CMU-
PDL-06-104. Pennsylvania: Carnegie Mellon
University, 2006, pp. 28-41.

[10] Qian Yingjin. Research on Key Issues in Large
Scale Clustered File System Lustre [D].
National University of Defense Technology,
2011.

[11] Li Zhu. The Design and Implement of an
Improvement for Small File Performance in
Distributed File System [D]. National
University of Defense Technology, 2008.

[12] Daniel P. Bovet, Marco Cesati. Understanding
the Linux Kernel [M]. China Electronic Power
Press, 2007.

http://www.jatit.org/

	1 LI LINLIN, 2 SUN LIANGXU

