
Journal of Theoretical and Applied Information Technology
 20th May 2013. Vol. 51 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

306

TOWARD A CONCEPTUAL BASE FOR PROTOCOL
ENGINEERING

1SABAH AL-FEDAGHI, 2ALAA AL-SAQA

1Assoc. Prof., Department of Computer Engineering, KUWAIT UNIVERSITY, KUWAIT
2Engr., Department of Computer Engineering, KUWAIT UNIVERSITY, KUWAIT

1E-mail: sabah@alfedaghi.com, 2eng_alaa_alsaqa@hotmail.com

ABSTRACT

A protocol refers to a set of rules governing the exchange of data between entities. Several notations are
utilized in the specification of protocols, including different types of diagrams such as flowchart-like
depictions, UML sequence diagrams, and state transition diagrams. This paper is a contribution to this area,
proposing a diagrammatic methodology for protocol specification. It is based on the notion of flow of
“primitive” things in a system with six stages: creation, release, transfer, arrival, acceptance, and
processing. The aim is to introduce a conceptual and complete description of basic streams of flow among
entities and stages including “crossing points” that need rules of data transfer. The resultant specification is
a map over which a protocol can be superimposed.

Keywords: Protocol, Network, Conceptual model, Communication, Rules

1. INTRODUCTION

Any communication model comprises a source
that generates the data to be transmitted, a
transmitter that converts the data into transmittable
signals, a transmission system that carries the data,
a receiver that converts received signals into data,
and a destination that takes incoming data [1].
Communication-related handling of information
involves such operations as the release, transfer,
arrival, and acceptance of exchanged information.
This requires a set of rules governing data
exchange, referred to as a protocol, which can be
defined as a set of rules governing the exchange of
data between entities [2]. According to [3],

An entity is anything capable of sending or
receiving information and a system is a physically
distinct object that contains one or more entities…
To reduce communication systems design
complexity, most systems are organized as a series
of layers or levels, each one built upon its
predecessor… The purpose of each layer is to offer
certain services to the higher layers, shielding those
layers from the details of how the offered services
are actually implemented. A layer n entity on one
system carries on a conversation with a layer n peer
entity on another system. The rules and conventions

used in this conversation are collectively known as
the layer n protocol [4]. (Italics added).

For example, the OSI Reference Model presents
standards for linking computers with seven protocol
layers [2]. Each n layer comprises active entities
capable of sending or receiving information to/from
their layer n peer entities in another system.

The entities in layer (N) implement a service used
by layer (N+1). In this case layer (N) is called
service provider and layer (N+1) is called service
user. Layer (N) may use the services of layer (N+1)
in order to provide its service. Services are
available at service access points (SAP). The layer
(N) SAPs are the places where layer (N+1) can
access services. Each SAP has an address that
uniquely identifies it. [3]

In OSI Reference Model (Figure 1), layers from
1 to 3 are network dependent and concerned with
the protocols associated with the data
communication network used to link two
communicating systems. Layers 5 to 7 are
application oriented and concerned with the
protocols that allow two end-user application
processes to interact with each other.

http://www.jatit.org/
mailto:sabah@alfedaghi.com
mailto:2eng_alaa_alsaqa@hotmail.com

Journal of Theoretical and Applied Information Technology
 20th May 2013. Vol. 51 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

307

The intermediate transport layer (4) hides the
detailed operation of the lower network-dependent
layers from the upper application-oriented layer
[5][6].

Another example of a layered communication
system is the TCP/IP model, which consists of the
four layers link (device driver and interface card),
network (e.g., IP protocols), transport (e.g., the
TCP protocol), and application (includes FTP and
DNS) [8][9][10][11].

When one starts with protocols that work at the
upper layers, each set of data is wrapped inside the
next lower layer protocol [12]. In Figure 1, every
layer adds an additional piece of information to the
message it is transmitting. Such an arrangement is
referred to as encapsulation. The additional
information appears as a header (e.g., TH =
Transport Header). The data link layer also adds a
trailer to its data, so each layer is encapsulated in
the next layer. On the side of the receiving host,
each layer removes the additional piece of
information, and such a process is referred to as
decapsulation [7][13][14][15].

The following general example, summarized
from [12], assumes that the protocol stack being
used is TCP/IP with an FTP client program for files
transferring from/to an FTP server.
1. The FTP client program is started on the

sending computer.
2. The address and port of the server are selected.

3. A request is made to connect to the server.
4. The application layer sends information

through the presentation layer to the session
layer to open a connection.

5. The session layer negotiates for a connection.
There are several synchronization signals to
establish the connection:
a. The session layer of the client sends a data

packet signal to the transport layer.
b. The transport layer adds a header to the

packet indicating the source and destination
ports.

c. The network layer adds source and
destination IP addresses.

d. The datalink layer determines the hardware
address of the computer to which the data are
being sent.

e. The information is transmitted across the
hardware layer.

f. The FTP server sees the ethernet frame
matching its address and strips the ethernet
header information and sends it to the
network layer.

g. The network layer examines the IP address
information, strips the IP header, and sends
the information to the transport layer.

h. The transport layer strips the TCP header
and sends the information to the appropriate
program servicing the requested port.

Receiving Host

Application

Presentation

Session

Transport

Network

Data Link

Physical Raw data bits

DLH NH TH SH PH AH Data DLT

Application

Presentation

Session

Transport

Network

Data Link

Physical

NH TH SH PH AH Data

TH SH PH AH Data

SH PH AH Data

PH AH Data

AH Data

Data Sending Host

Figure 1. OSI Reference Model (From [7])

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th May 2013. Vol. 51 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

308

i. The session layer in the FTP program

conducts a series of data exchanges through
all the lower layers to the client computer
until a session is established.

6. At this point information may be sent through
several FTP commands between the client and
the server. Every transmission passes through
the network layers from the application layer
down to the hardware layer, then back up
through the layers on the receiving computer.

7. When the client decides to terminate the
session, the layer is informed by the higher
layers and negotiates for the closing of the
connection.

Several notations are utilized in the specification

of protocols, including different types of diagrams
such as flowchart-like depictions, UML sequence
diagrams, and state transition diagrams [3][16][17].
This paper is a contribution to this area, proposing a
diagrammatic methodology for protocol
specification. It is based on the notion of flow of
“primitive” things in a system with six stages:
creation, release, transfer, arrival, acceptance, and
processing.

The aim of the paper is to introduce a
conceptual and complete description of basic
streams of flow among entities and stages including
“crossing points” that need “protocolization”, not in
the sense of notarization, but to mean “providing
rules of transfer.” It is a map over which a protocol
can be superimposed.

2. MOTIVATIONAL EXAMPLES

This section displays a sample diagrammatic
description used in modeling protocols. While we
are focusing here on a specific model, it is not our
observation that protocol specification, in general,
lacks the presence of a conceptual framework for
expressing basic primitives and operations involved
in any convention that facilitates transactions.
While describing the sample standard model
discussed in this section in detail is beyond the
scope of this paper, the discussion aims at
demonstrating the need for a more precise
methodology of description that is beyond the level
of narratives and sketches.

In this context a primitive is a unit of information
that is sent from one layer to another [18]. There
are four classes of primitives: Request, Confirm,
Indication, and Response, as shown in Figure 2.
Request is a request for services from another layer,
Confirm is the acknowledgment, Indication is

notification of the information to the layer
requesting the service, and Response is
acknowledgment of the indication. The primitive
includes protocol layer ID, protocol ID, primitive
class, primitive name, and parameters. The protocol
ID specifies to which protocol entity this primitive
should be sent, e.g., IEEE 802.11 or IEEE 802.3
[19][20][21].

To base the description on a firm conceptual
basis, the notion of unit of information, described as
“sent from one layer to another,” seems in need of
further elaboration. In our proposed framework,
this “unit of information” is “a thing that flows”
(denoted as a flowthing) with six basic exclusive
operations: created, released, transferred, arrived,
accepted, and processed, as shown in Figure 3.
Exclusiveness here indicates that if the unit of
information is in one of these six states (also called
stages), then it is not in any of the other five states.
The “flow system” of a type of flowthing (denoted
as flowsystem) represents the legal sequence of
stages that a process can exhibit.

“Things that flow” are the units in a Flow Model
(FM) that has been utilized in many applications
[23][24][25][26][27]. Accordingly, Figure 3 can
now be presented as shown in Figure 4.

In Figure 4, each of the two layers (called
spheres in FM) has four flow systems that
correspond to the flowthings: Request,
Confirmation, Indication, and Response. First, a
request is created in layer n (circle 1 in Figure 4),
then it is released and transferred (circle 2) to layer
n-m.

Confirm

Request Response

Indication

Layer n

Layer n-m

Figure 2. Primitives (from [22])

Transfer

Release

Create

Figure 3. Flowsystem

Arrive

Accept

Process

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th May 2013. Vol. 51 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

309

Conceptually, stage Released is different from

stage Transfer, as in the case of sending an email
that is not actually transferred but is waiting for
channel availability (e.g., in an output buffer).
Transfer is the interface module in the sphere that
interacts with the channel.

In layer n-m, arrived requests may not be
accepted. If accepted, the request is then processed;
this triggers (circle 3) the creation of a
confirmation. In FM, flows of data are represented
by solid arrows, while triggering is indicated by
dashed arrows. Indication is transferred to layer n
(circle 4). When arriving flowthings are always
accepted, Arrival and Acceptance stages can be
combined in one state called Receive, as shown in
the Indication flowsystem of layer n (circle 5).
Processing Indication triggers (circle 6) the creation
of Response, which flows (circle 7) to layer n-m,
and this in turn triggers (circle 8) the creation of
Confirmation, which flows (circle 9) to layer n.

Figure 4 is certainly more complete than the
sketch of Figure 2. It represents what we call a
conceptual map that can provide a base for
identifying “protocolization” crossing points (the
four dotted ovals in Figure 4, which are roughly
sketched by the four thick arrows in Figure 2).

 “Protocolization” points are important for building
“rules of transferring”, but also, “rules of
communication” need identification of creation
points since the language and formatting of the
“units of information” are decided at these points.
FM-based description draws the entire lifecycle of
these units that are to be shipped out or obtained
from different spheres. The methodology portrays
whole supply chains ready to embrace all types of
rules of communication or otherwise. Along with
basic drawing items such as arrows and
flowsystems, we can also superimpose other tools
such as timing and synchronization, logic (e.g.,
AND, OR), and so forth that can be borrowed from
current diagrammatic methods.

3. SPHERES AND SUB-SPHERES

Teraoka et al. [21] also introduced Abstract
Entity (AE) to “achieve link independency of the
link indications” in addition to the Protocol Entity
(PE) that processes a specific protocol used in the
conventional protocol-layering model (see Figure
5) showing AEs and PEs using primitives.
Conceptually, this introduces the notion of
“entities” in layers. Figure 6 shows the FM
description that includes two AEs. Multiple levels
can appear in such type of modeling.

Create Release Transfer Transfer

Process

Create Release

Transfer
Accept

Arrive

Create

Release Transfer

Transfer

Process

Request

Request Indication

Indication

Response
Create Release

Transfer Confirmation

Transfer

Figure 4. FM-Based Description That Corresponds To Figure 2

Confirmation

 Transfer

Process

Layer n

Receive

Response Arrive Accept

Response

Layer n-m

4

3

2

1

8

6

Receive
5

7 9

[
[
[

]
]
]

A

[
[
[

]
]
]

A

[
[
[

]
]
]

A

[
[
[

]
]
]

A

|
 |
 |

|
|
|

P

|
 |
 |

|
|
|

P

|
 |
 |

|
|
|

P

|
 |
 |

|
|
|

P

Indicatio

Request Confirm Respons

Layer n

Layer n-

Figure 5. AE And PE With Primitives (From [21])

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th May 2013. Vol. 51 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

310

4. A COMPLETE PICTURE OF PROTOCOL
OPERATION: SEQUENCE DIAGRAM
AND FINITE STATE

Hekmat, of PragSoft Corporation [7], uses a
sequence diagram and final state diagram to draw a
complete picture of the way a protocol operates.

It is worth noting the complementary nature of
sequence diagrams and state transition
diagrams. The former specifies a service
protocol from an outside observer’s point of
view, while the latter describes the same
protocol from a station’s point of view. The
two notations, combined, provide a complete
picture of how a protocol operates. (Italics
added) [7]

Figure 7(a) shows an example of a sequence

diagram for a request for connection at the network
layer [7]. A service user issues a request for a
connection to a peer service user. The service
provider sends a connection indication to the peer
service user. The peer user responds to the service
provider, confirming the cycle with the original
user.

In Figure 7(b), Hekmat [7] provides a finite state
diagram that describes the states of “a station at the
network layer”.

According to the diagram, assuming that a
station is in the idle state, if it issues a
connection request to another station, it enters
the attempting to connect state where it waits for
a connection to be confirmed, in which case it
moves to the connected state, or disconnected,
in which case it returns to the idle state. A
similar scenario applies to an incoming
connection which starts with the station
receiving a connection indication. [7]

Create Release Transfer Transfer

Process

Create Release

Transfer
Accept

Arrive

Create

Release Transfer

Transfer

Process

Request

Request Indication

Indication

Response
Create Release

Transfer Confirmation

Transfer

Figure 6. Sub-Spheres

Confirmation

 Transfer

Process

Layer n

Receive

Response Arrive Accept

Response

Layer n-m

3

Receive

AE AE

Service user Service provider Service user

N-CONNECT
request N-CONNECT

indicate

N-CONNECT
confirm

N-CONNECT
response

(a) FSM diagram

idle connected

awaiting a
connection

awaiting
to

N-CONNECT
confirm

N-CONNECT
request

N-CONNECT
indicate

N-CONNECT
response

N-CONNECT

N-CONNECT
N-CONNECT

(b) Sequence diagram

Figure 7. A Complete Picture Of Protocol Operation Using Sequence Diagram And Finite State (From [7])

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th May 2013. Vol. 51 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

311

We can argue that Figures 7 (a) and (b) do not
represent a complete picture. Additionally, the
picture is fragmented and vague. Figure 8 shows
the corresponding FM-based specification. A
request is created (circle 1), and transferred (circle
2) to the service provider, who processes the
request, triggering (circle 4) the creation of
indication. Since a user can create requests and
respond to requests from other users, the sequence
indicated in circles 1, 2, 3, and 4 from a user are
mirrored by the sequence indicated by circles A, B,
C, and D from the other user. Thus, an indication
flows to the user (circles 5 and E), causing the
creation of a response (circles 6 and G). The
response, in turn, flows to the provider (circles 7
and F) to cause the creation of a confirmation that
flows to the requester (circles 8 and I).

While Figure 8 provides a complete picture of
“how a protocol operates,” it lacks the notion of
state, which may be needed. Additionally, it is
possible to represent the service user as one sphere
since flowsystems in different users’ spheres mirror
each other.

In FM a state is a flowthing. A flowthing is a

thing that can be created, processed, released, and

transferred, arrive, and be received. “Flow” in FM
is not a mere movement in space or time; rather, it
can mean a change, a transformation in appearance
or condition. A state itself can only be created or
processed (= changed. For example, a door’s state
can be Open or Closed when it appears as a
component in a sphere. Creation, here, is a
conceptual phenomenon within a sphere and not
necessarily an ontological existence. For example,
states can be created or processed (e.g., an open
door is changed to half-open) but cannot directly
flow to other spheres.

In the example under consideration, the
modeler specifies the state’s “values” as Idle,
Waiting to connect, Waiting for connection, and
Connected. Different stages of flow in the FM
representation cause the creation of these states in
the flowsystem of states in the service user’s
sphere.

Accordingly, we redraw Figure 8 as shown in

Figure 9. We now have a sphere of one user who
plays both roles, those of requester and of one who

Create

Release

Transfer Transfer

Process

Create Release

Transfer

Accept Arrive

Create

Release

Transfer

Transfer

Process

Request

Request

Indication

Indication

Response

 Create Release Transfer Confirmation

Transfer

Figure 8. FM Description That Corresponds To The Given Example

Confirmation

Transfer

Process

Network layer

Receive

Response

Arrive

Accept

Response

Layer n-m

Receive

Service user

Transfer

Process Create

Release

Transfer

Indication Response

Receive

Transfer

Confirmation

Arrive

Accept

Create

Release

Transfer

Request

Service user

Service provider

2

3

4

5

A

B

C

D

6

E

F 7

1 G

8 I

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th May 2013. Vol. 51 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

312

responds to requests. As we did previously, we start
by creating a request (circle 1). Assuming an
original state of Idle, release of the request means
requiring transfer by the user (the state of “waiting
to connect”, circle 2). The different states are
denoted by ellipses. Note that the state’s
flowsystem in the service user’s sphere comprises a
single stage: creation.

Actual transfer of the request changes the state
to Connected (circle 3). When transfer is finished,
the state becomes “waiting for connection” (waiting
for a response) (circle 4).

The service provider may send an indication
(circle 5) that is facilitated by connection to the
user, which makes the user’s state connected (circle
6).

The user may create a response (circle 7) and
release it, changing the state to “waiting to connect”
(circle 8). Transferring the response changes the
state to “Connected” (circle 9). Transferring the
response to the provider (circle 10) causes
confirmation to be sent to the user (circle 11).

This transfer changes the state to “Connected”
(circle 12), and when this connection is finished

and confirmation arrives at the user, the state
changes to “Idle” (circle 13).

5. SIGNALING

Signaling refers to the exchange of control

information between the components of a network
in order to establish, manage, and disconnect calls
[7]. Subscriber signaling refers to the signals
exchanged between a subscriber and a local
exchange. Reference [7] gives as an example the
sequence diagram shown in Figure 10 illustrating
the signals exchanged for establishing a call
between two subscribers. The following description
is closely summarized from [7].

Assuming that initially both subscribers have
their phones on-hook, the calling subscriber sends
an off-hook signal to the local exchange by lifting
the receiver. The switch activates an audible dial
tone. The subscriber dials a number, and each
dialed digit is signaled to the local exchange.

Create Release

\

Create Release

Transfer

Accept Arrive

Transfer

Process

Request

Request

Indication

Response

 Create Release Transfer Confirmation

Transfer

Figure 9. FM Description Incorporating The Notion Of State

Confirmation

Transfer

Process Receive

Arrive Accept

Response

Service user

Transfer Process

Create Release

Transfer

Indication
Response

Receive

Service provider

 State

Transfer

Create

Waiting a connection Finish?

Connected
Idle

Waiting to connect
1

2

3

4

5

6

7

8

9

10

11

12 13

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th May 2013. Vol. 51 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

313

The local exchange applies a ringing signal to the
called subscriber’s loop. When the called subscriber
lifts the receiver, this causes the local exchange to
stop the ringing, and it is propagated back to the
calling subscriber which in turn stops the ring tone.
Then the two parties connect, and they may engage
in conversation. Either subscriber can terminate the
call by pressing the hook switch.

Still, the sequence diagram is sketchy and
contains many “narrating” gaps that appear as
discontinuity in the succession of events. Take, for
example, RING and its consequences: OFF-HOOK.
There are many threads that are missing here.
Ringing involves the following sequence:

- The network sends a ringing signal
- The ringing signal leads to the following

alternatives:
• If the hook is Off, busy signals are

sent to the network to arrive at the
calling subscriber and activate a busy
sound

• If the hook is On, a ringing sound is
activated that stops when the hook is
lifted, which in turn triggers
conversation

By contrast, the FM representation is characterized
by continuity of different threads, making it
possible to have a tight series of superimposed
protocol rules.

Figure 11 shows an FM-based model of this
subscriber signaling scenario. It starts at the top left
corner when the hook is lifted off (circle 1). This
triggers the creation of an off signal (circle 2) that
flows to the network, The signal is processed (circle
3) and triggers the creation of a dial signal (circle
4). The dial signal flows to the calling subscriber,
where it is processed (circle 5) to trigger the dialing
sound (circle 6).

At this point, we expect the user to dial numbers
(circle 7) that are transferred to the network (circle
9), where the called telephone number is processed
to trigger (circle 10) ringing that is transferred to
the called subscriber, where it is processed (circle
12). Then, according to the state of the hook, we
expect the following:
- The hook is off (circle 13), hence a busy signal is
created and sent to the network, then to the calling
subscriber (circle 15) to trigger a busy sound (circle
16).

calling

telephone network called subscriber

OFF-HOOK

DIAL-TONE

DAIL-NUMBER

RING-TONE

RING

OFF-HOOK

STOP-RING-

STOP-RING

ON-HOOK DISCONNECT

Conversation period

Figure 10. Sample Subscriber Signaling Scenario (From [7])

ON-HOOK

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th May 2013. Vol. 51 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

314

- The hook is on (circle 17), when a ringing sound
is activated (circle 18), and simultaneously, a
conversation is created when the hook is lifted
(circle 19). Notice that for simplicity’s sake we
have repeated drawing OFF in the Hook state. Also,
we have removed the name of the stage since it is
understood from previous discussion. Additionally,
we represent the sphere and the flowsystem by one
box when there is only one flowsystem in the
sphere.

The conversation flowsystems (circles 19, 20,
and 21) in the three spheres of calling subscriber,
called subscriber, and network are bi-directional in
their flows. The conversation continues until one of
the two subscribers hangs up (ON) (circles 22 and
23). In this case, an On signal triggers Hook ON on
the other side.

Here we can modify this such that the ON signal
triggers the generation of a sound on the other side.

It may be mentioned in this context that such
FM representation is characterized by complexity.
Nevertheless, it is a complexity of completeness of
details that is specified in a systematic way. It is
analogous to the complexity of electrical schematic
circuits.

6. CONCLUSION

This paper proposes a diagrammatic
methodology for protocol specification. Currently,
several notations are utilized in the specification of
protocols, including different types of diagrams
such as flowchart-like depictions, UML sequence
diagrams, and state transition diagrams. The new
flowthing model presents a conceptual and

OFF

ON

HOOK state

 Off signal
Create Release Transfer

 Off signal
Process Receive Transfer

 Dial signal
Create Release Transfer

 Dial signal
Process Receive Transfer

 Sound
Process:
generate
sound

 Numbers

Create
Release Transfer

 Numbers
Process Receive Transfer

 Ringing signal
Create Release Transfer

 Ringing
signal

Process

Receive
Transfer

 OFF

ON

HOOK
state

Busy
signal

Release
Transfer

 Conversation
Create Release Transfer

 Conversation
 Create Release Transfer

OFF

ON

HOOK state

On

signal
Create Release Transfer

Conversation

Create

Release
Transfer

Receive

 On
signal

Process Receive Transfer
 On signal

 Process Receive Transfer

 Busy signal

Release
Transfer

Receive

 Busy signal

Process Receive Transfer

1

2 3

4

5

6 7

8 9

11

12

13

14 15

Calling subscriber Called subscriber

Telephone network

 ON

HOOK state

Create Release
Receive Process

16

19

22

21
20

18

17

 Ringing Sound
Process:

ON
OFF

OFF

23

Figure 11. FM Representation Of The Subscriber Signaling Scenario

http://www.jatit.org/

Journal of Theoretical and Applied Information Technology
 20th May 2013. Vol. 51 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

315

complete description of basic streams of flow
among entities and stages including “crossing
points” that need rules of data transfer. The
resultant specification is a map over which a
protocol can be superimposed. Several examples
have shown the viability of the model as a tool that
can be supplemented by other notations of logical
connection and synchronization. Further research
could experiment with applying the proposed
representation to specific protocols.

REFERENCES:

[1] Pallapa, V. (2012). Introduction to Basics of

Communication Protocol, Department of
Electrical Communication Engineering, Indian
Institute of Science, 2012 (access).
http://pet.ece.iisc.ernet.in/course/E2223/Cha1.p
df

[2] Stallings, W. (1994). Data and Computer
Communications, 4th edition, MacMillan, 1994.

[3] Pärssinen, J., Turunen, M., Heinonen, J., von
Knorring, N., Kvist A., and Jäppinen, P. (1999).
Protocol Engineering Concepts and Patterns
using UML, 25 November 1999.
http://edu.pegax.com/lib/exe/fetch.php?media=c
sa:pecp-uml.pdf

[4] Tanenbaum, A. S. (1989). Computer Networks,
2nd edition, Prentice-Hall International, 1989.

[5] ITU-T, Information Technology - Open Systems
Interconnection - Basic Reference Model: The
Basic Model, Recommendation X.200, ITU,
1994.

[6] Dostálek L., and Kabelová, A. (2007).
Understanding TCP/IP: A Clear and
Comprehensive Guide to TCP/IP Protocols,
Packt Publishing, 2007.

[7] Hekmat, S. (2005). Communication Networks,
PragSoft Corporation, 2005.
http://78.159.163.139:9205/1496EDD13DBE13
0BE31FD1336A62C4E5DF51A2FD773580F06
CA13A8327E8D022D2F222DE0C158FAA3C3
2F4A40/www.pragsoft.com/books/CommNetw
ork.pdf

[8] Parziale, L., Britt, D. T., Davis, C., Forrester, J.,
Liu, W., Matthews C., and Rosselot, N. (2006).
TCP/IP Tutorial and Technical Overview,
Eighth Edition, IBM, December 2006.
http://www.redbooks.ibm.com/redbooks/pdfs/g
g243376.pdf

[9] Simoneau, P. (2011). The TCP/IP and OSI
Models, Global Knowledge, White Papers, 25
February 2011.

http://www.globalknowledge.com/training/whit
epaperdetail.asp?pageid=502&wpid=825&coun
try=United+States

[10] Kazierok, C. M. (2004). The TCP/IP Guide -
Version 2.0, 2004.
http://www.tcpipguide.com/TCPIPGuide_2-
0_s2.pdf

[11] Kazierok, C. M. (2005). The TCP/IP Guide
Version 3.0, 20 September 2005.
http://www.tcpipguide.com/free/t_NetworkLaye
rLayer3.htm

[12] The Computer Technology Documentation
Project, Network Layers.
http://www.comptechdoc.org/independent/netw
orking/protocol/protlayers.html

[13] OmniSecu.com, TCP/IP Encapsulation and
Decapsulation.
http://www.omnisecu.com/tcpip/tcpip-
encapsulation-decapsulation.htm

[14] Wetteroth, D. (2011). OSI Reference Model for
Telecommunications, McGraw-Hill, 2011.

[15] Networking in IPV6, IPV4, Switching, Routing,
IPV6Araea.com, 2011.
http://www.ipv6area.com/2011/12/what-is-
tcpip-layers-and-architecture.html

[16] Kaliappan P. S., and Koenig, H. (2011). “An
Approach to Synchronize UML-Based Design
Components for Model-Driven Protocol
Development”, 2011 IEEE 34th Software
Engineering Workshop, Limerick, Ireland, 20-
21 June, pp. 27-35. ISBN: 978-0-7695-4627-8

[17] Smith,S., Beaulieu A. and Phillips, W. G.
(2011). “Modeling and Verifying Security
Protocols using UML 2”, IEEE International
Systems Conference (SysCon), 4-7 April 2011,
pp. 72-79.

[18] Teraoka, F., Gogo, K., Mitsuya, K., Shibui R.,
and Mitani, K. (2007). Unified L2 Abstractions
for L3-Driven Fast Handover, IRTF MobOpts
RG, Internet-Draft, 2007,
http://tools.ietf.org/id/draft-irtf-mobopts-l2-
abstractions-02.txt

[19] IEEE, "802.11-2007 IEEE Standard for
LAN/MAN – Specific requirements Part 11:
Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications",
2007.

[20] IEEE, "802.3, 2000 EDITION ISO/IEC 8802-
3:2000 (E) Information Technology -
LAN/MAN - Part 3: Carrier Sense Multiple
Access with Collision Detection (CSMA/CD)
Access Method and Physical Layer
Specifications", 2000.

http://www.jatit.org/
http://pet.ece.iisc.ernet.in/course/E2223/Cha1.pdf
http://pet.ece.iisc.ernet.in/course/E2223/Cha1.pdf
http://edu.pegax.com/lib/exe/fetch.php?media=csa:pecp-uml.pdf
http://edu.pegax.com/lib/exe/fetch.php?media=csa:pecp-uml.pdf
http://78.159.163.139:9205/1496EDD13DBE130BE31FD1336A62C4E5DF51A2FD773580F06CA13A8327E8D022D2F222DE0C158FAA3C32F4A40/www.pragsoft.com/books/CommNetwork.pdf
http://78.159.163.139:9205/1496EDD13DBE130BE31FD1336A62C4E5DF51A2FD773580F06CA13A8327E8D022D2F222DE0C158FAA3C32F4A40/www.pragsoft.com/books/CommNetwork.pdf
http://78.159.163.139:9205/1496EDD13DBE130BE31FD1336A62C4E5DF51A2FD773580F06CA13A8327E8D022D2F222DE0C158FAA3C32F4A40/www.pragsoft.com/books/CommNetwork.pdf
http://78.159.163.139:9205/1496EDD13DBE130BE31FD1336A62C4E5DF51A2FD773580F06CA13A8327E8D022D2F222DE0C158FAA3C32F4A40/www.pragsoft.com/books/CommNetwork.pdf
http://78.159.163.139:9205/1496EDD13DBE130BE31FD1336A62C4E5DF51A2FD773580F06CA13A8327E8D022D2F222DE0C158FAA3C32F4A40/www.pragsoft.com/books/CommNetwork.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/gg243376.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/gg243376.pdf
http://www.globalknowledge.com/training/whitepaperdetail.asp?pageid=502&wpid=825&country=United+States
http://www.globalknowledge.com/training/whitepaperdetail.asp?pageid=502&wpid=825&country=United+States
http://www.globalknowledge.com/training/whitepaperdetail.asp?pageid=502&wpid=825&country=United+States
http://www.tcpipguide.com/TCPIPGuide_2-0_s2.pdf
http://www.tcpipguide.com/TCPIPGuide_2-0_s2.pdf
http://www.tcpipguide.com/free/t_NetworkLayerLayer3.htm
http://www.tcpipguide.com/free/t_NetworkLayerLayer3.htm
http://www.comptechdoc.org/independent/networking/protocol/protlayers.html
http://www.comptechdoc.org/independent/networking/protocol/protlayers.html
http://www.omnisecu.com/tcpip/tcpip-encapsulation-decapsulation.htm
http://www.omnisecu.com/tcpip/tcpip-encapsulation-decapsulation.htm
http://www.ipv6area.com/2011/12/what-is-tcpip-layers-and-architecture.html
http://www.ipv6area.com/2011/12/what-is-tcpip-layers-and-architecture.html

Journal of Theoretical and Applied Information Technology
 20th May 2013. Vol. 51 No.2

© 2005 - 2013 JATIT & LLS. All rights reserved.

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

316

[21] Teraoka, F., Gogo, K., Mitsuya, K., Shibui R.,
and Mitani, K. (2008). Unified L2 Abstractions
for L3-Driven Fast Handover, IRTF MobOpts
RG, Internet-Draft, 2008.
http://www.citeulike.org/user/shtrom/article/950
0320

[22] Teraoka, F., Gogo, K., Mitsuya, K., Shibui R.,
and Mitani, K. (2007). Unified L2 Abstractions
for L3-Driven Fast Handover, IRTF MobOpts
RG, Internet-Draft, 2007.
http://www.ietf.org/proceedings/67/slides/Mob
Opts-6.pdf

[23] Al-Fedaghi, S. (2008). “Scrutinizing the Rule:
Privacy Realization in HIPAA”, Int. J.
Healthcare Inf. Syst. Informatics (IJHISI), Vol.
3, No. 2, 2008.

[24] Al-Fedaghi, S. (2008). “Software Engineering
Interpretation of Information Processing
Regulations,” IEEE 32nd Annual International
Computer Software and Applications
Conference (IEEE COMPSAC 2008), Turku,
Finland, 28 July–1 August 2008.

[25] Al-Fedaghi, S. (2009). “Flow Based
Description of Conceptual and Design Levels,”
Proceedings of the IEEE International
Conference on Computer Engineering and
Technology, Singapore, 22–24 January, Vol. 1,
pp. 16-20, 2009.

[26] Al-Fedaghi, S. (2008). “Systems of Things that
Flow,” Proceedings of the 52nd Annual Meeting
of the International Society for Systems
Sciences (ISSS 2008), University of Wisconsin,
Madison, USA, 13–18 July 2008.

[27] Al-Fedaghi, S. (2012). “Conceptual Framework
For Recursion In Computer Programming",
Journal of Theoretical and Applied Information
Technology, Vol. 46 No. 2, 2012.

http://www.jatit.org/
http://www.citeulike.org/user/shtrom/article/9500320
http://www.citeulike.org/user/shtrom/article/9500320
http://www.ietf.org/proceedings/67/slides/MobOpts-6.pdf
http://www.ietf.org/proceedings/67/slides/MobOpts-6.pdf

	1SABAH AL-FEDAGHI, 2ALAA AL-SAQA

