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ABSTRACT 
 

Accurate assessment of brain tumor severity plays a pivotal role in effective diagnosis and treatment 
planning. In this research, a comprehensive framework for brain tumor severity analysis is proposed, 
leveraging advanced preprocessing, segmentation, feature extraction and deep learning techniques. The 
preprocessing phase employs an adaptive bilateral filter to mitigate noise and enhance image quality. 
Subsequently, a segmentation approach utilizing slap swarm boosted rough fuzzy c-means optimally 
partitions the brain images, facilitating precise tumor localization. Feature extraction is performed using 
Mayfly optimization driven 3D Convolution Neural Network (MO-3DCNN), effectively capturing 
discriminative information from the segmented regions. The core innovation of this research lies in the 
development of a novel MO-3DCNN model, driven by the Mayfly optimization-derived features. This 
model enables a more comprehensive analysis by considering the spatial context of the brain tumor. The 
proposed MO-3DCNN model is trained to recognize intricate patterns within the segmented regions, 
enabling automated severity classification. Extensive experiments on a diverse dataset determine the 
superiority of the proposed methodology over existing approaches. Moreover, the proposed MO-3DCNN 
model outperforms in accurately stratifying brain tumor severity, highlighting its potential as a valuable 
clinical tool. 

Keywords: Convolution Neural Network, Rough Fuzzy C-Means, Slaps Swarm Optimization, Mayfly 
Optimization, And Adaptive Bilateral Filter. 

 
1. INTRODUCTION  
 

This guide provides details to assist authors in 
preparing a paper for publication in jatit so that 
there is a consistency among papers. These 
instructions give guidance on layout, style, 
illustrations and references and serve as a model 
for authors to emulate. Please follow these 
specifications closely as papers which do not 
meet the standards laid down, will not be 
published. 

Brain tumor are abnormal growths of cells 
within the brain, which can be either benign (non-
cancerous) or malignant (cancerous). Their 
uncontrolled growth and potential invasion of 
surrounding brain tissue pose significant health 
risks and may lead to life-threatening conditions 

[1]. There are two major level of brain tumor, 
they are primary and secondary level. Primary 
brain tumor involves benign or malignant stage 
and can be occurs in children. It originates from 
the neurons comprising the nervous system [2]. A 
secondary brain tumor, also referred to as 
metastatic, originates from cells in any part of the 
body that can spread from one region to another 
[3]. With this seriousness, diagnosis for 
identifying of brain tumor is essential at earlier 
stage for avoiding threats. Early detection of brain 
and accurate assessment of their severity play a 
pivotal role in determining the most appropriate 
treatment strategies, optimizing patient outcomes, 
and improving the overall quality of life for 
affected individuals [4]. Over the years, advances 
in medical imaging, computational techniques, 
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and artificial intelligence have revolutionized the 
field of brain tumor detection and severity 
analysis. Non-invasive imaging modalities such 
as Computed Tomography (CT), Magnetic 
Resonance Imaging (MRI), Positron Emission 
Tomography (PET), and functional imaging 
techniques, provide detailed insights into brain 
structures and pathological changes associated 
with brain. These imaging modalities, combined 
with sophisticated computational algorithms, 
facilitate the identification, localization, and 
characterization of brain with increased accuracy 
and precision [5].  

Severity analysis of brain tumor is equally 
crucial, as it enables healthcare professionals to 
determine the tumor’s aggressiveness, infiltration 
into critical brain regions, and potential impact on 
neurological functions [6]. Accurate severity 
assessment aids in the selection of appropriate 
treatment strategies, ranging from surgical 
resection, radiation therapy, and chemotherapy to 
targeted therapies and immunotherapies. The 
ability to tailor treatment plans based on the 
tumor’s specific characteristics contributes to 
more personalized and effective patient care [7]. 
Moreover, the emergence of artificial intelligence 
(AI) and machine learning techniques has further 
propelled the field of brain tumor detection and 
severity analysis. AI-driven algorithms, 
particularly deep learning models, demonstrate 
remarkable capabilities in automating tumor 
segmentation, classification, and predicting 
patient outcomes [8]. These AI-powered tools 
assist radiologists and clinicians in making more 
informed decisions, reducing diagnostic time, and 
enhancing overall diagnostic accuracy. However, 
challenges persist in brain tumor detection and 
severity analysis [9]. The complexity of brain 
tumor behaviour, inter-tumor heterogeneity, and 
the need for comprehensive multi-modal analysis 
require ongoing research and collaboration 
between medical experts, researchers, and 
technologists. In this context, this research aims 
to explore the latest advancements, 
methodologies, and novel approaches in brain 
tumor detection and severity analysis [10]. By 
delving into the existing literature, evaluating 
cutting-edge technologies, this study endeavours 
to contribute to the ever-evolving field of medical 
community, ultimately benefiting patients and 
advancing medical knowledge for improved brain 
tumor management.  

In recent years, there has been a growing 
interest in developing advanced 3D imaging 
techniques for brain tumor severity analysis [11]. 

These techniques enable a more comprehensive 
evaluation of tumor characteristics, including 
size, shape, location, and infiltration into 
surrounding brain tissue [12]. By providing a 
more accurate representation of tumor 
morphology and spatial relationships, 3D based 
deep learning techniques can offer valuable 
insights into tumor behaviour and prognosis. One 
approach to 3D brain tumor severity analysis is 
the utilization of volumetric imaging modalities, 
such as volumetric MRI. These techniques 
acquire a series of images that cover the entire 
tumor volume, allowing for a more detailed 
assessment of tumor size and growth patterns 
[13]. Volumetric imaging also facilitates the 
visualization of tumor heterogeneity, which can 
be an important indicator of tumor 
aggressiveness. In addition to volumetric 
imaging, advanced image processing and analysis 
techniques have been developed to extract 
quantitative features from brain tumor images 
[14]. These features include texture analysis, 
shape analysis, and intensity-based 
measurements, which can provide valuable 
information about tumor characteristics and 
behaviour. Deep learning algorithms can then be 
employed to integrate these features and develop 
predictive models for tumor severity assessment 
[15]. The primary contributions and innovative 
aspects of the proposed method are as follows: 
The method incorporates a novel pre-processing 
step utilizing an adaptive bilateral filter. The 
adaptive bilateral filter ensures an optimal 
balance between smoothing and edge 
preservation, preparing the input data for more 
effective subsequent analysis. 
The proposed method introduces an innovative 
approach to image segmentation using Rough 
Fuzzy C-Means (RFCM) with centroid 
optimization facilitated by Slap Swarm 
Optimization (SSO). This combination optimizes 
the clustering process, leading to more accurate 
and robust segmentation of brain tumor regions.  
The method employs a unique optimization 
strategy for hyper parameter tuning in the 
3DCNN architecture using Mayfly Optimization 
(MO). This adaptive optimization technique 
enhances the performance of the 3DCNN by 
efficiently exploring the hyper parameter space. 
By leveraging the mayfly algorithm, the proposed 
method achieves superior model configurations, 
resulting in enhanced accuracy in brain tumor 
detection and severity prediction. 

The manuscript is structured as follows: 
Section 2 provides a detailed literature review, 
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while Section 3 illustrates the research gap. 
Section 4 briefly outlines the proposed research 
methodology. Subsequent sections elaborate on 
the dataset description and experimental results. 
The final section presents the conclusion. 

2. LITERATURE REVIEW 

According to ongoing research, automated 
computerized methods for determining the 
presence and severity of brain tumor present a 
number of difficulties. The challenges were from 
the changing tumor shape, size, location of the 
lesion, in-time examination of the lesion site, and 
varied images from scanning techniques. 
Additionally, only a small number of studies 
employing 3D methods to diagnose brain tumor 
have been conducted. This section reviews a 
number of previous studies while outlining each 
one's particular technical limitations, which 
served as the motivation for creating a new 
method for analysing severity of brain. 

In the year 2020, Harish et al. [20] have 
described a deep learning method for identifying 
and categorizing brain MRIs. For the purpose of 
detecting brain, they created the Enhanced Faster 
Region-based Convolutional Neural Network 
(Enhanced Faster R-CNN). An "optimization-
based edge detection approach using genetic 
algorithm" has been studied by Abdel et al. 
Simple images are examined in the training 
dataset using edge features to obtain the best 
thresholding features and filter coefficients. Its 
primary use is to locate the borders of the brain 
tumor regions, and the Balance Contrast 
Enhancement (BCE) model was used to extract 
features from the brain picture in order to 
describe the image properties. Additionally, the 
edge detection technique was used; however, it 
did not improve the performance of the proposed 
solution in terms of metrics. A brain metastasis 
identification method has been developed by E. 
Dikici etal.[23]using a single-sequence 
gadolinium-enhanced T1-weighted 3D MRI 
dataset. The approach that was given was solely 
concerned with finding very small lesion areas—
less than 15 millimetres—and it required several 
steps to get there. It then moves on to selecting 
the candidate region using a Laplacian-based 
Gaussian approach, and iteratively moves on to 
the detection phase using a clipped region of 
interest and trained three-dimensional 
Convolutional Neural Network. Data 
augmentation was handled through a pipeline 
method with an elastic deformation and gamma 

correction step due to the inefficiency of the input 
source. This in turn makes the output layer's 
environment noisier. Furthermore, Dandil et al 
[22] investigated deep neural network-based 
binary classification for brain. Bidirectional Long 
Short-Term Memory (Bi-LSTM) and Long Short-
Term Memory (LSTM) over stacked model were 
both used to support the deep learning network. 
Signals are monitored and processed from the 
areas of brain tissue with the goal of finding 
brain. The resulting number of signal dataset is 
used for both the training and testing phases of 
the LSTM framework. 

The Introduction and Literature Review to 
appropriate and emphasize our contributions. 
Prior research has conducted noise reduction 
using bilateral filtering, fuzzy C-means for 
segmentation, and used CNN-based models for 
the classification, but they usually omit adaptive 
preprocessing, stable high-dimensional clustering, 
and using optimum deep learning with respects 
severity analysis. In this study, we focus on 
closing these gaps by adding adaptive bilateral 
filtering, slap swarm-boosted rough fuzzy C-
means segmentation, and finally a Mayfly 
Optimization 3D CNN into a unified framework, 
which attained 98.48% accuracy and surpassed 
state-of-the-art approaches regarding the 
generated image quality and classification 
metrics. In this way we aim to provide a 
contribution to the implementation of automated 
brain tumor severity analysis. 

In the year 2021, Sharif et al. [16] have 
undertaken a pioneering effort in the domain of 
brain tumor analysis by introducing a novel 
approach that combines a pre-trained Deep 
Learning model, feature selection techniques, and 
advanced classification methodologies. Their 
study focuses on leveraging the potential of the 
Densenet201 Pre-Trained Deep Learning Model 
for brain tumor analysis. In doing so, they address 
the challenge of imbalanced data learning through 
a deep transfer learning paradigm. Entropy–
Kurtosis-based High Feature Values (EKbHFV) 
was presented in this study. This approach selects 
features that exhibit high entropy and kurtosis 
values, thereby prioritizing those characteristics 
that demonstrate significant variations within the 
dataset. Then a modified genetic algorithm 
(MGA) rooted in met heuristics was developed. 
The MGA aims to identify the most relevant 
features for classification through a process of 
evolution-inspired optimization. The research 
analysed by Gurunathan et al. [17] delves into the 
realm of brain tumor detection and segmentation, 
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employing a multi-faceted methodology that 
combines data augmentation, Convolutional 
neural networks (CNNs), and morphological-
based segmentation. The objective of their study 
is to enhance the accuracy and precision of brain 
tumor analysis using a comprehensive approach. 
Data augmentation takes centre stage as a pre-
processing technique, augmenting the available 
brain MRI images to expand the diversity of the 
dataset. An intriguing advancement within this 
research involves the further classification of 
segmented tumor regions into "Mild" and 
"Severe" cases. This classification process, again 
leveraging CNN architecture, refines the analysis 
by categorizing tumors based on their severity, 
thereby aiding in clinical decision-making. The 
work by Khan et al. [18] stands as a significant 
contribution to the field of brain tumor 
classification, harnessing the capabilities of deep 
learning and MRI data analysis to provide 
valuable assistance to medical practitioners. Their 
proposed approach constitutes a multi-phased 
methodology designed to enhance accuracy in 
brain tumor classification, ultimately aiding 
clinicians in making informed decisions. The 
recommended methodology is divided into three 
key phases, each playing a critical role in the 
overall process. The first phase encompasses 
preprocessing, which involves preparing the MRI 
data for subsequent analysis. In the second phase, 
brain tumor segmentation is executed using the k-
means clustering technique. This approach 
identifies distinct clusters within the MRI data, 
allowing the isolation of tumor regions from 
healthy brain tissue. Finally, the classification 
task is facilitated through the utilization of a 
finetuned VGG19 model. 

In the year 2022, Aamir et al. [19] presented an 
automated approach for detecting brain cancers 
using MRI. The process begins with pre-
processing brain MRI images to enhance visual 
clarity. Subsequently, two pre-trained deep 
learning models are employed to extract 
meaningful features from the images. The 
obtained feature vectors are merged into a hybrid 
feature vector using the partial least squares 
(PLS) approach. Finally, agglomerative clustering 
is applied to pinpoint the primary tumor areas. 
These suggestions are then sized and sized 
aligned before being sent to the head network for 
categorization. For the purpose of detecting brain 
tumors using MR images, Rammurthy et al. [21] 
present the Whale Harris Hawks optimization 
(WHHO) optimization-driven method. Here, 
segmentation is carried out via rough set theory 

and cellular automata. Additionally, the segments' 
features—such as tumor size, Local Optical 
Oriented Pattern (LOOP), Mean, Variance, and 
Kurtosis—are retrieved. Additionally, deep 
Convolutional neural networks (DeepCNN), 
whose training is carried out using suggested 
WHHO, are used to identify brain tumors. Whale 
optimization algorithm (WOA) and Harris hawks 
optimization (HHO) algorithm integration was 
used to create the suggested WHHO. 

The accurate assessment of brain tumors 
remains a problem due to weaknesses in 
segmentation robustness, feature optimization, 
and 3D spatial information. This study develops 
an overall approach to brain tumor classification 
by implementing adaptive pre-processing, slap 
swarm boosted rough fuzzy c-means 
segmentation and Mayfly optimization-driven 3D 
CNN (MO-3DCNN) to properly classify severity. 
This study seeks to answer several key questions 
on how to improve MRI quality, optimize 
segmentation processes and increase the 
performance of CNN based image classification 
to yield detailed and precise classification of 
brain tumor severity class. 

The research protocol for this study was a 
combination of established methods in medical 
image processing and brain tumor analysis. When 
we reference the former, we cluster prior studies 
on noise reduction and skull stripping (Ismael & 
Abdel-Qader, 2018; Menze et al., 2015) and 
apply an adaptive bilateral filter that removes 
noise from an MR image while retaining the 
tumor borders. When we refer to segmentation, 
we apply methods that we took inspiration from 
classical clustering approaches such as fuzzy c-
means (Pham et al., 2000) and swarm intelligence 
methods such as clustering outlined in (Kennedy 
& Eberhart, 1995; Mafarja et al., 2020). We 
employed a slap swarm-boosted rough fuzzy c-
means method to cluster voxel contain tumor 
tissue, which gave us better object colony and 
distant estimates of tumor delineation as can be 
observed by our empirical analysis. We adopted a 
clear solution to stiffness of traditional CNN-
based classification (Pereira et al., 2016; 
Kamnitsas et al., 2017) and incorporated Mayfly 
Optimization (Zervoudakis & Tsafarakis, 2020) 
hyperparameter tuning of a 3D CNN that 
provided higher accuracy of extracted features 
and severity classifications of brain tumor from 
MRIs. We validated our protocol with a 
completely open representation of our research 
protocol utilizing the BRATS 2020 dataset in 



 
 Journal of Theoretical and Applied Information Technology 

30th September 2025. Vol.103. No.18 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7328 

 

alignment with previous benchmarking efforts 
such as the BRATS 2015 study (Menze et al., 
2015), with the aim facilitating trustworthy state-
of-the-art comparisons of our framework against 
existing studies. Our protocol utilizes noise-
reduced preprocessing, swarm intelligence in 
segmentation, and optimization in deep learning 
in one complete pipeline. The protocols advance 
our automated severity analysis of brain tumors 
study more thoroughly and address development 
needs in the existing literature. 

3. RESEARCH METHODOLOGY 

In recent years, the application of deep learning 
techniques, particularly Convolutional Neural 
Networks (CNNs), has revolutionized medical 
image analysis. Among these, 3D Convolutional 
Neural Networks (3DCNNs) stand out for their 
capacity to effectively capture spatial information 
within volumetric data, such as MRI scans. This 
research proposes a methodology that harnesses 
the power of 3DCNNs to automate the analysis of 
brain tumor severity through MRI scans. The 
primary objective of this study is to develop a 
robust and accurate model capable of categorizing 
brain tumors into different severity levels based 
on 3D MRI data. By leveraging deep learning 
techniques, this methodology seeks to enhance 
the efficiency and reliability of tumor severity 
assessment, thereby contributing to improved 
patient care. Through the implementation of this 
methodology, we Endeavour to offer a novel 
approach to brain tumor severity analysis, 
demonstrating the capabilities of MO-3DCNNs in 
the realm of medical image analysis. By 
automating and enhancing the accuracy of tumor 
severity assessment, we aspire to contribute 
significantly to the field of neuroimaging and 
pave the way for more effective and timely 
interventions for patients with brain tumors. The 
layout of the proposed methodology is 
diagrammatically shown in figure 1: The brain 
MRI input undergoes a pre-processing stage, 
during which the adaptive bilateral filter is 
employed to enhance image quality. The disease-
dominant area is then segmented using the slap 
swarm boosted rough fuzzy c-means algorithm. 
Subsequently, the feature extraction module 
operates, utilizing the MO-3DCNN architecture. 
This module plays a crucial role in classifying 
distinct severity levels of brain tumors. 

Fig 1: Overall layout of the proposed Methodology for 
brain tumor severity analysis 
The implementation of our proposed method 
takes place within the Python platform, and its 
performance is evaluated through comprehensive 
comparisons against established methodologies. 
Enhancing Image Quality using Adaptive 
Bilateral Filter 

The precision of medical diagnoses and 
analyses greatly depends on the quality of brain 
imaging. Within the scope of our presented 
methodology, our objective is to elevate the 
ability of brain images through the 
implementation of an adaptive bilateral filtering 
approach. By adopting this method, we can 
effectively diminish noise interference, all the 
while conserving crucial image intricacies. This 
interaction results in discriminating image 
quality, consequently paving the way for more 
precise medical interpretations. Distinguishing 
itself from conventional bilateral filters that 
adhere to fixed kernel parameters, the adaptive 
bilateral filter embraces a dynamic parameter 
adjustment mechanism, guided by the local 
characteristics of the image. The mathematical 
expression of our proposed adaptive bilateral 
model is elucidated in the following Equation (1). 

(1) 

Here the symbol  designates the 

normalized vector, while  and delineate the 
spatial dimension of kernel function, associated 

with their respective weight value  and . 
The MRI database input image is denoted as 

. The weight values are deduced as the 
disparities between the pixel measurements, 
determined by the computation of Euclidean 
distance. Precisely, the normalized vector is 
defined in a statistical manner as follows: 



 
 Journal of Theoretical and Applied Information Technology 

30th September 2025. Vol.103. No.18 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7329 

 

 (2) 
Similarly, the filtering approach's kernel 

functions are expressed as follows:  

 (3) 

 (4) 
The Gaussian function is harnessed to augment 
the weight distribution components of the kernel, 
with scaling parameters are denoted as 

and . This specific phrase is intricately 
linked to the Gaussian function, encapsulating the 
intensity dispersion characteristics of the kernel 
function. The kernel function's weighting hinges 
on the central coordinates of the pixel value. The 
adaptive bilateral filter effectively enhances the 
quality of brain MRI images by reducing noise 
while preserving important image details. This 
leads to improved image clarity, which in turn 
facilitates more accurate medical interpretation 
and diagnosis. The adaptive nature of the filter 
allows it to dynamically adjust its parameters 
based on local image characteristics, striking a 
balance between noise reduction and edge 
preservation.  
Segmentation for Brain Tumor Severity Analysis 

In the domain of automated analysis of 
brain tumor severity, precise segmentation plays 
a pivotal role in localizing distinct cell types and 
aggregating similar cells, facilitating accurate 
assessment. The segmentation of brain MRI 
images serves as the foundational stride for 
subsequent analysis endeavours. To address this 
critical phase, we introduce an optimization-
based approach to Rough Fuzzy c-means 
segmentation [24], harnessing its capacity to 
delineate discrete regions within brain MRIs. The 
prime goal of segmentation is to partition an 
image into cohesive regions, with each region 
corresponding to a specific anatomical structure 
or cell category. The Optimization-based Rough 
Fuzzy c-means technique achieves this by 
assigning membership functions to individual 
data points according to their proximity to cluster 
centres within the image. This allocation of 
membership functions captures the inherent 
uncertainty in classifying each data point, thus 
enabling a supple representation of the image's 
content. Notably, the distance between each data 
point and the cluster centres underpins this 
membership assignment. By jointly considering 
the spatial distribution and intensity values of 
data points, the proposed approach attains a more 
comprehensive depiction of the underlying 
structures present in MRIs. This proves 

particularly beneficial in the analysis of brain 
tumor severity, where nuanced variations in 
tumor attributes demand meticulous 
segmentation. The segmentation procedure 
progressively refines cluster centres through 
iterative adjustments guided by the assigned 
membership functions. This dynamic evolution is 
symbolized mathematically as, 

         (5) 

   (6) 
The quantity of data points is labeled as 

. Let , denote the  central cluster in index 

, representing the level of fuzziness 

  The central cluster is denoted as . 

In this context, signifies the association of the 

 information with the center cluster. The 

key factor within  is the Euclidean distance 

between the  data group and the center. 
This iterative refinement process allows the 
method to capture intricate specifics and 
delineations present in MRI images. These details 
are crucial for precise cell type localization and 
subsequent severity analysis. The primary 
objective of the Rough Fuzzy C-means algorithm 
minimize is represented as 

(7) 
Consequently, the cluster centre 

determined by the Euclidean distance 

  encompasses both the and  
data points. Let's consider that the set of centers 
is composed of information point groups 

 and 

. The subsequent 
sequence outlines the stepwise procedure to be 
adhered to: 

Algorithm 1: Segmentation 
Methodology Based on Optimization 

Step 1: Initialization random number of 

cluster centers   

Step 2: Design of Rough fuzzy membership   

Step 3: Design of Rough Fuzzy Centers  
Step 4: Updating the Rough Fuzzy C-means 
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Technique through an Optimization Model 
Step 5: Replicate Steps 2 and 3 iteratively until 

reaching  or convergence condition 

otherwise       

In this context, where   signifies the iteration 

stage,   represents the termination criterion 

within the range [0, 1], ’ 
corresponds to the Rough Fuzzy membership 
matrix, and ‘J’ is the objective function. The 
concept of infinity is derived from infinite 
variance. The outlined steps are instrumental in 
the creation of a random walk pattern, utilizing a 
power-law distributed step-length scheme 
through a substantial endpoint. A subset of 
innovative solutions is generated, usually 
cantered around the most optimal solution 
identified thus far. The local search process is 
expedited to enhance speed. However, a notable 
portion of these new solutions is introduced with 
some degree of divergence in the randomization 
field, deliberately positioning them distant from 
the current best solution. This strategy ensures 
that classification occurs without becoming 
overly fixated on a local optimum. The centroid 
of the Rough Fuzzy C-means is determined by 
employing the proposed Slap swarm 
Optimization Algorithm (SSO). The optimization 
of the centroid, as depicted in equation (9), is 
accomplished through the assistance of the SSO 
method. It operates based on collective 
movement of slaps, forming swarms that 
establish interaction chains. This behavior is 
inspired by the foraging actions observed in 
swarms inhabiting the deep sea, where slaps 
interconnect with each other to enhance their 
kinetic energy acquisition in their quest for food 
sources [25]. The SSO algorithm draws 
inspiration from this swarming behavior of slaps, 
emulating the construction of slap chains. By 
creating these chains, SSO effectively addresses 
the challenge of escaping local optima problems, 
thereby ensuring a balance between exploitation 
and exploration processes. Within SSO 
algorithms, slaps are classified into two 
categories: leaders and followers. Leader slaps 
are positioned at the forefront of the chain, while 
followers adhere to the leadership and are 
referred to as chain members. The leader slap 
plays a pivotal role in guiding and influencing the 
actions of the follower crowd, promoting 
interactions among peers. The entire workflow of 
the suggested algorithm is visualized in Figure 2. 

 
Fig 2: Flow diagram of the optimization algorithm 

In an  dimensional space, the position vector of 
each slap is directed towards the exploration of its 

respective food source, denoted by ' '. In this 

context, ' ' refers to the total number of decision 
variables. The preliminary population of the SSO 

comprises of ' ' slaps, with each salp has '  

dimensions. The position vector ' ' for the salps 

is expressed as a  dimensional matrix, 
represented by the following equation: 

 (8) 
In the SSO algorithm, each slap within 

the population is directed toward a specific food 
source location. Furthermore, the leader's position 
can be expressed using the equation provided 
below. This concept is integral to the SSO 
algorithm, as it ensures that every slap in the 
population is focused on a distinct food source, 
while the leader's position, a pivotal element, is 
mathematically defined as follows: 

(9) 

In this context,  and  are random 
vectors generating values within the specified 

range of [0, 1]. The symbol  signifies the 

lower limit of the  size, while  defines the 

upper limit of the same size.  represents the 

food source position,  denotes the leader's slap 
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position, and the essential parameters of   are 
mathematically defined as follows: 

   (10) 

In this context,  denotes the 
equilibrium between the exploitation and 
exploration tendencies inherent in the SSO 

algorithm. The variable  corresponds to the 

iteration count, while  signifies the upper 
limit of iterations. Furthermore, the position of 
the follower salp can be mathematically 
expressed using the following equation: 

    (11) 

In this context,  signifies the initial 

position of the   slap in the  dimension. 
The optimization algorithm is utilized to 
determine the objective function, which is 
calculated according to equation (15). Through 
this equation, optimal centroid values are selected 
based on the principles of the SSO model. 

 (12) 
In this context, the estimation of 

centroid values is achieved through the 
application of the optimization procedure. After 

each iteration, the measure of  is adjusted and 
evaluated to determine its alignment with the 
accurate value. The iteration process concludes 
upon achieving the maximum iteration threshold. 
The efficacy of the SSO approach in dealing with 
the objective function is emphasized. The fitness 
function, as outlined in the proposed algorithm, is 
structured as follows: 

 (13) 
Hence, the SSO optimization algorithm 

is employed to minimize the objective function 
while adhering to parameter constraints. The SSO 
technique is applied to optimize the centroid 
value within the fuzzy c-means algorithm. A 
reduced objective function value indicates 
minimal variance between the data and the 
optimized result generated by the SSO algorithm. 
For a comprehensive understanding of the 
proposed SSO algorithm, the pseudo code is 
provided in Algorithm 1. 

Algorithm 1 Suggested SSO Algorithm 

for Centroid optimization 
Initiate a random population of centroid 

values for slaps 
While (termination criteria is not valid) 

do 
            Calculate the fitness value of 

each slap using (13) 
            Identify the optimal slap and 

designate it as ' ', representing the core 
parameter of the leading slap. 

            Revise the core parameters of the 
slaps using equation (9). 

For (every slap) do 

If ( ==1) then Update the leader's 
attributes using equation (9). 

Adjust all slaps' attributes based on the 
given lower and upper limits of variables. 

Validate the constraints of search agents 
according to equations (10-12). 

Return  
As outlined in Algorithm 1, the SSO 

algorithm distributes each search agent within the 
solution space in a random manner. Next, it 
evaluates the existing slap population to identify 
the predominant slap. The updating and 
application of rules are carried out using a set of 
diverse equations. The positions of slaps within 
the population are adjusted using the mentioned 
equation. The iterative process persists until the 
specified termination condition is satisfied, 
iterating through all steps excluding the initial 
phase to improve the quality of slaps. Through 
proposed algorithm, the optimization of the 
centroid's optimal value is realized. The 
algorithm is pivotal in obtaining diagnostic 
results from brain tumor images. The SSO 
algorithm facilitates the integration of rough 
fuzzy c-means and centroid optimization, driving 
the segmentation of brain tumor images. 
Subsequently, various methods are employed for 
feature extraction from the segmented images. 

Proposed brain tumor severity analysis 
using optimization driven MO-3DCNN 

Owing to the rise of brain tumor 
severity, this research addresses disease 
classification through an innovative deep learning 
approach. The proposed model showcases the 
ability to autonomously extract intrinsic features, 
resulting in a high recognition rate for diseases. 
By extending the conventional CNN framework 
with a 3D convolutional layer, improvements are 
achieved. This expansion enhances the network's 
training performance and learning capacity by 
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incorporating the 3D spatial context. The decision 
to employ a 3DCNN arises from the dynamic 
changes in features like shape, size, and position 
in MR images across different growth stages of 
tumors. This variability necessitates the 
extraction of a broader spectrum of features to 
capture the evolving disease characteristics. To 
this end, a series of convolutional layers are 
introduced in the initial layer to enlarge the 
network model's receptive field. This, in turn, 
addresses the classification model's loss function 
by employing data sampling on feature maps. The 
proposed learning model integrates Convolution, 
pooling, Rectified Linear Unit (RELU), batch 
normalization, and classification layers 
comprising fully connected, logistic, and output 
classification layers respectively. Through the 
utilization of the proposed MO-3DCNN 
framework, physicians gain the capacity to 
efficiently categorize brain disease levels without 
requiring prior expertise.  

In this network architecture, the input 
layer processes MRIs, optimally assigning biases 
and weight functions by fine-tuning weight 
parameters through an optimization model. This 
classification model operates through two phases: 
training and testing. In the training phase, 80% of 
brain MRIs is utilized, while the remaining 20% 
are reserved for the testing stage. The MO-
3DCNN encompasses an array of three-
dimensional CNNs that effectively employs a 
multifibre unit in combination with dilated 
weighted convolutions. This incorporation 
enables the extraction of feature attributes across 
various scales, catering to volumetric 
segmentation requirements. The model was 
configured with a fixed size of 128x128 and was 
complemented by a refined loss function, 
integrating both focused and generalized loss 
components. In terms of preprocessing, the MRI 
data underwent zero-padding, expanding the 
initial 240x240x155 voxel dimensions to 
240x240x160 voxels. This adjustment was made 
to accommodate a depth that could be evenly 
divided by the network architecture. Once the 
data is prepared for input, it traverses through the 
trained architecture, subsequently generating 
probability maps. These maps are then utilized by 
the architecture to obtain the final classification 
based on the provided data. The mathematical 

expression for the output value ' ' at position 

on the feature map within the 

3D convolutional layer can be represented as 
follows: 

14 

Where  denotes the element-wise 
Rectified Linear Unit function. 

 Represents the shared bias for the 

processing region in the  layer. 

 Signifies the the element of 

the 3D filter for the processing region at the 

layer, related to the mth processing region in 

the  layer. 

Corresponds to the output 
value of the mth feature map at position 

in the th 
layer. 

Tensor operations provide a simplified 
explanation for the connection between two 

neighboring layers, particularly from the  

layer to the layer, as delineated in the 
equation. 

 (15) 

Where  represents the output for the 

layer. 

 Signifies the input for the layer. 

 Denotes the activation function, operating 
element-wise on the input. 

The loss function is employed using the back 
propagation process to compute the training loss. 
In our case, we opted for the Categorical Cross-
Entropy. The primary goal is to minimize the loss 
function to effectively train the Fully 
Convolutional Network (FCN). While Stochastic 
Gradient Descent (SGD) is a common 
optimization method, it can often get stuck in 
gradient errors. Therefore, we turn to the Mayfly 
optimizer, a technique that adapts the learning 
rate. The loss function is estimated as the mean 
squared error among the predictions generated by 
a 3D-prediction CNN and the corresponding 
ground truth from the training dataset. The 
expression is provided below: 
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 (16) 

Here  stands for the trained dataset containing 

input-output pairs ,  indicates the 
component index in the efficient properties 

vector .  The optimal parameters  and  can 
be determined by minimizing the loss function or, 
equivalently, by maximizing its inverse of loss 
function (log-likelihood). 

}= (17) 
The prominent issue adopted in classifier 

algorithm is that setting of parameter values. 
Aiming this objective, MO-3DCNN parameters 
are tuned for diminishing loss function i.e., 
predicted error using Mayfly optimization 
approach.  For each image, the posterior 

probability of voxel  with label  computation 
can be written as, 

 (18) 

Here  Defines the computation property 

of MO-3DCNN model,  represents the patch 

of the the voxel and  indicates the class 
severity in terms of probability value. The loss 
function adopted in this study named weighted 
cross entropy is mathematically formulated as 
follows, 

 (19) 
The cross-entropy between the actual 

distribution  and the estimated distribution  is 

denoted as . 

In this scenario, the actual distribution  is 
identical to 1 for the ground truth class and 0 for 
all other classes. 
Optimization driven MO-3DCNN: The suggested 
methodology utilizes the mayfly optimization 
algorithm to enhance the performance of MO-
3DCNN. The result of the mayfly algorithm 
selects the optimal hyper parameter for the deep 
learning algorithm, aligning with its similarity to 
Particle Swarm Optimization (PSO) and 
leveraging the benefits of Genetic Algorithms 
(GA). Referred to as a hybrid algorithmic 
structure, the mayfly algorithm derives its name 
from the traits of mayflies and borrows 

inspiration from their social behavior, particularly 
in mating. This optimization technique 
metaphorically draws on the life cycle of 
mayflies, encompassing various stages from 
hatching to the presence of adults and robust, 
long-lived specimens. In this algorithm, the 
position of each mayfly within the search space 
represents a potential solution to the problem. 
The mayfly algorithm is conceived as a procedure 
that utilizes the life cycle characteristics of 
mayflies to formulate an advanced optimization 
approach. The sequential steps of the mayfly 
algorithm are elucidated below: The mayfly 
algorithm begins by randomly generating two 
separate sets of mayflies, identified as female and 
male mayflies. Each individual mayfly is then 
randomly placed within the search space, forming 
a candidate solution. This solution is depicted as 
a d-dimensional vector, expressed as follows: 

  (20) 
The dimensional vector is established through 

the computation of the objective function. In the 
proposed methodology, the mayfly algorithm is 
utilized to discern the optimal hyper parameters 
for the deep learning algorithm, thereby 
enhancing its performance. The fitness function 
of the system is mathematically defined as 
follows: 

  (21) 

Here,   denotes the objective function 
formulated within the MO-3DCNN process. 
Using the proposed optimization strategy, 
minimization is performed for the loss function 
adopted in the MO-3DCNN framework. The 
minimization function is carried out in the fitness 
evaluation of mayfly algorithm. Other hyper 
parameters, including the number of filters, depth 
of convolutional layers, and fully connected 
layers, are chosen through parametric tests in 
Section 4.3.1. For the training of 3D-CNN 
models, an adaptive learning rate optimization 
algorithm, Mayfly algorithm [26], is utilized. The 
mayfly velocity is characterized as the variation 
in position and is denoted as follows: 

  
   (22) 

Every mayfly displays a dynamic interplay 
between social and individual flying traits. In the 
algorithm, each mayfly modifies its flight path by 
taking into account both its current best position 
and the best position attained by other mayfly 
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characteristics. The specific attributes of mayfly 
behaviors are represented by the following 
notations: Within the algorithm, female mayflies 
demonstrate a tendency to gather around males. 
This behavior stems from their need to engage in 
breeding. They rapidly shift their positions 
towards the male mayflies to initiate the breeding 
process. The traits associated with this breeding 
behavior are indicated as follows: 

   (23) 
In this context, the alteration in the mayfly's 

position is accomplished through its velocity, 

represented as , relative to its current 

position. Here, signifies the current position 
of the female mayfly in the search space at 

time . The breeding attributes follow to certain 
constraints, denoted as follows: 

  (24) 
The process of attraction can be described as a 

stochastic progression; however, it is considered 
a deterministic process. Governed by the fitness 
function, the optimal female mayfly is attracted to 
the most suitable male counterpart. Similarly, the 
second-best male mayfly attracts the second-best 
female mayfly, and this sequential attraction 
pattern persists. For minimization problems, the 
formulation of mayfly velocity is as follows: 

(25) 

In this context,  signifies a arbitrary number 

within the interval [-1,1],  is characterized as 
the coefficient for random walk, signifying 
scenarios where a female mayfly is not drawn 
toward a male. This allows mayflies to navigate 

randomly.  Signifies the Cartesian distance 
among male and female mayflies, as defined by 

the equation.  Represents the fixed visibility 

coefficient, while  stands for the positive 

attraction constant. Additionally,   denotes the 

position of the female mayfly in dimension  at 

time . refers to the velocity of the female 

mayfly in the same dimension    and at the same 

time .Male mayflies cluster together, forming 
swarms, and their positions are modified 
according to their individual experiences as well 
as the influence of their neighboring mayflies. 

The process of updating their positions can be 
expressed in the following manner: 

  (26) 

In this context,  signifies the present 

position of the male mayfly, while  refers 
the velocity of the same male mayfly. As before, 
the breeding traits need to adhere to specific 
constraints, which are represented as follows: 

  (27) 
 The mayfly's velocity is computed using the 

equation presented below: 

(28) 

In this equation,  represents the best 

position, while '  denotes the subsequent 

best position. ,  correspond to positive 
attraction factors used to proportionally adjust the 
impact of the cognitive and social elements. The 
calculation of the next best position is executed 
using the equation provided below: 

(29) 
The calculation of the global best solution is 

determined using the formula presented below: 

(30) 

In this context,  represents the overall count 
of mayflies within the population of swarm. The 
calculation of the mayfly's distance is essential 
for determining the optimal position. The 
distance between mayflies is calculated using the 
Cartesian distance, as defined by the following 
formula: 

(31) 

In this context,   pertains to the global and 

local best positions, while  denotes to the 
current element of the mayfly. The optimal 
mayfly continually updates its velocity, and it is 
represented as follows: 

 (32) 

Where  is a arbitrary value and  represents 
the nuptial dance coefficient. Once, the 
termination criterion is attained, the optimal set of 
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hyper parameters are found and then utilized for 
the analysis of brain tumor severity level. 

4. RESULT AND DISCUSSION 

This section furnishes an elaborate depiction of 
the results obtained for our innovative proposed 
technique. The proposed methodology is 
implemented in the working platform of python.  
Upon reaching the termination criterion, the 
optimal set of hyper parameters is identified and 
subsequently employed for the analysis of brain 
tumor severity levels. In this study, MRI brain 
tumor images are gathered and subjected to a pre-
processing phase. The pre-processing helps in 
eliminating noise from the images, followed by 
the removal of the skull region. Subsequently, the 
tumor region is efficiently segmented using the 
enhanced slap swarm-boosted rough fuzzy c-
means technique. Once segmentation is 
accomplished, the extent of tumor expansion is 
classified using the MO-3DCNN approach. 
Throughout the classification, the optimal hyper 
parameter configurations are determined by 
means of the Mayfly procedure. For our analysis, 
we employed the BRATS 2020 database. The 
BRATS initiative is dedicated to assessing 
cutting-edge techniques for brain tumor 
segmentation in multimodal MRI scans. A 
selection of sample images available from the 
dataset [27] is depicted in Figure 3. 

Fig 3: Sample Input images some of the sample segmented 
outputs are illustrated below 

Fig 4: Segmentation results 

Some of the obtained segmented images for the 
brain tumor severity analysis using the proposed 
segmentation model is provided in figure 4. 
Moreover, the system's effectiveness is validated 
by comparing the evaluation metrics of the 
proposed methodology with those of existing 
approaches. These metrics are derived from the 
confusion matrix generated from the 
experimental outcomes. In this assessment, a 
variety of evaluation metrics, including 
Accuracy, Precision, Recall, and F1_score, are 
utilized. 
Accuracy:  Accuracy is determined by the ratio of 
the overall count of correctly classified severity 
brain tumor images to the overall count of 
severity brain tumor images. 

(33) 
Precision: Precision, also stated to as Positive 
Predictive Value, is defined as the proportion of 
correctly classified positive severity brain tumor 
images to the total count of brain MRI images 
that were predicted as positive for the severity 
level. 

 (34) 
Recall: Recall, also defined as Sensitivity or True 
Positive Rate, is determined as the relation of the 
correctly classified positive severity levels of 
brain MRI to the total count of positive classified 
severity levels of brain tumors. 

  (35) 
F1_Score: The F1 Score can be termed as the 
harmonic mean between recall and precision. 

(36) 
The evaluation of segmented image quality is 

conducted independently by assessing metrics 
such as Peak Signal to Noise Ratio (PSNR) and 
Mean Square Error (MSE).The Peak Signal to 
Noise Ratio (PSNR) is employed to gauge image 
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quality, and it can be mathematically expressed as 
follows: 

 (37) 

In the given equation, the Mean Square Error 
(MSE) is defined as: 

(38) 

Here,  - Original image,  -  
 
Segmented image. The construction and training 
of the MO-3DCNN framework, as well as the 
optimization of hyper parameters through 
Optimization, were implemented using Python 
code. The experiment leveraged essential Python 
packages including OpenCV, NumPy, Tensor 
Flow, Kera’s, and Matplotlib. Performance 
outcome and comparative analysis of brain tumor 
severity analysis The author employed both 
quantitative and qualitative metrics to assess the 
effectiveness of the projected technique. This 
section offers the results of the brain tumor 
severity analysis model using an adaptive 
bilateral filter, and its performance was evaluated 
using a collection of gathered images. The 
performance outcomes pertaining to the noise 
removal process, as tested with the proposed 
model, are presented and depicted. 
Table 1 presents the outcomes attained from the 
projected severity analysis model for the 
respective metrics considered. The analysis 
reveals that the introduced algorithm effectively 
performed brain tumor severity analysis, resulting 
in high-definition and efficient segmented image. 
As a result, the overall outcome indicates the 
strong performance of the presented technique 
across a range of image types. In the subsequent 
section, the performance of the classification 
method is thoroughly examined. The evaluation 
is carried out based on metrics such as accuracy, 
precision, recall, and F-measure. There is a 
noticeable enhancement in image quality 
compared to the existing technique, specifically 
the bilateral filter incorporated fuzzy c-means 
approach. The outcomes achieved with the 
proposed technique showcase enhanced 
performance compared to existing methods. The 
proposed approach manifests superior image 
quality in brain tumor segmentation as evidenced 
by the values documented in the table when 
compared to the existing method. In our proposed 
approach, we integrated the Adaptive Bilateral 

Filter and optimization-boosted rough fuzzy c-
means technique for the segmentation process, 
enabling precise feature extraction for the 
identification of each tumor affected cell in the 
input image. 
This simplifies the procedure and results in 
accurate outcomes. To show the effectiveness of 
the proposed methodology the implementation 
results is visually shown below, which illustrates 
the gradual increase and gradual decrease in the 
corresponding accuracy and loss function 
respectively. 

 

                   Fig 5. The ROC Curve  

Table 1. Comparative analysis of proposed and existing 
technique using segmentation techniques. 

    Images PSNR MSE 

 

Bilateral 
filter & 
Fuzzy 
c-means 

Adaptive 
bilateral 
filter & 
optimization 
boosted 
rough fuzzy 
c-means 

Bilateral 
filter & 
Fuzzy 
c-means 

Adaptive 
bilateral 
filter& 
optimization 
boosted 
rough fuzzy 
c-means 

24.0476 17.71 1.762 7.478 

25.2356 20.13 1.441 5.313 

24.5866 16.67 2.007 8.74 

23.743 19.51 1.433 5.37 

 
25.800 14.42 1.03 5.791 

24.3294 15.98 1.744 7.301 
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24.8194 11.26 1.747 4.279 

 
22.5803 17.79 1.743 5.713 

21.6357 15.94 1.027 3.584 

 

20.22 18.46 1.565 4.453 

The Receiver Operating Characteristic (ROC) 
curve is created by plotting the True Positive Rate 
(TPR) against the False Positive Rate (FPR). 
Figure 5 illustrates the ROC curve of the MO-
3DCNN approach proposed in this study. The 
objective is to attain a high TPR while 
maintaining a low FPR, and these two metrics are 
interconnected in the ROC curve. 

 

Fig 6: Accuracy and Loss Curve 

The accuracy and loss results for the training data 
of this network are illustrated in Fig 6. The entire 
network was trained over 100 epochs using the 
'weighted-cross entropy' as the loss function. It 
can be observed that the accuracy and loss results 
of the network stabilize after around 40 epochs, 
indicating the reliability of the network. The 
proposed approach consistently outperforms the 
existing methods, demonstrating decreased 
negative assessments and enhanced positive 
assessments. To visually demonstrate the efficacy 
of the proposed methodology, the implementation 
results of the proposed model in correspondent 
with the existing technique are presented in the 
following figures 7 to 10.  

 

Fig 7: Accuracy analysis of Brain tumor severity Study 
for Conventional and Proposed Model 

 

Fig 8: Precision outcome of Brain tumor severity 
analysis 

 

Figure 9 Outcome of recall measure for the proposed 
and existing system 
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Figure 10: Obtained F1_score for proposed and 
existing brain tumor severity model 

In our proposed brain tumor severity analysis, 
we experimented with different learning rates 
ranging from 20 to 100, and the obtained 
accuracies were 0.9648, 0.9748, 0.9548, 0.9848, 
and 0.9548 for the corresponding learning rates of 
20, 40, 50, 80, and 100, respectively. These 
results showcase the effectiveness of our 
proposed system across a range of learning rates. 
The proposed approach is compared with existing 
methods, including Stacked LSTM [22], Whale 
Harris optimization with DL [21], Faster RCNN 
[20], DL without optimization [19], Deep Neural 
Network [16], CNN [17], and Clustering with 
deep learning [18]. In the evaluation of precision, 
our proposed MO-3DCNN method demonstrated 
superior performance compared to existing 
approaches across various learning rates (20, 40, 
60, 80, 100) is shown in figure. The evaluation of 
recall for various learning rates demonstrates the 
superior performance of our proposed MO-
3DCNN method compared to existing approaches 
is shown in figure. The F1 score, which balances 
precision and recall, is a critical metric in 
evaluating the overall performance of a brain 
tumor severity analysis system. From the overall 
analysis, it seems that the proposed severity 
analysis model attains an effective outcome than 
existing techniques. 

The findings of this study are strongly aligned 
with the previously established objectives and 
they provide strong evidence of the proposed 
integrated framework for severity classification 
of brain tumors. The impact of Adaptive bilateral 
filtering on improving MRI image quality was 
substantial as the switching bilateral filtering 
method removes noise while preserving 

important detail- this improves MRI image 
quality and explains the increased PSNR and 
decreased MSE Values (Table 1). Slap swarm 
boosted rough fuzzy c-means segmentation 
provided more reliable segmentation and tumor 
localization than traditional methods, as 
illustrated in Figure 4. The Mayfly Optimization 
(MO) version of the 3D CNN achieved improved 
classification performance. This included an 
accuracy score of 0.9848 with greater precision, 
recall and F1 scores (Figures 7–10). The ROC 
analysis in Figure 5 provided further evidence of 
the model's capacity for good classification 
ability. An additional concern was testing of the 
model's robustness regarding different learning 
rate for training. The findings indicate the 
proposed MO-3DCNN framework can be 
established as a clinically usable, reliable method 
for performing better brain tumor severity 
assessment overall. This study intended to create 
a thorough schema for reliable brain tumor 
severity analysis through the complementary use 
of adaptive pre-processing, segmentation, and 
optimize deep learning, and the results reflect 
strongly on achieved ambitions. The adaptive 
bilateral filter markedly improved the quality of 
the MRI images with great improved PSNR and 
decreased MSE values, and the badger-swarm 
boosted rough fuzzy c-means segmentation 
overcame intensity in-homogeneity and clustering 
instability issues, resulting in an accurate 
localized tumor location. In addition to the 
feature extraction and classification abilities of 
Mayfly Optimized 3D CNN (MO-3DCNN), the 
model's overall accuracy of 98.48%, surpassed 
the target benchmarks, performed better than 
leading approaches like Stacked LSTM (~93%), 
Whale Harris optimized DL (~94%), and Faster 
RCNN (~95%). Limitations exist related to 
BRATS 2020 data, real time deployment of the 
Mayfly optimization cost, potential lack of 
clinical interpretability of the “black box” model; 
ultimately creating room for future studies based 
on the findings that suggest explainable AI, 
multi-institutional validation, and other 
optimization suggestions for deployment.Even 
with the successful efficacy of the proposed MO-
3DCNN framework, limitations persist, such as 
dependence on the BRATS 2020 dataset, limiting 
generalisability across a variety of clinical 
environments, additional computational costs of 
Mayfly Optimization preventing real-time use, 
and the "black box" aspect of the model moving 
clinical interpretability aside. Future work should 
work to expand to multi-institutional datasets, 
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develop more lightweight architectures to reduce 
inference time, and integrate explainable AI 
techniques to increase transparency for clinical 
adoption. 

 
5. CONCLUSION AND FUTURE 

ENHANCEMENT 
 
This research describes and provides context for 

a unique construct for brain tumor severity 
analysis through adaptive preprocessing, slap 
swarm-boosted rough fuzzy c-means 
segmentation, and the 3D Convolutional Neural 
Network (CNN) optimized using Mayfly 
optimization (MO-3DCNN), showing significant 
improvements in image quality, tumor 
localization, and severity classification compared 
to traditional techniques. The proposed 
framework achieved all proposed research aims 
and demonstrated significant potential for clinical 
translational use as a decision-support tool for 
neuro-oncologists. However, future research 
could consider the issues of broader 
benchmarking validation using multimodal 
institutional data, model interpretability through 
explainable artificial intelligence (AI), 
multimodal data, and real-time clinical use as 
outlined. The findings and methods described 
will enhance the proposed framework’s utility, 
and tackling these open issues will facilitate its 
extension further and ultimately enhance 
prognosis, treatment planning, and ultimately 
patient outcomes. 

While the proposed MO-3DCNN framework 
had meaningful performance for brain tumor 
severity assessment, some outstanding issues 
offer pathways for future research. In particular, 
the MO-3DCNN framework should be extended 
to larger multi-institutional datasets outside of 
BRATS 2020 to improve model generalization 
across varying clinical settings. Furthermore, 
development in the area of explainable artificial 
intelligence (XAI) would maximize model 
interpretability and may result in a model with 
more explainable behavior that may function as a 
clinical trial. Additional possibilities for future 
research include expansion to multimodal data - 
incorporating genetic markers, histopathology, 
and clinical data - that could broaden the 
capability of the severity assessment and scope 
for developing personalized treatment plans. The 
model might also be further optimized for clinical 
use on a wider scale and thus be extended for use 
in longitudinal analysis of tumor progression or 
response(s) to treatment(s). Finally, observational 

prospective (rather than retrospective) clinical 
trials will be paramount to establish the relevance 
and reliability of this framework in real-world 
medical. 
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