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ABSTRACT

Accurate assessment of brain tumor severity plays a pivotal role in effective diagnosis and treatment
planning. In this research, a comprehensive framework for brain tumor severity analysis is proposed,
leveraging advanced preprocessing, segmentation, feature extraction and deep learning techniques. The
preprocessing phase employs an adaptive bilateral filter to mitigate noise and enhance image quality.
Subsequently, a segmentation approach utilizing slap swarm boosted rough fuzzy c-means optimally
partitions the brain images, facilitating precise tumor localization. Feature extraction is performed using
Mayfly optimization driven 3D Convolution Neural Network (MO-3DCNN), effectively capturing
discriminative information from the segmented regions. The core innovation of this research lies in the
development of a novel MO-3DCNN model, driven by the Mayfly optimization-derived features. This
model enables a more comprehensive analysis by considering the spatial context of the brain tumor. The
proposed MO-3DCNN model is trained to recognize intricate patterns within the segmented regions,
enabling automated severity classification. Extensive experiments on a diverse dataset determine the
superiority of the proposed methodology over existing approaches. Moreover, the proposed MO-3DCNN
model outperforms in accurately stratifying brain tumor severity, highlighting its potential as a valuable
clinical tool.

Keywords: Convolution Neural Network, Rough Fuzzy C-Means, Slaps Swarm Optimization, Mayfly
Optimization, And Adaptive Bilateral Filter.

1. INTRODUCTION [1]. There are two major level of brain tumor,
they are primary and secondary level. Primary

This guide provides details to assist authors in brain tumor involves benign or malignant stage
preparing a paper for publication in jatit so that and can be occurs in children. It originates from
there is a consistency among papers. These the neurons comprising the nervous system [2]. A
instructions give guidance on layout, style, secondary brain tumor, also referred to as
illustrations and references and serve as a model metastatic, originates from cells in any part of the
for authors to emulate. Please follow these body that can spread from one region to another
specifications closely as papers which do not [3]. With this seriousness, diagnosis for
meet the standards laid down, will not be identifying of brain tumor is essential at earlier
published. stage for avoiding threats. Early detection of brain
Brain tumor are abnormal growths of cells and accurate assessment of their severity play a
within the brain, which can be either benign (non- pivotal role in determining the most appropriate
cancerous) or malignant (cancerous). Their treatment strategies, optimizing patient outcomes,
uncontrolled growth and potential invasion of and improving the overall quality of life for
surrounding brain tissue pose significant health affected individuals [4]. Over the years, advances
risks and may lead to life-threatening conditions in medical imaging, computational techniques,
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and artificial intelligence have revolutionized the
field of brain tumor detection and severity
analysis. Non-invasive imaging modalities such
as Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), Positron Emission
Tomography (PET), and functional imaging
techniques, provide detailed insights into brain
structures and pathological changes associated
with brain. These imaging modalities, combined
with sophisticated computational algorithms,
facilitate the identification, localization, and
characterization of brain with increased accuracy
and precision [5].

Severity analysis of brain tumor is equally
crucial, as it enables healthcare professionals to
determine the tumor’s aggressiveness, infiltration
into critical brain regions, and potential impact on
neurological functions [6]. Accurate severity
assessment aids in the selection of appropriate
treatment strategies, ranging from surgical
resection, radiation therapy, and chemotherapy to
targeted therapies and immunotherapies. The
ability to tailor treatment plans based on the
tumor’s specific characteristics contributes to
more personalized and effective patient care [7].
Moreover, the emergence of artificial intelligence
(AI) and machine learning techniques has further
propelled the field of brain tumor detection and
severity  analysis.  Al-driven  algorithms,
particularly deep learning models, demonstrate
remarkable capabilities in automating tumor
segmentation, classification, and predicting
patient outcomes [8]. These Al-powered tools
assist radiologists and clinicians in making more
informed decisions, reducing diagnostic time, and
enhancing overall diagnostic accuracy. However,
challenges persist in brain tumor detection and
severity analysis [9]. The complexity of brain
tumor behaviour, inter-tumor heterogeneity, and
the need for comprehensive multi-modal analysis
require ongoing research and collaboration
between medical experts, researchers, and
technologists. In this context, this research aims
to explore  the latest  advancements,
methodologies, and novel approaches in brain
tumor detection and severity analysis [10]. By
delving into the existing literature, evaluating
cutting-edge technologies, this study endeavours
to contribute to the ever-evolving field of medical
community, ultimately benefiting patients and
advancing medical knowledge for improved brain
tumor management.

In recent years, there has been a growing
interest in developing advanced 3D imaging
techniques for brain tumor severity analysis [11].

These techniques enable a more comprehensive
evaluation of tumor characteristics, including
size, shape, location, and infiltration into
surrounding brain tissue [12]. By providing a
more accurate representation of  tumor
morphology and spatial relationships, 3D based
deep learning techniques can offer valuable
insights into tumor behaviour and prognosis. One
approach to 3D brain tumor severity analysis is
the utilization of volumetric imaging modalities,
such as volumetric MRI. These techniques
acquire a series of images that cover the entire
tumor volume, allowing for a more detailed
assessment of tumor size and growth patterns
[13]. Volumetric imaging also facilitates the
visualization of tumor heterogeneity, which can
be an important indicator of tumor
aggressiveness. In addition to volumetric
imaging, advanced image processing and analysis
techniques have been developed to extract
quantitative features from brain tumor images
[14]. These features include texture analysis,
shape analysis, and intensity-based
measurements, which can provide valuable
information about tumor characteristics and
behaviour. Deep learning algorithms can then be
employed to integrate these features and develop
predictive models for tumor severity assessment
[15]. The primary contributions and innovative
aspects of the proposed method are as follows:
The method incorporates a novel pre-processing
step utilizing an adaptive bilateral filter. The
adaptive bilateral filter ensures an optimal
balance  between smoothing and edge
preservation, preparing the input data for more
effective subsequent analysis.
The proposed method introduces an innovative
approach to image segmentation using Rough
Fuzzy C-Means (RFCM) with centroid
optimization facilitated by Slap Swarm
Optimization (SSO). This combination optimizes
the clustering process, leading to more accurate
and robust segmentation of brain tumor regions.
The method employs a unique optimization
strategy for hyper parameter tuning in the
3DCNN architecture using Mayfly Optimization
(MO). This adaptive optimization technique
enhances the performance of the 3DCNN by
efficiently exploring the hyper parameter space.
By leveraging the mayfly algorithm, the proposed
method achieves superior model configurations,
resulting in enhanced accuracy in brain tumor
detection and severity prediction.

The manuscript is structured as follows:
Section 2 provides a detailed literature review,
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while Section 3 illustrates the research gap.
Section 4 briefly outlines the proposed research
methodology. Subsequent sections elaborate on
the dataset description and experimental results.
The final section presents the conclusion.

2. LITERATURE REVIEW

According to ongoing research, automated
computerized methods for determining the
presence and severity of brain tumor present a
number of difficulties. The challenges were from
the changing tumor shape, size, location of the
lesion, in-time examination of the lesion site, and
varied images from scanning techniques.
Additionally, only a small number of studies
employing 3D methods to diagnose brain tumor
have been conducted. This section reviews a
number of previous studies while outlining each
one's particular technical limitations, which
served as the motivation for creating a new
method for analysing severity of brain.

In the year 2020, Harish et al. [20] have
described a deep learning method for identifying
and categorizing brain MRIs. For the purpose of
detecting brain, they created the Enhanced Faster
Region-based Convolutional Neural Network
(Enhanced Faster R-CNN). An "optimization-
based edge detection approach using genetic
algorithm" has been studied by Abdel et al.
Simple images are examined in the training
dataset using edge features to obtain the best
thresholding features and filter coefficients. Its
primary use is to locate the borders of the brain
tumor regions, and the Balance Contrast
Enhancement (BCE) model was used to extract
features from the brain picture in order to
describe the image properties. Additionally, the
edge detection technique was used; however, it
did not improve the performance of the proposed
solution in terms of metrics. A brain metastasis
identification method has been developed by E.
Dikici etal.[23]using a single-sequence
gadolinium-enhanced Tl1-weighted 3D MRI
dataset. The approach that was given was solely
concerned with finding very small lesion areas—
less than 15 millimetres—and it required several
steps to get there. It then moves on to selecting
the candidate region using a Laplacian-based
Gaussian approach, and iteratively moves on to
the detection phase using a clipped region of
interest and trained three-dimensional
Convolutional Neural Network. Data
augmentation was handled through a pipeline
method with an elastic deformation and gamma

correction step due to the inefficiency of the input
source. This in turn makes the output layer's
environment noisier. Furthermore, Dandil et al
[22] investigated deep neural network-based
binary classification for brain. Bidirectional Long
Short-Term Memory (Bi-LSTM) and Long Short-
Term Memory (LSTM) over stacked model were
both used to support the deep learning network.
Signals are monitored and processed from the
areas of brain tissue with the goal of finding
brain. The resulting number of signal dataset is
used for both the training and testing phases of
the LSTM framework.

The Introduction and Literature Review to
appropriate and emphasize our contributions.
Prior research has conducted noise reduction
using Dbilateral filtering, fuzzy C-means for
segmentation, and used CNN-based models for
the classification, but they usually omit adaptive
preprocessing, stable high-dimensional clustering,
and using optimum deep learning with respects
severity analysis. In this study, we focus on
closing these gaps by adding adaptive bilateral
filtering, slap swarm-boosted rough fuzzy C-
means segmentation, and finally a Mayfly
Optimization 3D CNN into a unified framework,
which attained 98.48% accuracy and surpassed
state-of-the-art ~ approaches  regarding the
generated image quality and classification
metrics. In this way we aim to provide a
contribution to the implementation of automated
brain tumor severity analysis.

In the year 2021, Sharif et al. [16] have
undertaken a pioneering effort in the domain of
brain tumor analysis by introducing a novel
approach that combines a pre-trained Deep
Learning model, feature selection techniques, and
advanced classification methodologies. Their
study focuses on leveraging the potential of the
Densenet201 Pre-Trained Deep Learning Model
for brain tumor analysis. In doing so, they address
the challenge of imbalanced data learning through
a deep transfer learning paradigm. Entropy—
Kurtosis-based High Feature Values (EKbHFV)
was presented in this study. This approach selects
features that exhibit high entropy and kurtosis
values, thereby prioritizing those characteristics
that demonstrate significant variations within the
dataset. Then a modified genetic algorithm
(MGA) rooted in met heuristics was developed.
The MGA aims to identify the most relevant
features for classification through a process of
evolution-inspired optimization. The research
analysed by Gurunathan et al. [17] delves into the
realm of brain tumor detection and segmentation,
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employing a multi-faceted methodology that
combines data augmentation, Convolutional
neural networks (CNNs), and morphological-
based segmentation. The objective of their study
is to enhance the accuracy and precision of brain
tumor analysis using a comprehensive approach.
Data augmentation takes centre stage as a pre-
processing technique, augmenting the available
brain MRI images to expand the diversity of the
dataset. An intriguing advancement within this
research involves the further classification of
segmented tumor regions into "Mild" and
"Severe" cases. This classification process, again
leveraging CNN architecture, refines the analysis
by categorizing tumors based on their severity,
thereby aiding in clinical decision-making. The
work by Khan et al. [18] stands as a significant
contribution to the field of brain tumor
classification, harnessing the capabilities of deep
learning and MRI data analysis to provide
valuable assistance to medical practitioners. Their
proposed approach constitutes a multi-phased
methodology designed to enhance accuracy in
brain tumor classification, ultimately aiding
clinicians in making informed decisions. The
recommended methodology is divided into three
key phases, each playing a critical role in the
overall process. The first phase encompasses
preprocessing, which involves preparing the MRI
data for subsequent analysis. In the second phase,
brain tumor segmentation is executed using the k-
means clustering technique. This approach
identifies distinct clusters within the MRI data,
allowing the isolation of tumor regions from
healthy brain tissue. Finally, the classification
task is facilitated through the utilization of a
finetuned VGG19 model.

In the year 2022, Aamir et al. [19] presented an
automated approach for detecting brain cancers
using MRI. The process begins with pre-
processing brain MRI images to enhance visual
clarity. Subsequently, two pre-trained deep
learning models are employed to extract
meaningful features from the images. The
obtained feature vectors are merged into a hybrid
feature vector using the partial least squares
(PLS) approach. Finally, agglomerative clustering
is applied to pinpoint the primary tumor areas.
These suggestions are then sized and sized
aligned before being sent to the head network for
categorization. For the purpose of detecting brain
tumors using MR images, Rammurthy et al. [21]
present the Whale Harris Hawks optimization
(WHHO) optimization-driven method. Here,
segmentation is carried out via rough set theory

and cellular automata. Additionally, the segments'
features—such as tumor size, Local Optical
Oriented Pattern (LOOP), Mean, Variance, and
Kurtosis—are retrieved. Additionally, deep
Convolutional neural networks (DeepCNN),
whose training is carried out using suggested
WHHO, are used to identify brain tumors. Whale
optimization algorithm (WOA) and Harris hawks
optimization (HHO) algorithm integration was
used to create the suggested WHHO.

The accurate assessment of brain tumors
remains a problem due to weaknesses in
segmentation robustness, feature optimization,
and 3D spatial information. This study develops
an overall approach to brain tumor classification
by implementing adaptive pre-processing, slap
swarm  boosted rough fuzzy  c-means
segmentation and Mayfly optimization-driven 3D
CNN (MO-3DCNN) to properly classify severity.
This study seeks to answer several key questions
on how to improve MRI quality, optimize
segmentation processes and increase the
performance of CNN based image classification
to yield detailed and precise classification of
brain tumor severity class.

The research protocol for this study was a
combination of established methods in medical
image processing and brain tumor analysis. When
we reference the former, we cluster prior studies
on noise reduction and skull stripping (Ismael &
Abdel-Qader, 2018; Menze et al., 2015) and
apply an adaptive bilateral filter that removes
noise from an MR image while retaining the
tumor borders. When we refer to segmentation,
we apply methods that we took inspiration from
classical clustering approaches such as fuzzy c-
means (Pham et al., 2000) and swarm intelligence
methods such as clustering outlined in (Kennedy
& Eberhart, 1995; Mafarja et al., 2020). We
employed a slap swarm-boosted rough fuzzy c-
means method to cluster voxel contain tumor
tissue, which gave us better object colony and
distant estimates of tumor delineation as can be
observed by our empirical analysis. We adopted a
clear solution to stiffness of traditional CNN-
based classification (Pereira et al., 2016;
Kamnitsas et al., 2017) and incorporated Mayfly
Optimization (Zervoudakis & Tsafarakis, 2020)
hyperparameter tuning of a 3D CNN that
provided higher accuracy of extracted features
and severity classifications of brain tumor from
MRIs. We validated our protocol with a
completely open representation of our research
protocol utilizing the BRATS 2020 dataset in
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alignment with previous benchmarking efforts
such as the BRATS 2015 study (Menze et al.,
2015), with the aim facilitating trustworthy state-
of-the-art comparisons of our framework against
existing studies. Our protocol utilizes noise-
reduced preprocessing, swarm intelligence in
segmentation, and optimization in deep learning
in one complete pipeline. The protocols advance
our automated severity analysis of brain tumors
study more thoroughly and address development
needs in the existing literature.

3. RESEARCH METHODOLOGY

In recent years, the application of deep learning
techniques, particularly Convolutional Neural
Networks (CNNs), has revolutionized medical
image analysis. Among these, 3D Convolutional
Neural Networks (3DCNNs) stand out for their
capacity to effectively capture spatial information
within volumetric data, such as MRI scans. This
research proposes a methodology that harnesses
the power of 3DCNNs to automate the analysis of
brain tumor severity through MRI scans. The
primary objective of this study is to develop a
robust and accurate model capable of categorizing
brain tumors into different severity levels based
on 3D MRI data. By leveraging deep learning
techniques, this methodology seeks to enhance
the efficiency and reliability of tumor severity
assessment, thereby contributing to improved
patient care. Through the implementation of this
methodology, we Endeavour to offer a novel
approach to brain tumor severity analysis,
demonstrating the capabilities of MO-3DCNNSs in
the realm of medical image analysis. By
automating and enhancing the accuracy of tumor
severity assessment, we aspire to contribute
significantly to the field of neuroimaging and
pave the way for more effective and timely
interventions for patients with brain tumors. The
layout of the proposed methodology is
diagrammatically shown in figure /: The brain
MRI input undergoes a pre-processing stage,
during which the adaptive bilateral filter is
employed to enhance image quality. The disease-
dominant area is then segmented using the slap
swarm boosted rough fuzzy c-means algorithm.
Subsequently, the feature extraction module
operates, utilizing the MO-3DCNN architecture.
This module plays a crucial role in classifying
distinct severity levels of brain tumors.
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Fig 1: Overall layout of the proposed Methodology for
brain tumor severity analysis
The implementation of our proposed method
takes place within the Python platform, and its
performance is evaluated through comprehensive
comparisons against established methodologies.
Enhancing Image Quality using Adaptive
Bilateral Filter

The precision of medical diagnoses and
analyses greatly depends on the quality of brain
imaging. Within the scope of our presented
methodology, our objective is to elevate the
ability of brain images through the
implementation of an adaptive bilateral filtering
approach. By adopting this method, we can
effectively diminish noise interference, all the
while conserving crucial image intricacies. This
interaction results in discriminating image
quality, consequently paving the way for more
precise medical interpretations. Distinguishing
itself from conventional bilateral filters that
adhere to fixed kernel parameters, the adaptive
bilateral filter embraces a dynamic parameter
adjustment mechanism, guided by the local
characteristics of the image. The mathematical
expression of our proposed adaptive bilateral
model is elucidated in the following Equation (1).

E(y) _ h_.;l ETLESO Bt{EnD) X Cs(Mw) X.](y)(l)

h—l
Here the symbol 7V

designates the

C

normalized vector, while B t and s delineate the
spatial dimension of kernel function, associated

with their respective weight value Epo and Ww.
The MRI database input image is denoted as

/ (y ) The weight values are deduced as the
disparities between the pixel measurements,
determined by the computation of Euclidean
distance. Precisely, the normalized vector is
defined in a statistical manner as follows:




Journal of Theoretical and Applied Information Technology
30" September 2025. Vol.103. No.18

St

R

© Little Lion Scientific

-;l'\lll

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

hy = EnESO B, (Eno) X Cs(wfw) )

Similarly, the filtering approach's kernel
functions are expressed as follows:

B (Ey,) = EXP(EELO/Z X O't2) (3)
Cs(u;w) = EXP(WL%/Z X 0'52) 4)

The Gaussian function is harnessed to augment

the weight distribution components of the kernel,
with scaling parameters are denoted as

o'tz 0'2 . . e
and~s. This specific phrase is intricately
linked to the Gaussian function, encapsulating the
intensity dispersion characteristics of the kernel
function. The kernel function's weighting hinges
on the central coordinates of the pixel value. The
adaptive bilateral filter effectively enhances the
quality of brain MRI images by reducing noise
while preserving important image details. This
leads to improved image clarity, which in turn
facilitates more accurate medical interpretation
and diagnosis. The adaptive nature of the filter
allows it to dynamically adjust its parameters
based on local image characteristics, striking a
balance between noise reduction and edge
preservation.
Segmentation for Brain Tumor Severity Analysis
In the domain of automated analysis of
brain tumor severity, precise segmentation plays
a pivotal role in localizing distinct cell types and
aggregating similar cells, facilitating accurate
assessment. The segmentation of brain MRI
images serves as the foundational stride for
subsequent analysis endeavours. To address this
critical phase, we introduce an optimization-
based approach to Rough Fuzzy c-means
segmentation [24], harnessing its capacity to
delineate discrete regions within brain MRIs. The
prime goal of segmentation is to partition an
image into cohesive regions, with each region
corresponding to a specific anatomical structure
or cell category. The Optimization-based Rough
Fuzzy c-means technique achieves this by
assigning membership functions to individual
data points according to their proximity to cluster
centres within the image. This allocation of
membership functions captures the inherent
uncertainty in classifying each data point, thus
enabling a supple representation of the image's
content. Notably, the distance between each data
point and the cluster centres underpins this
membership assignment. By jointly considering
the spatial distribution and intensity values of
data points, the proposed approach attains a more
comprehensive depiction of the underlying
structures present in  MRIs. This proves

particularly beneficial in the analysis of brain
tumor severity, where nuanced variations in
tumor attributes demand meticulous
segmentation. The segmentation procedure
progressively refines cluster centres through
iterative adjustments guided by the assigned
membership functions. This dynamic evolution is
symbolized mathematically as,

ii 1
P = TN =)
Vj _ (Z?Li(ﬁoij)mxi) Vj=1,2,...c
(E?:l(qoij)m) , (6)

The quantity of data points is labeled as

N . VI jth o
. Let” ", denote the ] central cluster in index
m the

m€ [1’ OO]' The pentral cluster is denoted as €.

representing level of fuzziness

, .. L
In this context, ¥ signifies the association of the
th :th
J" information with the /  center cluster. The

s . . .
key factor within D is the Euclidean distance

fth ith

between the /  data group and the /  center.
This iterative refinement process allows the
method to capture intricate specifics and
delineations present in MRI images. These details
are crucial for precise cell type localization and
subsequent severity analysis. The primary
objective of the Rough Fuzzy C-means algorithm
minimize is represented as

) = T Ty |

Consequently, the cluster centre
determined by the Euclidean distance
" =27

l;ifh ‘th
encompasses both the * and J
data points. Let's consider that the set of centers

is composed of information point groups
X = {x1,x2,x3...,xn} and
V = {v1,v2, v3 ...,vc}' The subsequent

sequence outlines the stepwise procedure to be
adhered to:

Algorithm 1: Segmentation
Methodology Based on Optimization

Step 1: Initialization random number of

[ }

cluster centers €

. QY
Step 2: Design of Rough fuzzy membership ¢

Step 3: Design of Rough Fuzzy Centers v
Step 4: Updating the Rough Fuzzy C-means
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Technique through an Optimization Model
Step 5: Replicate Steps 2 and 3 iteratively until

reaching J(u,v) or convergence condition

Uk +1) —Um)|| < B

otherwise

iy r
In this context, where k signifies the iteration

i L
stage, B represents the termination criterion

i

within the range [0, 1],U = (¢")n~*c
corresponds to the Rough Fuzzy membership
matrix, and ‘)’ is the objective function. The
concept of infinity is derived from infinite
variance. The outlined steps are instrumental in
the creation of a random walk pattern, utilizing a
power-law  distributed  step-length  scheme
through a substantial endpoint. A subset of
innovative solutions is generated, usually
cantered around the most optimal solution
identified thus far. The local search process is
expedited to enhance speed. However, a notable
portion of these new solutions is introduced with
some degree of divergence in the randomization
field, deliberately positioning them distant from
the current best solution. This strategy ensures
that classification occurs without becoming
overly fixated on a local optimum. The centroid
of the Rough Fuzzy C-means is determined by
employing the  proposed Slap  swarm
Optimization Algorithm (SSO). The optimization
of the centroid, as depicted in equation (9), is
accomplished through the assistance of the SSO
method. It operates based on collective
movement of slaps, forming swarms that
establish interaction chains. This behavior is
inspired by the foraging actions observed in
swarms inhabiting the deep sea, where slaps
interconnect with each other to enhance their
kinetic energy acquisition in their quest for food
sources [25]. The SSO algorithm draws
inspiration from this swarming behavior of slaps,
emulating the construction of slap chains. By
creating these chains, SSO effectively addresses
the challenge of escaping local optima problems,
thereby ensuring a balance between exploitation
and exploration processes. Within SSO
algorithms, slaps are classified into two
categories: leaders and followers. Leader slaps
are positioned at the forefront of the chain, while
followers adhere to the leadership and are
referred to as chain members. The leader slap
plays a pivotal role in guiding and influencing the
actions of the follower crowd, promoting
interactions among peers. The entire workflow of
the suggested algorithm is visualized in Figure 2.

Start

L

Initial the population of
slap with respect to

random centroid value follower slaps

|

Update the position of ]

Compute the fitness
function of cach slap

Set bound limits, obtain
objective values

L@em

Optimal centroid
value

Update the location of
leading slap

A

Fig 2: Flow diagram of the optimization algorithm

In an ™ dimensional space, the position vector of
each slap is directed towards the exploration of its

respective food source, denoted by '!'. In this

context, '™ refers to the total number of decision

variables. The preliminary population of the SSO
YN' ‘dr

comprises of slaps, with each salp has

le

dimensions. The position vector for the salps

is expressed as a Nxd dimensional matrix,
represented by the following equation:

vl v} v}
v=| Y - T

(8)

In the SSO algorithm, each slap within
the population is directed toward a specific food
source location. Furthermore, the leader's position
can be expressed using the equation provided
below. This concept is integral to the SSO
algorithm, as it ensures that every slap in the
population is focused on a distinct food source,
while the leader's position, a pivotal element, is
mathematically defined as follows:

o (B Di((UB~LB;)D, + LB)) Dy=05

T &~ Dy(UB;~ LB;)D, + LB)) Dy< 05 o)

In this context, D 2 and D 3 are random
vectors generating values within the specified

Bj signifies the

UBf defines the

range of [0, 1]. The symbol L
th
lower limit of the / size, while

upper limit of the same size. Ef represents the

1
.. Y
food source position, "/ denotes the leader's slap
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position, and the essential parameters of D, are
mathematically defined as follows:
at

2
Dy = 2¢Tmas)

(10)
In this context, D, denotes the
equilibrium between the exploitation and

exploration tendencies inherent in the SSO

algorithm. The variable L

iteration count, while Tnax signifies the upper
limit of iterations. Furthermore, the position of

corresponds to the

the follower salp can be mathematically
expressed using the following equation:
yi=0th
/ 2 (11)

. Yo I
In this context, J signifies the initial

-th -th
position of the ! slap in the ] dimension.
The optimization algorithm is utilized to
determine the objective function, which is
calculated according to equation (15). Through
this equation, optimal centroid values are selected
based on the principles of the SSO model.

(Zia(e) ")

Vj — -y Vj:l,z,...c
N ~
(Ej:l(qou) ) (12)
In this context, the estimation of
centroid values is achieved through the

application of the optimization procedure. After

each iteration, the measure of 'R is adjusted and
evaluated to determine its alignment with the
accurate value. The iteration process concludes
upon achieving the maximum iteration threshold.
The efficacy of the SSO approach in dealing with
the objective function is emphasized. The fitness
function, as outlined in the proposed algorithm, is
structured as follows:

P = [FEH(0B(R = P15 Do)
(13)
Hence, the SSO optimization algorithm
is employed to minimize the objective function
while adhering to parameter constraints. The SSO
technique is applied to optimize the centroid
value within the fuzzy c-means algorithm. A
reduced objective function value indicates
minimal variance between the data and the
optimized result generated by the SSO algorithm.
For a comprehensive understanding of the
proposed SSO algorithm, the pseudo code is
provided in Algorithm 1.

for Centroid optimization

Initiate a random population of centroid
values for slaps
While (termination criteria is not valid)

do
Calculate the fitness value of
each slap using (13)
Identify the optimal slap and
’E’

designate it as , representing the core
parameter of the leading slap.
Revise the core parameters of the
slaps using equation (9).
For (every slap) do

If (I==1) then Update the leader's
attributes using equation (9).

Adjust all slaps' attributes based on the
given lower and upper limits of variables.

Validate the constraints of search agents
according to equations (10-12).

Return E

Algorithm 1 Suggested SSO Algorithm

As outlined in Algorithm 1, the SSO
algorithm distributes each search agent within the
solution space in a random manner. Next, it
evaluates the existing slap population to identify
the predominant slap. The wupdating and
application of rules are carried out using a set of
diverse equations. The positions of slaps within
the population are adjusted using the mentioned
equation. The iterative process persists until the
specified termination condition is satisfied,
iterating through all steps excluding the initial
phase to improve the quality of slaps. Through
proposed algorithm, the optimization of the
centroid's optimal value is realized. The
algorithm is pivotal in obtaining diagnostic
results from brain tumor images. The SSO
algorithm facilitates the integration of rough
fuzzy c-means and centroid optimization, driving
the segmentation of brain tumor images.
Subsequently, various methods are employed for
feature extraction from the segmented images.

Proposed brain tumor severity analysis
using optimization driven MO-3DCNN

Owing to the rise of brain tumor
severity, this research addresses disease
classification through an innovative deep learning
approach. The proposed model showcases the
ability to autonomously extract intrinsic features,
resulting in a high recognition rate for diseases.
By extending the conventional CNN framework
with a 3D convolutional layer, improvements are
achieved. This expansion enhances the network's
training performance and learning capacity by
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incorporating the 3D spatial context. The decision
to employ a 3DCNN arises from the dynamic
changes in features like shape, size, and position
in MR images across different growth stages of
tumors. This variability necessitates the
extraction of a broader spectrum of features to
capture the evolving disease characteristics. To
this end, a series of convolutional layers are
introduced in the initial layer to enlarge the
network model's receptive field. This, in turn,
addresses the classification model's loss function
by employing data sampling on feature maps. The
proposed learning model integrates Convolution,
pooling, Rectified Linear Unit (RELU), batch
normalization, and  classification  layers
comprising fully connected, logistic, and output
classification layers respectively. Through the
utilization of the proposed MO-3DCNN
framework, physicians gain the capacity to
efficiently categorize brain disease levels without
requiring prior expertise.

In this network architecture, the input
layer processes MRIs, optimally assigning biases
and weight functions by fine-tuning weight
parameters through an optimization model. This
classification model operates through two phases:
training and testing. In the training phase, 80% of
brain MRIs is utilized, while the remaining 20%
are reserved for the testing stage. The MO-
3DCNN encompasses an array of three-
dimensional CNNs that effectively employs a
multifibre unit in combination with dilated

weighted convolutions. This  incorporation
enables the extraction of feature attributes across
various  scales, catering to  volumetric

segmentation requirements. The model was
configured with a fixed size of 128x128 and was
complemented by a refined loss function,
integrating both focused and generalized loss
components. In terms of preprocessing, the MRI
data underwent zero-padding, expanding the
initial 240x240x155 voxel dimensions to
240x240x160 voxels. This adjustment was made
to accommodate a depth that could be evenly
divided by the network architecture. Once the
data is prepared for input, it traverses through the
trained architecture, subsequently generating
probability maps. These maps are then utilized by
the architecture to obtain the final classification
based on the provided data. The mathematical

expression for the output value V' at position

th
(a,b,c) on the 4 feature map within the

th
P 3D convolutional layer can be represented as

follows:

N1 cylB)-g oyl o7 -l
™ yép)ﬂﬁ T Tl 1chfl?tuuyr(l,p(a+)t)(b+u)(c+u))

14

Where Relu O denotes the element-wise
Rectified Linear Unit function.

(»)

Ya Represents the shared bias for the

th . . .
q processing region in the layer.
(»)
qntuv Signifies the (%Y, Dihe clement of

th
the 3D filter for the 4 processing region at the
th
p layer, related to the mth processing region in

the -1 layer.

L, @1

Vn,(a+t) (o +w)(ctv) Corresponds to the output
value of the mth feature map at position
(a+t)b+wW(c+v)iy me @Dy
layer.

Tensor operations provide a simplified
explanation for the connection between two

neighboring layers, particularly from the (p -1

th
layer to the q layer, as delineated in the
equation.

v (®
Where Y represents the output for the
th
P layer.
(-1 th
4 Signifies the input for the P layer.

a(.) Denotes the activation function, operating
element-wise on the input.

The loss function is employed using the back
propagation process to compute the training loss.
In our case, we opted for the Categorical Cross-
Entropy. The primary goal is to minimize the loss
function to effectively train the Fully
Convolutional Network (FCN). While Stochastic
Gradient Descent (SGD) is a common
optimization method, it can often get stuck in
gradient errors. Therefore, we turn to the Mayfly
optimizer, a technique that adapts the learning
rate. The loss function is estimated as the mean
squared error among the predictions generated by
a 3D-prediction CNN and the corresponding
ground truth from the training dataset. The
expression is provided below:

7332




Journal of Theoretical and Applied Information Technology
30" September 2025. Vol.103. No.18

St

R

© Little Lion Scientific

SATIT

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

1 ruth red\?
t(Z,y/D) =~ Tpy Ty (bfy " - b5

D

(16)

Here *~ stands for the trained dataset containing

input-output pairs{af , by }, 8 indicates the
component index in the efficient properties

vectord. The optimal parameters A and Y can
be determined by minimizing the loss function or,
equivalently, by maximizing its inverse of loss
function (log-likelihood).

{Z*, y*}:arg?niniz’y}{’f(Z, y/D)}(17)

The prominent issue adopted in classifier
algorithm is that setting of parameter values.
Aiming this objective, MO-3DCNN parameters
are tuned for diminishing loss function i.e.,
predicted error using Mayfly optimization
approach. For each image, the posterior

probability of voxel P with label 9 computation
can be written as,
fbg{in)
e

fl=1 (18)

Here f bg ) Defines the computation property
of MO-3DCNN model,

r
of the Pthe voxel and f indicates the class
severity in terms of probability value. The loss
function adopted in this study named weighted
cross entropy is mathematically formulated as
follows,

Loss= -}, log(P(bP = groundtruth/A(N,) ))
The

Np represents the patch

(19)
actual

u

cross-entropy  between  the

distribution ¥ and the estimated distribution ¥ is

% u(by) log (P(by/A(N,) )).

In this scenario, the actual distribution u(bp) is
identical to 1 for the ground truth class and 0 for
all other classes.

Optimization driven MO-3DCNN: The suggested
methodology utilizes the mayfly optimization
algorithm to enhance the performance of MO-
3DCNN. The result of the mayfly algorithm
selects the optimal hyper parameter for the deep
learning algorithm, aligning with its similarity to
Particle Swarm Optimization (PSO) and
leveraging the benefits of Genetic Algorithms
(GA). Referred to as a hybrid algorithmic
structure, the mayfly algorithm derives its name
from the traits of mayflies and borrows

denoted as

inspiration from their social behavior, particularly
in mating. This optimization technique
metaphorically draws on the life cycle of
mayflies, encompassing various stages from
hatching to the presence of adults and robust,
long-lived specimens. In this algorithm, the
position of each mayfly within the search space
represents a potential solution to the problem.
The mayfly algorithm is conceived as a procedure
that utilizes the life cycle characteristics of
mayflies to formulate an advanced optimization
approach. The sequential steps of the mayfly
algorithm are elucidated below: The mayfly
algorithm begins by randomly generating two
separate sets of mayflies, identified as female and
male mayflies. Each individual mayfly is then
randomly placed within the search space, forming
a candidate solution. This solution is depicted as
a d-dimensional vector, expressed as follows:

X=Xy e, Xp) (20)

The dimensional vector is established through
the computation of the objective function. In the
proposed methodology, the mayfly algorithm is
utilized to discern the optimal hyper parameters
for the deep learning algorithm, thereby
enhancing its performance. The fitness function
of the system is mathematically defined as
follows:

T b=min(b)
" max(b)-min(b) @21
Here, b denotes the objective function
formulated within the MO-3DCNN process.
Using the proposed optimization strategy,

minimization is performed for the loss function
adopted in the MO-3DCNN framework. The
minimization function is carried out in the fitness
evaluation of mayfly algorithm. Other hyper
parameters, including the number of filters, depth
of convolutional layers, and fully connected
layers, are chosen through parametric tests in
Section 4.3.1. For the training of 3D-CNN
models, an adaptive learning rate optimization
algorithm, Mayfly algorithm [26], is utilized. The
mayfly velocity is characterized as the variation
in position and is denoted as follows:

V=(,.., V%

(22)

Every mayfly displays a dynamic interplay
between social and individual flying traits. In the
algorithm, each mayfly modifies its flight path by
taking into account both its current best position
and the best position attained by other mayfly
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characteristics. The specific attributes of mayfly
behaviors are represented by the following
notations: Within the algorithm, female mayflies
demonstrate a tendency to gather around males.
This behavior stems from their need to engage in
breeding. They rapidly shift their positions
towards the male mayflies to initiate the breeding
process. The traits associated with this breeding
behavior are indicated as follows:
+1 _ +
YIT 1_ YIT 1 VIT 1 (23)

In this context, the alteration in the mayfly's
position is accomplished through its velocity,

T+1
VI

represented  as , relative to its current

T
position. Here, Y signifies the current position
of the female mayfly in the search space at

timeT. The breeding attributes follow to certain
constraints, denoted as follows:

on ~ U(YMINJ YMAX) (24)

The process of attraction can be described as a
stochastic progression; however, it is considered
a deterministic process. Governed by the fitness
function, the optimal female mayfly is attracted to
the most suitable male counterpart. Similarly, the
second-best male mayfly attracts the second-best
female mayfly, and this sequential attraction
pattern persists. For minimization problems, the
formulation of mayfly velocity is as follows:

ot (WA A1) i) > f(8)
kLR Ol s

In this context, R signifies a arbitrary number

within the interval [-1,1], FL is characterized as
the coefficient for random walk, signifying
scenarios where a female mayfly is not drawn
toward a male. This allows mayflies to navigate

randomly. mf Signifies the Cartesian distance
among male and female mayflies, as defined by

the equation. B Represents the fixed visibility

coefficient, while A, stands for the positive

. iy Yr
attraction constant. Additionally, ~J denotes the

position of the female mayfly in dimension J at

T Vi
time *. "I/ refers to the velocity of the female

mayfly in the same dimension / and at the same
time T.Male mayflies cluster together, forming
swarms, and their positions are modified

according to their individual experiences as well
as the influence of their neighboring mayflies.

gt -$r?
V"=V e (pbesty — ) + dpe P (pest; - X])

The process of updating their positions can be
expressed in the following manner:
T+1 _ 5T T+1
X X, +V;

- (26)

In this context, signifies the present

VT+1
position of the male mayfly, while "I refers

the velocity of the same male mayfly. As before,
the breeding traits need to adhere to specific
constraints, which are represented as follows:

XP~U(Xpn Xygax) 27)

The mayfly's velocity is computed using the
equation presented below:

(28)
In this equation, pbest; represents the best

position, while pbesty; denotes the subsequent

best position. Al, A, correspond to positive
attraction factors used to proportionally adjust the
impact of the cognitive and social elements. The
calculation of the next best position is executed
using the equation provided below:

i if f(87*") < f(pbest;)

Phest;={"!
"\ iskept the same otherwise (29)

The calculation of the global best solution is
determined using the formula presented below:

et € {nbest pbesy,. phest | best) =
min(hest, ) pbesty), .. fpest, )} (30)

In this context, N represents the overall count
of mayflies within the population of swarm. The
calculation of the mayfly's distance is essential
for determining the optimal position. The
distance between mayflies is calculated using the
Cartesian distance, as defined by the following
formula:

12
1%~ Xl = J5I,0t - X;)

(€29)
In this context, XU pertains to the global and

local best positions, while X1y denotes to the
current element of the mayfly. The optimal
mayfly continually updates its velocity, and it is
represented as follows:

VIFt=VI+D+R (32)

Where R is a arbitrary value and D represents
the nuptial dance coefficient. Once, the
termination criterion is attained, the optimal set of
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hyper parameters are found and then utilized for
the analysis of brain tumor severity level.

4. RESULT AND DISCUSSION

This section furnishes an elaborate depiction of
the results obtained for our innovative proposed
technique. The proposed methodology is
implemented in the working platform of python.
Upon reaching the termination criterion, the
optimal set of hyper parameters is identified and
subsequently employed for the analysis of brain
tumor severity levels. In this study, MRI brain
tumor images are gathered and subjected to a pre-
processing phase. The pre-processing helps in
eliminating noise from the images, followed by
the removal of the skull region. Subsequently, the
tumor region is efficiently segmented using the
enhanced slap swarm-boosted rough fuzzy c-
means technique. Once segmentation is
accomplished, the extent of tumor expansion is
classified wusing the MO-3DCNN approach.
Throughout the classification, the optimal hyper
parameter configurations are determined by
means of the Mayfly procedure. For our analysis,
we employed the BRATS 2020 database. The
BRATS initiative is dedicated to assessing
cutting-edge  techniques for brain  tumor
segmentation in multimodal MRI scans. A

selection of sample images available from the
dataset [27] is depicted in Figure 3.

Fig 3: Sample Input images some of the sample segmented

outputs are illustrated below

Fig 4: Segmentation results

Some of the obtained segmented images for the

brain tumor severity analysis using the proposed
segmentation model is provided in figure 4.
Moreover, the system's effectiveness is validated
by comparing the evaluation metrics of the
proposed methodology with those of existing
approaches. These metrics are derived from the
confusion  matrix  generated from  the
experimental outcomes. In this assessment, a
variety of evaluation metrics, including
Accuracy, Precision, Recall, and F1_score, are
utilized.
Accuracy: Accuracy is determined by the ratio of
the overall count of correctly classified severity
brain tumor images to the overall count of
severity brain tumor images.

(Tp+Tn) )
(Tp+Tn+Fp+Fn) (33)
Precision: Precision, also stated to as Positive
Predictive Value, is defined as the proportion of
correctly classified positive severity brain tumor
images to the total count of brain MRI images
that were predicted as positive for the severity
level.

Accuracy = (

. . — 71}
Precision — ((prp)) (34)

Recall: Recall, also defined as Sensitivity or True
Positive Rate, is determined as the relation of the
correctly classified positive severity levels of
brain MRI to the total count of positive classified
severity levels of brain tumors.
Recall = (Ti)
(Tp+Fn) (35)

F1 Score: The F1 Score can be termed as the
harmonic mean between recall and precision.

2 (Recall xprecision)
FlScore = ( )(36)

The evaluation of segmented image quality is
conducted independently by assessing metrics
such as Peak Signal to Noise Ratio (PSNR) and
Mean Square Error (MSE).The Peak Signal to
Noise Ratio (PSNR) is employed to gauge image

Recalltprecision
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quality, and it can be mathematically expressed as
follows:

2552
PSNR = 10log,, (m) .

In the given equation, the Mean Square Error
(MSE) is defined as:

_i P-1 Q_l = o
MSE =22 X2 2g=oli" (0. 0) f(p,q)l(38)
Here, UGN Original image, "(p,q)

Segmented image. The construction and training
of the MO-3DCNN framework, as well as the
optimization of hyper parameters through
Optimization, were implemented using Python
code. The experiment leveraged essential Python
packages including OpenCV, NumPy, Tensor
Flow, Kera’s, and Matplotlib. Performance
outcome and comparative analysis of brain tumor
severity analysis The author employed both
quantitative and qualitative metrics to assess the
effectiveness of the projected technique. This
section offers the results of the brain tumor
severity analysis model using an adaptive
bilateral filter, and its performance was evaluated
using a collection of gathered images. The
performance outcomes pertaining to the noise
removal process, as tested with the proposed
model, are presented and depicted.

Table 1 presents the outcomes attained from the
projected severity analysis model for the
respective metrics considered. The analysis
reveals that the introduced algorithm effectively
performed brain tumor severity analysis, resulting
in high-definition and efficient segmented image.
As a result, the overall outcome indicates the
strong performance of the presented technique
across a range of image types. In the subsequent
section, the performance of the classification
method is thoroughly examined. The evaluation
is carried out based on metrics such as accuracy,
precision, recall, and F-measure. There is a
noticeable enhancement in image quality
compared to the existing technique, specifically
the bilateral filter incorporated fuzzy c-means
approach. The outcomes achieved with the
proposed  technique  showcase  enhanced
performance compared to existing methods. The
proposed approach manifests superior image
quality in brain tumor segmentation as evidenced
by the values documented in the table when
compared to the existing method. In our proposed
approach, we integrated the Adaptive Bilateral

Filter and optimization-boosted rough fuzzy c-
means technique for the segmentation process,
enabling precise feature extraction for the
identification of each tumor affected cell in the
input image.

This simplifies the procedure and results in
accurate outcomes. To show the effectiveness of
the proposed methodology the implementation
results is visually shown below, which illustrates
the gradual increase and gradual decrease in the
corresponding accuracy and loss function

respectively.
ROC

10
o9
0.8
o7

0.6

TR

05
0.4

03

0.2

000 015

FPR

020

Fig 5. The ROC Curve

Table 1. Comparative analysis of proposed and existing

technique using segmentation techniques.

Images PSNR MSE

Adaptive Adaptive
Bilateral bilateral Bilateral bilateral

filter & filter&
filter & L filter & .
Fuzzy optimization Fuzzy optimization

boosted boosted
c-means c-means

rough fuzzy rough fuzzy

c-means c-means
24.0476 17.71 1.762 7.478
25.2356 20.13 1.441 5313
24.5866 16.67 2.007 8.74
23.743 19.51 1.433 5.37
25.800 14.42 1.03 5.791
24.3294 15.98 1.744 7.301
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24.8194 11.26 1.747

22.5803 17.79 1.743

21.6357 15.94 1.027

4. Accuracy
: 12
1
08
5.7.|°%
04 g |
02 :
0 |
20 40 60 80 100
3 .5: B Deep Neural Network{16] ECNN[17]

u Clustering with deep learning[18]
o Faster RCNN[20]

DL without optimization[19]
 Whale Harris optimization with DL[21]

20.22 18.46 1.565

u Stacked LSTM[22] u Proposed MO-3DCNN

4ﬁ?g" 7: Accyracy analysis of Brain tumor severity Study
for Conventional and Proposed Model

The Receiver Operating Characteristic (ROC)
curve is created by plotting the True Positive Rate
(TPR) against the False Positive Rate (FPR).
Figure 5 illustrates the ROC curve of the MO-
3DCNN approach proposed in this study. The
objective is to attain a high TPR while
maintaining a low FPR, and these two metrics are
interconnected in the ROC curve.

~— training accuracy 1 = training loss

— e T B —_—
24 6 8 lb D ¥ B 1 4 6 8 1D R MW OB
Epoch Epach

Fig 6: Accuracy and Loss Curve

The accuracy and loss results for the training data
of this network are illustrated in Fig 6. The entire
network was trained over 100 epochs using the
'weighted-cross entropy' as the loss function. It
can be observed that the accuracy and loss results
of the network stabilize after around 40 epochs,
indicating the reliability of the network. The
proposed approach consistently outperforms the
existing methods, demonstrating decreased
negative assessments and enhanced positive
assessments. To visually demonstrate the efficacy
of the proposed methodology, the implementation
results of the proposed model in correspondent
with the existing technique are presented in the
following figures 7 to 10.

Precision

12

1
08
06 : | |
04 |

0 | = | »

20 40 60 80 100
mDeep Neural Network[16] mCNN(17]

B Clustering with deep learning[18] DL without optimization[19]
mFaster RCNN[20]

mstacked LSTM[22]

®Whale Harris optumization with DL[21]
mProposed MO-3DCNN

Fig 8: Precision outcome of Brain tumor severity
analysis

Recall

12

1
08
06 | i
04 | |
a7 | | |

0 | | |

20 40 60 80 100
8 Deep Neural Network{16] BCNN[17]

u Clustermg with deep leaming[18]
1 Faster RCNN[20]
u stacked LSTM[22]

DL without optimization{19]
8 Whale Harnis optimization with DL[21]
1 Proposed MO-3DCNN

Figure 9 Outcome of recall measure for the proposed
and existing system
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F1 score

0 ‘ | | | | | [ |
20 40 60 80 100

1 Deep Neural Network[16] BCNN|[17]

DL without optimization[19]
¥ Whale Harris optimization with DL[21]
#Proposed MO-3DCNN

o = o o
[T

Clustering with deep leaming[18]
B Faster RCNN[20]
wstacked LSTM[22]

Figure 10: Obtained F1_score for proposed and
existing brain tumor severity model

In our proposed brain tumor severity analysis,
we experimented with different learning rates
ranging from 20 to 100, and the obtained
accuracies were 0.9648, 0.9748, 0.9548, 0.9848,
and 0.9548 for the corresponding learning rates of
20, 40, 50, 80, and 100, respectively. These
results showcase the effectiveness of our
proposed system across a range of learning rates.
The proposed approach is compared with existing
methods, including Stacked LSTM [22], Whale
Harris optimization with DL [21], Faster RCNN
[20], DL without optimization [19], Deep Neural
Network [16], CNN [17], and Clustering with
deep learning [18]. In the evaluation of precision,
our proposed MO-3DCNN method demonstrated
superior performance compared to existing
approaches across various learning rates (20, 40,
60, 80, 100) is shown in figure. The evaluation of
recall for various learning rates demonstrates the
superior performance of our proposed MO-
3DCNN method compared to existing approaches
is shown in figure. The F1 score, which balances
precision and recall, is a critical metric in
evaluating the overall performance of a brain
tumor severity analysis system. From the overall
analysis, it seems that the proposed severity
analysis model attains an effective outcome than
existing techniques.

The findings of this study are strongly aligned
with the previously established objectives and
they provide strong evidence of the proposed
integrated framework for severity classification
of brain tumors. The impact of Adaptive bilateral
filtering on improving MRI image quality was
substantial as the switching bilateral filtering
method removes noise while preserving

important detail- this improves MRI image
quality and explains the increased PSNR and
decreased MSE Values (Table 1). Slap swarm
boosted rough fuzzy c-means segmentation
provided more reliable segmentation and tumor
localization than traditional methods, as
illustrated in Figure 4. The Mayfly Optimization
(MO) version of the 3D CNN achieved improved
classification performance. This included an
accuracy score of 0.9848 with greater precision,
recall and F1 scores (Figures 7-10). The ROC
analysis in Figure 5 provided further evidence of
the model's capacity for good classification
ability. An additional concern was testing of the
model's robustness regarding different learning
rate for training. The findings indicate the
proposed MO-3DCNN framework can be
established as a clinically usable, reliable method
for performing better brain tumor severity
assessment overall. This study intended to create
a thorough schema for reliable brain tumor
severity analysis through the complementary use
of adaptive pre-processing, segmentation, and
optimize deep learning, and the results reflect
strongly on achieved ambitions. The adaptive
bilateral filter markedly improved the quality of
the MRI images with great improved PSNR and
decreased MSE values, and the badger-swarm
boosted rough fuzzy c-means segmentation
overcame intensity in-homogeneity and clustering
instability issues, resulting in an accurate
localized tumor location. In addition to the
feature extraction and classification abilities of
Mayfly Optimized 3D CNN (MO-3DCNN), the
model's overall accuracy of 98.48%, surpassed
the target benchmarks, performed better than
leading approaches like Stacked LSTM (~93%),
Whale Harris optimized DL (~94%), and Faster
RCNN (~95%). Limitations exist related to
BRATS 2020 data, real time deployment of the
Mayfly optimization cost, potential lack of
clinical interpretability of the “black box™ model;
ultimately creating room for future studies based
on the findings that suggest explainable Al,
multi-institutional ~ validation, and  other
optimization suggestions for deployment.Even
with the successful efficacy of the proposed MO-
3DCNN framework, limitations persist, such as
dependence on the BRATS 2020 dataset, limiting
generalisability across a variety of clinical
environments, additional computational costs of
Mayfly Optimization preventing real-time use,
and the "black box" aspect of the model moving
clinical interpretability aside. Future work should
work to expand to multi-institutional datasets,
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develop more lightweight architectures to reduce
inference time, and integrate explainable Al
techniques to increase transparency for clinical
adoption.

5. CONCLUSION AND FUTURE
ENHANCEMENT

This research describes and provides context for
a unique construct for brain tumor severity
analysis through adaptive preprocessing, slap
swarm-boosted rough fuzzy c-means
segmentation, and the 3D Convolutional Neural
Network (CNN) optimized wusing Mayfly
optimization (MO-3DCNN), showing significant
improvements in image quality, tumor
localization, and severity classification compared
to traditional techniques. The proposed
framework achieved all proposed research aims
and demonstrated significant potential for clinical
translational use as a decision-support tool for
neuro-oncologists. However, future research
could consider the issues of broader
benchmarking validation using multimodal
institutional data, model interpretability through
explainable artificial intelligence (AD),
multimodal data, and real-time clinical use as
outlined. The findings and methods described
will enhance the proposed framework’s utility,
and tackling these open issues will facilitate its
extension further and ultimately enhance
prognosis, treatment planning, and ultimately
patient outcomes.

While the proposed MO-3DCNN framework
had meaningful performance for brain tumor
severity assessment, some outstanding issues
offer pathways for future research. In particular,
the MO-3DCNN framework should be extended
to larger multi-institutional datasets outside of
BRATS 2020 to improve model generalization
across varying clinical settings. Furthermore,
development in the area of explainable artificial
intelligence (XAI) would maximize model
interpretability and may result in a model with
more explainable behavior that may function as a
clinical trial. Additional possibilities for future
research include expansion to multimodal data -
incorporating genetic markers, histopathology,
and clinical data - that could broaden the
capability of the severity assessment and scope
for developing personalized treatment plans. The
model might also be further optimized for clinical
use on a wider scale and thus be extended for use
in longitudinal analysis of tumor progression or
response(s) to treatment(s). Finally, observational

prospective (rather than retrospective) clinical
trials will be paramount to establish the relevance
and reliability of this framework in real-world
medical.
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