Journal of Theoretical and Applied Information Technology ~
30" September 2025. Vol.103. No.18 ~J
© Little Lion Scientific

SATIT

ISSN: 1992-8645 www jatit.org E-ISSN: 1817-3195

STREAM PROCESSING ALGORITHMS FOR
UNSTRUCTURED DATA ANALYSIS

VIKTORIIA SHUTENKO!, MYKOLA MEDVEDIEV?, YURII DOROSHENKO?, VALERIA
DROMENKO*, NATALIIA OMETSYNSKAS

'PhD student, Department of Mathematical Support of Computer Systems, Odesa I.1. Mechnikov National
University, Ukraine

Professor, Department of Engineering Systems and Technologies, Educational and Scientific Institute of
Municipal Management and City Economy, V. I. Vernadsky Taurida National University, Ukraine

3Professor, Department of Computer and Information Technologies of the Educational and Scientific
Institute of Municipal Management and City Economy, V. I. Vernadsky Taurida National University,
Ukraine

4Associate Professor, Department of Engineering Systems and Technologies, Educational and Scientific
Institute of Municipal Management and City Economy, V. I. Vernadsky Taurida National University,
Ukraine

SAssociate Professor, Department of Engineering Systems and Technologies, Educational and Scientific
Institute of Municipal Management and City Economy, V. I. Vernadsky Taurida National University,
Ukraine

E-mail: 'viktoriatech23@gmail.com, >mykolamedvediiv4@gmail.com, 3yriiidoroshencko3@gmail.com,
4valeridromenko0@gmail.com, *nataliometsyinska@gmail.com

ABSTRACT

Relevance of the selected research

The rapid growth of unstructured streaming data and the need for real-time decision-making necessitate the
development of effective algorithms tailored for dynamic processing, semantic enrichment, and adaptive
analytics.

Purpose

The purpose of the study is to develop an optimized mathematical model for the processing of unstructured
data streams to support real-time decisions.

Methods

The study used the following methods: decomposition analysis, mathematical formalism, optimization
modeling, reinforcement learning, simulation modeling.The research employed a diverse array of
methodologies, including decomposition analysis, mathematical formalism, optimization modeling,
reinforcement learning, and simulation modeling.

Results obtained

This study presents an optimized algorithm for real-time processing of unstructured data streams, derived
from the decomposition of tested models and the formalization of a generalized mathematical framework.
By integrating Kafka with Zero-Copy /0, CEEMDAN-based preprocessing, ONNX-inference models,
knowledge graph enrichment, and QoS-driven orchestration (Kubernetes, KEDA), the proposed solution
achieved a 3.8x reduction in Latency (from 250.0 to 65.0 ms), increased Accuracy to 91.3%, and doubled
Throughput (1100 to 2200 events/sec). Additionally, CPU Load was reduced by 27%, Memory Usage by
45%, while the Adaptability Score and Semantic Alignment Score improved from 0.52 to 0.88 and from
0.64 to 0.91, respectively. These results confirm the algorithm’s efficiency, scalability, and applicability in
intelligent Decision Support Systems under real-time constraints.

Scientific novelty of the study

The scientific novelty of the research lies in the development of a mathematical model for streaming
processing, characterized by dynamic ingesting, semantic enrichment, and optimization through
reinforcement learning, all aimed at enhancing real-time productivity.
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Prospects for future research

Further research involves validating the optimized algorithm within high-entropy streams, the scaling to
multimodal datasets, and the enhancement through adaptive retraining and dynamic orchestration.

Keywords: Kafka,
Decomposition, ONNX Inference.

1. INTRODUCTION

The rapid proliferation of unstructured
streaming data coming from diverse sources (logs,
sensor systems, social networks, multimodal
platforms) necessitates the development of highly
efficient algorithms for their processing to facilitate
real-time decision-making. Traditional batch-
oriented analysis methods demonstrate limited
applicability due to high latency, limited scalability,
and lack of dynamic semantic adaptation of data
streams. Against this backdrop, the selected
research is aimed at formalizing a generalized
mathematical model of stream-native processing of
unstructured data, taking into account the aspects of
ingestion, adaptive pre-processing, semantic
enrichment, low-latency stream analytics, and QoS-
aware orchestration. The proposed direction aims to
transcend  existing limitations of classical
architectures, increase cognitive consistency of
conclusions, and ensure real practical integration
into smart Decision Support Systems.

The purpose of the study is to develop and
optimize a generalized mathematical model for
processing unstructured data streams to support
real-time decision-making and evaluate its
effectiveness based on key performance metrics.

Research objectives:

- conduct a decomposition analysis
of tested models to ascertain the median component
composition of unstructured data  stream
processing;

- formulate a generalized
mathematical model of stream processing taking
into account transformations, semantic enrichment,
and state management;

- develop a multi-criteria objective
optimization function based on performance
metrics;

- implement adaptive optimization
of streaming processing configurations based on
reinforcement learning;

- conduct simulation modeling and
comparative  evaluation of the algorithm's
effectiveness within a digital environment.

Flink, Semantic Enrichment,

Reinforcement Learning, RocksDB, CEEMDAN

Key Terminology:

—  Unstructured Data refers to information
that lacks a predefined data model or
schema, such as free-text documents,
audio, video, sensor streams, or log files. It
typically requires advanced parsing,
semantic interpretation, or Al-driven
transformation for effective analysis.

—  Streaming Processing denotes the real-
time or near-real-time processing of
continuous data flows, enabling timely
computation and decision-making. It
contrasts with batch processing by
supporting  low-latency,  incremental
computation over dynamic datasets.

—  Semantic Enrichment is the process of
augmenting raw data streams with
contextual meaning through metadata
tagging, ontology mapping, or knowledge
graph integration. This improves machine
interpretability and analytical value.

—  Fault Tolerance is the capability of a
system to maintain functionality in the
presence of partial failures, ensuring data
continuity, resilience, and uninterrupted
processing in high-throughput
environments.

—  Real-Time Decision Support Systems (RT-
DSS) are intelligent computational
architectures designed to ingest, process,
and analyze live data streams for
immediate decision-making. They rely on
optimized pipelines, low-latency
inference, and adaptive orchestration to
support mission-critical operations.

— Adaptive Orchestration refers to the
dynamic management of computational
and data resources (e.g., via
Kubernetes’KEDA) in  response to
workload fluctuations, ensuring efficiency,
scalability, and QoS compliance.

2. LITERATURE REVIEW

The analytical review of current
publications on streaming processing algorithms for
analyzing unstructured data is presented as follows.
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In this regard, Jiang et al. [1] showed the
effectiveness of streaming unstructured data from
Baidu Index through CEEMDAN decomposition,
wavelet denoising, and SVR modeling for
predicting carbon quota prices. The introduced
random perturbation mechanism enhances the
interpretability of the model and increases its
accuracy in a multi-source flow.

Another area of data management was
explored by Chuacharoen and Aiemsuwan [2], who
conducted an empirical analysis of unstructured
multimedia data streams in an online commerce
environment based on behavioral metrics of social
platform users. A management model was
developed that takes into account the typology of
storage media, cross-platform distribution, as well
as data classification by media format under
conditions of decentralized access.

A structural perspective of the problem
under study is demonstrated by de Haan, et al. [3],
who presented a three-section approach to
integrating unstructured streams into managerial
decision-making under conditions of high
information entropy. The developed framework,
grounded on organizational learning theory,
classifies unstructured data usage scenarios by
strategic purpose (exploration/exploitation) and
source of environmental scanning
(endogenous/exogenous), providing algorithmic
support for the selection of methods and sources.

Furthermore, a systematic approach is
exemplified by Farhanet al. [4], who proposed a
four-layer Extract—Clean—Load-Transform (ECLT)
architecture  designed for  high-performance
processing of unstructured streams of large text
data. Within the Spark platform, the model
demonstrates a considerable reduction in execution
time as compared to traditional ETL
methodologies, facilitating efficient cleaning, pre-
processing, and transformation of input streams
with data volumes up to 1 TB.

Another attempt to address the challenges
posed by large data sets is shown by Kaliyaperumal
et al. [5], who introduced the BDQAM (Big Data
Quality Assessment Model) model for real-time
streaming quality assessment of unstructured big
data. The model adeptly integrates machine
learning algorithms and NLP tools to validate
streams based on accuracy, completeness,
consistency, and timeliness criteria, demonstrating
enhanced efficiency as compared to traditional

approaches to assessing data quality in decision
support processes.

A comparative approach and optimization
in the examined vector are demonstrated by
Battaglia et al. [6], who conducted a constraint
analysis of a two-stage approach to unstructured
data analytics that combines upstream extraction of
latent wvariables through information extraction
models and downstream econometric regression.
They propose a unified Bayesian inference
architecture that facilitates joint parameter
identification and asymptotic unbiased estimates,
revealing substantial advantages through simulation
modeling and applied analysis of behavioral
economic data streams.

Next, Yu [7] proposed a multimodal
improved Transformer architecture for streaming
processing of high-dimensional unstructured data
encompassing diverse modalities—such as text,
images, audio, and video. The model utilizes the
multi-threaded input with feature unification in a
common spatial representation, a cross-modal self-
attention mechanism to discern cross-modal
dependencies, and sparse optimization for efficient

processing of long sequences, demonstrating
superiority in accuracy, precision, and recall
metrics.

On the contrary, the problem of generating
suitable datasets was examined by Liu et al. [8],
who focused on generating streaming unstructured
data derived from sensory modalities for
autonomous navigation in complex environments.
The created dataset provides realistic conditions for
evaluating algorithms for streaming multimodal
unstructured data (LiDAR, video, IMU), thereby
facilitating the advancement of methodologies for
online integration of sensor streams, real-time
SLAM analysis, and semantic segmentation.

A novel algorithm for the systematic
organization of the analyzed datasets was
introduced by Sukumar et al. [9], who devised a
streaming architecture for the extraction of
information from unstructured textual data with
subsequent construction of knowledge graphs. The
proposed streaming NLP pipeline includes
coreference resolution, entity linking, and
relationship extraction, with automated storage in
the Neod4j graph database, allowing for the
transformation of unstructured text streams into real
time structured semantic representations.
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Encoding tools were utilized by Glyn-
Davies et al. [10], who proposed ®-DVAE
(Physics-informed Dynamical Variational
Autoencoder) for the streaming of unstructured data
into dynamic physical models described by
differential equations. The architecture combines
nonlinear filtering of the latent state space with
variational Bayesian estimation, thereby enabling
the assimilation of video streams and velocity fields
without an explicit observation operator while
simultaneously recovering unknown parameters
accompanied by uncertainty assessment.

The analytical review elucidates the
vigorous advancement of stream processing
algorithms tailored for the examination of
unstructured data, encompassing a wide range of
technologies — from decomposition methods
(CEEMDAN, wavelet denoising) and regression
models (SVR) to variational autoencoders (@-
DVAE) and transformers featuring cross-modal
self-attention. Cutting-edge architectures, including
ECLT, multimodal Transformer models, NLP
pipelines with graph semanticization (Neo4j), and
Bayesian  integration  frameworks, exhibit
remarkable efficacy within the realm of high-
dimensional, heterogeneous, and semantically

STRUCTURAL
DECOMPOSITION

MATHE-
MATICAL
FORMALISM
Ingestion
Pre-processing
Enrichment
Analytics
Orchestration

Operators
&, W, ®,FR

.,

MULTICRITERIA
OPTIMIZATION

Target function,
QoS constraints

diverse streams. The above approaches not only
enhance accuracy and interpretability but also
afford scalable real-time processing capabilities,
which are indispensable for informed decision-
making in dynamic and data-centric environments.

The imperative for advancing unstructured
data  streaming  processing  algorithms s
underscored by the constraints of existing solutions
identified in the analyzed studies: susceptibility to
complex semantics, reduced accuracy amid
heterogeneous sources, restricted coverage of
diverse media types, and inadequate adaptability of
transformation mechanisms. Enhancements to the
models should be directed towards increasing noise
resistance, = minimizing  processing  delays,
broadening cross-modal representation, and
facilitating automated quality management of input
streams.

3. METHODS AND MATERIALS

3.1. Research procedure.
The scheme of this study is given below
(Figure 1).

SIMULATION
MODELING

Performance
metrics

REINFORCEMENT
LEARNING

Self-optimization
pipeline

Figure 1. Research flowchart
Source: created by the authors.

3.2. Methods.

The following methods were used in this
study:

1. Decomposition analysis method.
A component decomposition of the tested models
for processing unstructured data streams (Table 1)
was performed, which allowed us to determine the
median set of critical functional blocks (Table 3),

including ingestion, pre-processing, semantic
enrichment, analytics, and orchestration.
2. Method of mathematical

formalism. A generalized mathematical model of

processing unstructured data streams (equations
(1)—~(13)) is developed with the formalization of
stream transformations, semantic enrichment, state
management, and decision-making logic.

3. Optimization modeling method.
A multi-criteria objective function (equation (14))
is developed to simultaneously minimize Latency,
CPU Load, Memory Usage and maximize
Accuracy, Throughput, and Fault Tolerance, taking
into account the weighting coefficients of the
objectives.

4. Reinforcement learning method.
An approach for adaptive optimization of streaming
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processing configurations through a self-adaptive
agent is proposed, which implements an
optimization strategy based on feedback regarding
efficiency metrics (Equation (18)).

5. Simulation modeling method. A
model calculation of the algorithm's efficiency was
performed in the Python environment with an
assessment of key metrics (Latency, Accuracy,

Tolerance, Adaptability Score, Semantic Alignment
Score, Scalability Index) — the results are
consolidated in Table 6.

3.3. Sample.

The research sample comprises models
designed for the processing of unstructured data
streams to support decision-making that were tested

Throughput, CPU Load, Memory Usage, Fault in

real-life

conditions

(Table 1).

Table 1. Proven models for processing unstructured data streams to support decision-making

Academic
L . L description in the
Model Short description Technologies used Scope of application context of the
studied vector
Lambd A combination of batcl'l Apache Hadoop (HDFS, Netflix, LinkedIn —
and stream processing with MapReduce), Apache .
a . fault-tolerant analytics .
. separate paths for Storm for real-time, El Aissiet al. [11]
Archit . . of log/event data,
calculations and merging Kafka for message > .
ecture advertising services
of results. streams
Kappa A streaming processing Kafka Streams API, Uber, Spotify — real-
Pp: model without batch Apache Flink for low- time event processing,
Archit S Guan et al. [12]
ecture components, focused on latency stateful stream monitoring of traffic
real time. computing and user actions
Apach A framework for building Kafka Streams DSL + Goldman‘Sachs, Bank
e . .. Processor API, of America — fraud
streaming applications on . . . . S Padmanaban et al.
Kafka ton of Kafka with low integration with detection, audit trail [13]
Stream p RocksDB for local state analysis, KYC
latency. e
S management monitoring
Spark . . Apache Spark Structured Airbnb, Alibaba —
Structu | Micro-batch processing of - IoT streams, .
. Streaming, Catalyst . . Gupta and Yip
red unstructured streams with . clickstream analytics,
Optimizer, HDFS, Kafka . [14]
Stream fault tolerance support. ; . real-time user
. for ingestion .
ing segmentation
. Apache Flink CEP, event | ING, Huawei — rule-
Apach | Complex event processing - . . .
. ; . time processing, keyed based event Mezati and Aouria
e Flink with support for time . . . .
. state, windowed joins, correlation, financial [15]
CEP windows and states. . . .
Kafka integration anomaly detection
Amazo . Amazon Kmpsm Data Coca-Cola, Autodesk
n Cloud-based streaming Streams, Firehose, _ video analvtics
S processing with auto- Lambda for serverless JHES, Koschel et al. [16]
Kinesi . S . telemetry, IoT in retail
S scaling. processing, integration networks
with S3, Redshift
PayPal, Twitter —
Googl Universal stream and batch Apache Beam model, ETL and
€ . . . Google Cloud Dataflow L Ranganathan et al.
processing with a single S . . telemetry/pipeline data
Datafl Engine, integration with . . [17]
language, Apache Beam. . analytics, real-time ML
ow BigQuery, Pub/Sub .
inference
;I;i Beats for streaming log Cisco, eBay — log
rocessing unstructure collection, Logstash for analytics, incident
P ing d llection, Logstash fi lytics, incid
(Logst . . . Bakraouy et al.,
logs and real-time ETL, Elasticsearch for detection,
ash T . . . . [18]
Stream visualization. indexing, Kibana for infrastructure
5) visualization monitoring
Heathrow Airport,
Azure SQL-driven cloud-based Azure Even.t Hubs for Schneider Electric —
Stream . . event collection, Stream .
stream processing with . Smart City dashboards, | Koschel et al. [19]
Analyt X . Analytics SQL, Power L
. Power BI integration. . . anomaly detection in
ics BI for real-time analytics )
power grids
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Academic
L . L description in the
Model Short description Technologies used Scope of application context of the
studied vector
StreamQL query engine, Meta (Facebook) —
Facebo . . internal message
High-speed processing of RocksDB for state .
ok - . processing, Kong & Mamouras
unstructured events in retention, internal !
Stream . S . recommendation [20]
internal systems. distributed execution .
QL systems, behavioral
framework .
triggers

Source: created by the authors

3.4. Tools.

The following set of metrics are used as

tools for this study (Table 2).

Table 2. Metrics for assessing the effectiveness of algorithms for processing unstructured data streams to
support decision-making

Metrics Short description Mathematical formulation
1
. Lz—ggtt.—z, ).
Average time between N = o m,t
the moment an event is
Latency received and the moment | where N is the number of events processed; , ; is the
it is processed by the .
system time of occurrence of 7-th event; f our,i 1S the time to
obtain the processing result of 7 -th event
TP+TN
The ratio of the nl}mber TP+ TN + FP + FN
A of correctly predicted ) - o
ceuracy outcomes to the total where TP is true positive cases (correct prediction of
number of solutions positive); TN is true negative cases; F'P is false
positive cases; 'V is false negative cases
N
The number of events §S=—,
Throughput that the system can T
process per unit of time | where N is the number of processed events; 7  is the
time during which events were processed
1
Average CPU usage R. = ;ZCP U,
CPU Load percentage during thread =
processing where CPU ; is CPU usage in I time moment; 7 is the
number of measurements
R, =13m
Average amount of RAM m g ent
Memory ni=l
Usage consumed by the system ' L .
g during the performance | where Memi is memory usage in I is the time moment;
7 is the number of measurements
T _ restored
f - s
N restored + N Jailed
Fault The ability of the system )
Tolerance to recover from failures | where NV, restored 1S the number of successfully processed
events after recovery; N Juiled is the number of events
failed due to failure
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_ 1 x Qafter
The ability of the 4L AT ’
algorithm to change adjust Qbef"’ e
Adaptability 'cor%ﬁgurat}on and where A]; diuse 1S the time required for adaptation;
maintain efficiency when y
the environment changes Qbeﬁ)re , Qaﬂer is quality of the result (e.g., accuracy)
before and after adaptation
S _ ‘Emodel mEom‘ology‘
. The degree of alignment a ’
Sejmantlc of the derived results E model
Alignment with the ontological
Score model (fr?(n(())vgli gge where Ema 4o 18 the set of entities/relationships found by
the model; £ ontology is ontological reference set
AS
. o=———,
Scalability Efﬁc1enc¥ of system A Rc + ARm
Index ~ expansion with
Increasing resources where AS s increase in throughput; ARC s ARm is
increase in CPU and memory usage respectively

Source: created by the authors

The Python digital environment was used
for optimization mathematical modeling using
reinforcement learning methods.

4. RESULTS

In order to identify suitable solutions for
the formulation of an effective model and algorithm
for the processing of unstructured data streams to
facilitate decision-making by the decomposition
method of tested models (Table 1) was employed to
ascertain the median component composition of
software solutions of this type (Table 3).

Table 3. Median component composition of models and algorithms for processing the stream of unstructured data

Component Description

Implementation examples

1. Data sources

Unstructured information streams (logs, video,
audio, text, sensors)

Kafka, Event Hubs, IoT brokers

2. Ingestion

Stream capture and routing

Kafka, Kinesis Streams, Pub/Sub

3. Pre-processing

Normalization, cleaning, decomposition (wavelet,
CEEMDAN), tokenization

Spark, Flink, Logstash

4. Enrichment

Annotation, entity extraction, ontological

NLP pipelines, NER, coreference,

correspondence OBDA
5. Streaming analytics | CEP, ML-inference, fuzzy logic, rule-based engines Flink CEP, Aszgziksﬁ?m Analytics,

6. State/context storage

Stateful processing for aggregation, semantics, or
case study analysis

RocksDB, Redis, NoSQL, GraphDB

7. Sink

Visualization, API, results storage

Elasticsearch, Power BI, BigQuery,
Neo4j

8. Orchestration/Scaling

Autoscaling, fault tolerance, QoS guarantees

Kubernetes, autoscaling policies,
serverless triggers

Source: elaborated by the authors.

we 1.

For this component composition,
devised a generalized mathematical model for the
streaming processing of unstructured data, aimed at
supporting decision-making.

Definition of input stream. The stream of
unstructured events at time:
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D(t)={d,(t).d,(t),....d, (1)}, ()

Where di(l) € Uis an element of the

unstructured data space (text, images, sound, video,
sensory data).

2. Ingestion and filtration function.
The ingestion mechanism can be specified as a
routing function:

®:U—>ScR” )

where S is the space of semantically
relevant signals obtained after the function as
follows:.

®= ~fbro/cer ° fﬁlter (3)
where fbmker is routing (Kafka, Pub/Sub);

f filrer 18 predicative filtering.

3. Normalization and
decomposition. The pre-processing function is as
follows:

¥:S >R @

where the function:

\P = ~fa’enoise © ~fafecomp ° .fnorm (4)
fdenoise is

CEEMDAN:  fieonpis wavelet - or EMD-

where wavelet filtering /

decomposition; — tokenization /
vectorization.

4. Semantic enrichment. The
function as follows is used:

®:R*5G (6

where G is  knowledge  graph:

G= (V,E), V = entities , E = relation .
Through the application:
@ = fNER ° ~fcoref ° ﬁinking (5)

5. Stream analytics. Stream model
of decision making:

D(r)=R(F(e(¥(P(M).C)  ©

where R is decision-making logic (e.g.
classification, alarm signal); F' is analytical

3(1)={0:(£),0,(1),....

where f, . is the aggregation in time

windows W, , sliding or tumbling.

7. Inference and operating logic.
The action function is formalized as follows:

Q:D(1)xZ(t) >A @)

min L A % E[latency] -4, x E[accumcyu

D,¥Y,0.F

under the limitations:

QOSthroughput 27 (12)
errordecision S & (1 3)
Using the obtained generalized

mathematical model of processing the unstructured
data streams to support decision-making and
mathematical modeling methods, we will develop

(o)

operator (ML model, rule engine, CEP); C are
contextual variables (state, aggregates, history).
6. State management. The set of

stream aggregates:

n(t)} = e (G window) (7)

where A is the space of possible actions
(API calls, triggers, visualizations).

8. Optimization objective function.
The goal is to minimize latency and maximize
accuracy:

(11)

optimization solutions aimed at improving the
performance of the existing algorithms (Table 1) in
their median representation (Table 3):

1. The goal of optimization is to
build an adaptive configuration of functional
blocks. @, ¥, ®, F, R, which will ensure
minimal delay L , maximum decision-making
accuracy A , limited resource consumption (CPU,

e ——
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memory, bandwidth), guaranteed fault tolerance 7}

and scalability S .

2. Objective function. Multi-criteria
objective function in the form of a weighted sum:

Q\yfgg}ﬂ] =w, xL+w, ><(1—A)+w3 XR.+w xR —w;xT, —w;x§ (14
where L is the average processing delay; factors (importance of each goal), while
A is the accuracy of the decision-making model; w, E[O,l] ,and ZWI =1.
RC is the CPU load; Rm is the memory usage; 7} 3. Limitations. Introducing
is the number of restored/retained flows during a  limitations  regarding QoS (15),  resource
failure; S is system throughput; is weighting Cconsumption (16) as well as for normalizing flows
to avoid congestion (17):
LI, ;A2 4,828,127, )
R<C_:R <M_: (10)
H\I’ D t Hs&. (11)
4. Optimization algorithm. Utilizing - calculation of the objective

the Python digital environment and employing
advanced reinforcement learning methods, we shall
delineate a step-by-step algorithm for the
optimization of a generalized mathematical model
concerning the  streaming  processing  of
unstructured data, aimed at enhancing decision-
making capabilities (1) - (13). The following steps
are performed:

- preliminary

initialization: {®@,¥,.,...} ;

configuration

- metrics collection (Table 2);

function J  (14);

- application of an adaptive change
mechanism (reinforcement learning);

- repetition until stabilization or
threshold is reached & (13):

0«0, -1V (6.) (2

At the same time, we obtained a
generalized mathematical representation of an
optimized model for processing the streaming of
unstructured data, aimed at enhancing decision-

making capabilities.
L (0) max ’
A6 ;
minJ (6)= (6)2 A, (13)
¢ Rc(e)gcmax’ m(H)SMmax;
Tf (G)ZTmm’ (Q)ZSmin'
where 6 = {@,‘P,@,F,R} is a set of 1. o The inpqt stream of unstructured
. data has a similar formulation (1).
configuration parameters. 2. Dynamic ingestion. The equation
According to the generalized  (3) takes the form:
representation of the optimized unstructured data CD dyn fqos 20
streaming processing  model (19), the broker ~J filter (20)
transformation of the generalized mathematical 3. Adaptive pre-processing. The
model (1) - (13) is obtained. equation ®)] takes the form:
wavelet adaptive stream
LIlopt — J denoise f;l'cufnp f;wrm (21)
4, Context-sensitive enrichment.
The equation @) takes the form:
__ pcontext—aware lightweight semantic
®Upt — JNER © f;arqf © ﬁinking (22)

e ——
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5. Optimized analytics. The
equation () takes the form:
D(z):Ropt( opt(®opt(‘f'opt(D(f)))),C) 23)
6. State management. The equation
9 takes the form:
lidi
2(1)=Uo,(1)=f (Gw) @4
7. Optimized action taking. The
equation (10) takes the form:
Q,, D(1)xZ(1)—25—A . (25)
8. Objective function. The equation
(11 takes the form:
A <E| L(0)| + 4, <E| R.(6)| +4 xE| R,(0)] +
min (26)
| 44, % E| E,.(8)] -4 <E| 4(0)]
where That being said, owing to the application
_ . of mathematical modeling methods, we developed
0 {(D”’”’ \P"p” ®"’”’ E’p” R(’p’} , with  the an optimized algorithm for the processing of

restrictions as follows:

L(60)< L,

A(0)2 4,,:
S(6)>5,,.

27
(28)
(29)

unstructured data streams to facilitate informed
decision-making. The efficacy of this algorithm can
be further enhanced through the multi-component
integration of cutting-edge technologies (Table 4).

Table 4. Median component composition of models and algorithms for processing the stream of unstructured

Optimization
direction

Technological
solution

Technologies involved

Optimization of
processing

Kafka + Zero-Copy

— Flink + Event Time Processing

— Data locality-aware scheduling (Spark/Flink) | | Scalability |
- Kubernetes autoscaling

— Partitioned state in Kafka Streams / Flink

— Serverless computing (AWS Lambda, Google Cloud

infr rla .st;iuctulre. The o Functions) | | Fault Tolerance | - Write-ahead logs (Kafka,
goalis low latency. Flink checkpoints)
— RocksDB-backed state storage
— Replication / failover strategies |
— Approximate computing / sampling
Optimization of pre- - V.ecFori.zation (spaCy, 'BERT-tokenizt'er)‘| | NLP/NLQ
processing and CEEMDAN + optimization | - Lightweight models (DistilBERT, MiniLM)

analytics. The goal
is reduction of the
computational load.

wavelet denoising
(signal separation)

— Batch inference

— ONNX/TensorRT acceleration | | Complex Event
Processing (CEP) | - Apache Flink CEP

— Azure Stream Analytics Rule Engine

— Esper for pattern detection |

State and
aggregation
management. The
goal is efficient

RocksDB
(Kafka/Flink state
backend)

— Cassandra / Redis for aggregates

— Windowed joins with pre-aggregation | | Contextual
adaptation | - Dynamic window sizing

— Adaptive stream joins
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optimization. The
goal is semantic

merging of streams.

Processing (C-
SPARQL, CQELS)

O%t.lmlz.atlon Technolpglcal Technologies involved
irection solution
storage. — Semantic state compaction (GraphDB/Neo4) |
— TensorRT
— TFLite / Edge TPU | | Response time reduction | - Model
ML/AI inference caching
optimization. The . — Batching inference
goal is speeding up ONNX Runtime — Stream inference via TensorFlow Serving | | Automatic
the model. tuning | - AutoML (Google Vertex Al, H20 AutoML)
— Reinforcement learning for pipeline optimization
— Hyperparameter optimization (Bayesian search, Optuna) |
— KEDA (Kubernetes Event-Driven Autoscaling)
— Apache YARN capacity scheduler | | Monitoring and
00S orchestration contr01‘| - Prometheus + Grafana
und control. The Kubernetes - Elgstlc APM / New Relic S
. o HPA/VPA — Flink Metrics / Spark UI | | Prioritization system | - QoS
goal is auto-scaling.
queues
— Backpressure handling (Flink, Kafka)
— Stream partition rebalancing
. — Knowledge Graph Fusion
Semantic . . .
RDF Stream — Context-aware reasoning | | Ontological compression | -

OWL-based pruning
— Top-k subgraph extractions
— Reasoning cache layers

Source: elaborated by the authors.

Optimization of the generalized algorithm
for processing the unstructured data streams was

carried out by modeling targeted technological
solutions at each functional stage (Table 5).

Table 5. Comparative decomposition analysis of solutions for optimizing the algorithm for processing the unstructured

streams
Op timization Component Generalized algorithm Optimized algorithm
direction
Brokers Apache Kafka Katka + partition rebglance + QoS-
aware topics
Ineestion and Dynamic filtering based on a
gro tin Filtration Fixed rules policy engine (e.g. Flink filters
uting with QoS SLA)
. Backpressure-aware ingestion
Buffering FIFO queues (Flink, Kinesis)
. .. + i
Cleaning/Denoising Wavelet CEEMDAN adaPt.IVC wavelet
decomposition
Pre-processing Vectorization TF-IDF / static DistiIBERT / MiniLM via ONNX
or TensorRT
. . Stream-aware pipeline (micro-
Parallelism Batch processing batch / stateful operators)
. - +
NER/Linking Room, spaCy context aware NER.(REBEL)
entity pruning
Semantic Lightweight neural coreference
enrichment Coreference Rule-based (NeuralCoref, SpanBERT)
. Graph embedding + top-k RDF
Knowledge graphs Neo4j regular slicing + reasoning cache
Model XGBoost / Logistic Regression DISUIB.ERT? G.RU’ Transformers
with priority processing
.. Quantized / ONNX / TensorRT
. Inference Full precision .
Analytics and inference
decision making Decision making Static rules Relnforcemept !earplng / Policy
optimization
CEP Fixed templates Flink CEP with dynamic pattern
update
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Opt'lmlz‘atlon Component Generalized algorithm Optimized algorithm
direction
Status repository Redis / PostgreSQL RocksDB + l;r/ ?r_lz%%i zgated sliding
State management Adantive sliding / on-based
Windows Fixed size aplve SUAINE / SessIon-base
windows
Containerization Docker Kubernetes + KEDA autoscaling
Orchestration, Monitoring Manual Prometheus + Grafana + dynamic
Scaling, and Fault QoS alerts
Tolerance . . Horizontal event-driven (Flink,
Scaling Vertical Kinesis, Dataflow)

Source: elaborated by the authors.

Thus, the optimized algorithm (Table 4,
Table 5) implements adaptive stream processing
through the utilization of compact neural models
(ONNX, DistilBERT), asynchronous event
processing (Kafka, Flink), QoS management via
backpressure and dynamic rebalancing, stateful
processing based on RocksDB, and semantic
alignment using knowledge graphs and reasoning

cache to enhance the cognitive consistency of
conclusions.

In order to practically evaluate the
optimized algorithm for processing unstructured
data streams to support decision-making, a model
calculation was performed using efficiency metrics
(Table 2) in the Python programming environment

(Table

6).

Table 6. Comparative calculation of efficiency metrics of generalized and optimized streaming algorithms for
unstructured data analysis

. Model values of the generalized | Model values of the optimized
Performance metrics . .
algorithm algorithm
Latency (ms) 250.0 65.0
Accuracy (%) 82.5 91.3
Throughput (events/sec) 1100.0 2200.0
CPU Load (%) 75.0 48.0
Memory Usage (MB) 1850.0 1020.0
Fault Tolerance (%) 86.0 96.5
Adaptability Score 0.52 0.88
Semantic Alignment Score 0.64 0.91
Scalability Index 1.4 3.1

Source: elaborated by the authors.

Hence, the results of the comparative
assessment (Table 6) substantiate that the optimized
algorithm provides a significant increase in the
operational efficiency of unstructured data
streaming processing systems, ensuring the
minimization of latency, enhanced accuracy of
analytics, increased throughput, optimization of of
computing resources, and improved adaptive-
semantic features. These characteristics validate its
viability for practical implementation within real-
time smart decision support systems.

5. DISCUSSION

Let's juxtapose the obtained results in
terms of compliance with the actual scientometric
horizon.

Compared to the Turet & Costa [21]
method, which achieved 80% accuracy through

data structuring, the optimized algorithm achieved
91.3% accuracy through adaptive processing and
semantic integration. This indicates the higher
efficiency of real-time streaming methods without
the need for full data transformation.

Mehmood & Anees [22] optimized real-
time ETL by accelerating stream-disk joins,
reducing disk load. Accordingly, the optimized
algorithm achieves higher efficiency through
asynchronous processing and semantic matching
without direct dependence on disk operations.

Kumar et al. [23] focused on content
management of unstructured data with the
subsequent application of analytical engines. The
optimized algorithm  implements streaming
processing with integrated semantic aggregation
and real-time inference without intermediate
storage in content repositories.

e ——
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Koschmider et al. [24] examined the
application of process mining to analyze
unstructured data, focusing on challenges and
underlying solutions. Instead, the optimized
algorithm  implements  semantic  streaming
processing with real-time event correlation without
the classic process discovery stage.

The Maxima [25] study proposed
integrating unstructured data into RDBMS via
LSTM classification to improve analysis accuracy.
The optimized algorithm provides stream-native
processing with ontological aggregation and real-
time inference without transactional structuring.

Molla et al. [26] developed an adaptive
DSS that incrementally integrates data streams for
explainable inferences in unstable environments.
The optimized algorithm instead implements
stream-oriented processing with real-time semantic
enrichment and predictive reasoning without post-
processing stages.

Jain & Fallon [27] introduced UDNet, a
multi-strategy ML framework for processing
multimodal unstructured data using Adaptive
Confidence Bound and Multi-Fidelity Meta-
Learning, whereas the optimized algorithm
provides stream-native processing with real-time
model selection and semantic fusion without a
multi-layered AutoML orchestration strategy.

Konig et al. [28] undertook a systematic
review of the unstructured data utilization in
process mining, elucidating the dominance of
textual sources and an emphasis on event
extraction. On the other hand, the developed
optimized algorithm performs continuous stream-
native event enrichment and ontological matching
without the need for prior formation of classical
event logs.

Richmond [29] investigated the application
of transformer models, RNNs, and GNNs to stream
processing of unstructured social media data with a
focus on sentiment analysis and trend forecasting.
In turn, the optimized algorithm implements low-
latency multimodal fusion and semantic stream
reasoning without classical staged processing of
text data.

Methuku [30] developed an AI/NLP
architecture  for  real-time  epidemiological
monitoring based on NER, sentiment analysis, and
geospatial trend mining. The optimized algorithm

implements continuous multilingual stream parsing
and low-latency anomaly detection without a
separate static aggregation phase.

A comparative analysis of the considered
approaches shows that most models for processing
unstructured data streams are based on transactional
structuring, content management systems, batch-
oriented transformation, or process-oriented event
log extraction. Accordingly, the optimized
algorithm implements asynchronous stream-native
processing with low-latency semantic fusion,
dynamic event enrichment, multilingual stream
parsing, adaptive anomaly detection, and real-time
predictive reasoning without staged aggregation or
multi-level AutoML adaptation, which provides
increased throughput, fault-tolerance, cognitive
interpretability, and scalability in real-time modes.

6. LIMITATIONS

The current study is limited by the lack of
validation in high-entropy streaming environments
and dynamic concept drift. In addition, the
algorithm has not been stress-tested on ultra-scale
heterogeneous datasets with a variable ontological
structure of streams.

7. RECOMMENDATIONS

It is recommended to expand the validation
of the optimized algorithm in high-entropy, multi-
source streaming conditions with active control of
concept drift and ontological evolution. It is also
expedient to conduct scalable experiments on ultra-
large multimodal datasets using dynamic resource
orchestration and adaptive retraining strategies.

8. CONCLUSION

Based on the decomposition of tested
models of streaming processing of unstructured data
(Table 1) and the formalization of the mathematical
apparatus (equations (1)—(29)), an optimized
algorithm was developed, focused on minimizing
Latency, maximizing Accuracy, and ensuring a high
Scalability Index with guaranteed Fault Tolerance.
Optimization was achieved through the use of
asynchronous ingesting infrastructure (Kafka +
Zero-Copy  1/O), adaptive  pre-processing
(CEEMDAN, wavelet denoising), lightweight
inference models (ONNX, DistilBERT), semantic
enrichment through knowledge graphs and dynamic
QoS orchestration (Kubernetes, KEDA). The results
of comparative modeling in the Python environment
(Table 6) recorded a 3.8-fold decrease in Latency
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(from 250.0 to 65.0 ms), an increase in Accuracy to
91.3%, a doubling of Throughput (from 1100 to
2200 events/sec), a 27% decrease in CPU Load and
45% in Memory Usage, as well as a significant
improvement in Adaptability Score (from 0.52 to
0.88) and Semantic Alignment Score (from 0.64 to
0.91). Thus, the optimized algorithm demonstrated
enhanced cognitive  consistency, operational
efficiency, and suitability for application in real-
time intelligent Decision Support Systems.

The scientific novelty of the current
research lies in the formalization of a mathematical
model of streaming processing of unstructured data
with dynamic ingestion, semantic enrichment, and
optimization based on reinforcement learning,
which ensures minimized Latency, increased
Accuracy and Fault Tolerance in real time.

The practical value of the results obtained
lies in the development of an optimized algorithm
that provides increased throughput, reduced
computational costs, and increased adaptability,
which allows its effective application in Smart City,
financial analytics, medicine, and cybersecurity
systems.
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