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ABSTRACT 
 

Relevance of the selected research 
The rapid growth of unstructured streaming data and the need for real-time decision-making necessitate the 
development of effective algorithms tailored for dynamic processing, semantic enrichment, and adaptive 
analytics. 
Purpose 
The purpose of the study is to develop an optimized mathematical model for the processing of unstructured 
data streams to support real-time decisions. 
Methods 
The study used the following methods: decomposition analysis, mathematical formalism, optimization 
modeling, reinforcement learning, simulation modeling.The research employed a diverse array of 
methodologies, including decomposition analysis, mathematical formalism, optimization modeling, 
reinforcement learning, and simulation modeling. 
Results obtained 
This study presents an optimized algorithm for real-time processing of unstructured data streams, derived 
from the decomposition of tested models and the formalization of a generalized mathematical framework. 
By integrating Kafka with Zero-Copy I/O, CEEMDAN-based preprocessing, ONNX-inference models, 
knowledge graph enrichment, and QoS-driven orchestration (Kubernetes, KEDA), the proposed solution 
achieved a 3.8× reduction in Latency (from 250.0 to 65.0 ms), increased Accuracy to 91.3%, and doubled 
Throughput (1100 to 2200 events/sec). Additionally, CPU Load was reduced by 27%, Memory Usage by 
45%, while the Adaptability Score and Semantic Alignment Score improved from 0.52 to 0.88 and from 
0.64 to 0.91, respectively. These results confirm the algorithm’s efficiency, scalability, and applicability in 
intelligent Decision Support Systems under real-time constraints. 
Scientific novelty of the study 
The scientific novelty of the research lies in the development of a mathematical model for streaming 
processing, characterized by dynamic ingesting, semantic enrichment, and optimization through 
reinforcement learning, all aimed at enhancing real-time productivity. 
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Prospects for future research 
Further research involves validating the optimized algorithm within high-entropy streams, the scaling to 
multimodal datasets, and the enhancement through adaptive retraining and dynamic orchestration. 

Keywords: Kafka, Flink, Semantic Enrichment, Reinforcement Learning, RocksDB, CEEMDAN 
Decomposition, ONNX Inference. 

 
1. INTRODUCTION 

 
The rapid proliferation of unstructured 

streaming data coming from diverse sources (logs, 
sensor systems, social networks, multimodal 
platforms) necessitates the development of highly 
efficient algorithms for their processing to facilitate 
real-time decision-making. Traditional batch-
oriented analysis methods demonstrate limited 
applicability due to high latency, limited scalability, 
and lack of dynamic semantic adaptation of data 
streams. Against this backdrop, the selected 
research is aimed at formalizing a generalized 
mathematical model of stream-native processing of 
unstructured data, taking into account the aspects of 
ingestion, adaptive pre-processing, semantic 
enrichment, low-latency stream analytics, and QoS-
aware orchestration. The proposed direction aims to 
transcend existing limitations of classical 
architectures, increase cognitive consistency of 
conclusions, and ensure real practical integration 
into smart Decision Support Systems. 

 
The purpose of the study is to develop and 

optimize a generalized mathematical model for 
processing unstructured data streams to support 
real-time decision-making and evaluate its 
effectiveness based on key performance metrics. 

 
Research objectives: 
- conduct a decomposition analysis 

of tested models to ascertain the median component 
composition of unstructured data stream 
processing; 

- formulate a generalized 
mathematical model of stream processing taking 
into account transformations, semantic enrichment, 
and state management; 

- develop a multi-criteria objective 
optimization function based on performance 
metrics; 

- implement adaptive optimization 
of streaming processing configurations based on 
reinforcement learning; 

- conduct simulation modeling and 
comparative evaluation of the algorithm's 
effectiveness within a digital environment.  

 

Key Terminology: 
 Unstructured Data refers to information 

that lacks a predefined data model or 
schema, such as free-text documents, 
audio, video, sensor streams, or log files. It 
typically requires advanced parsing, 
semantic interpretation, or AI-driven 
transformation for effective analysis. 

 Streaming Processing denotes the real-
time or near-real-time processing of 
continuous data flows, enabling timely 
computation and decision-making. It 
contrasts with batch processing by 
supporting low-latency, incremental 
computation over dynamic datasets. 

 Semantic Enrichment is the process of 
augmenting raw data streams with 
contextual meaning through metadata 
tagging, ontology mapping, or knowledge 
graph integration. This improves machine 
interpretability and analytical value. 

 Fault Tolerance is the capability of a 
system to maintain functionality in the 
presence of partial failures, ensuring data 
continuity, resilience, and uninterrupted 
processing in high-throughput 
environments. 

 Real-Time Decision Support Systems (RT-
DSS) are intelligent computational 
architectures designed to ingest, process, 
and analyze live data streams for 
immediate decision-making. They rely on 
optimized pipelines, low-latency 
inference, and adaptive orchestration to 
support mission-critical operations. 

 Adaptive Orchestration refers to the 
dynamic management of computational 
and data resources (e.g., via 
Kubernetes/KEDA) in response to 
workload fluctuations, ensuring efficiency, 
scalability, and QoS compliance. 
 

2. LITERATURE REVIEW 
 
The analytical review of current 

publications on streaming processing algorithms for 
analyzing unstructured data is presented as follows. 
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In this regard, Jiang et al. [1] showed the 
effectiveness of streaming unstructured data from 
Baidu Index through CEEMDAN decomposition, 
wavelet denoising, and SVR modeling for 
predicting carbon quota prices. The introduced 
random perturbation mechanism enhances the 
interpretability of the model and increases its 
accuracy in a multi-source flow. 

 
Another area of data management was 

explored by Chuacharoen and Aiemsuwan [2], who 
conducted an empirical analysis of unstructured 
multimedia data streams in an online commerce 
environment based on behavioral metrics of social 
platform users. A management model was 
developed that takes into account the typology of 
storage media, cross-platform distribution, as well 
as data classification by media format under 
conditions of decentralized access. 

 
A structural perspective of the problem 

under study is demonstrated by de Haan, et al. [3], 
who presented a three-section approach to 
integrating unstructured streams into managerial 
decision-making under conditions of high 
information entropy. The developed framework, 
grounded on organizational learning theory, 
classifies unstructured data usage scenarios by 
strategic purpose (exploration/exploitation) and 
source of environmental scanning 
(endogenous/exogenous), providing algorithmic 
support for the selection of methods and sources. 

 
Furthermore, a systematic approach is 

exemplified by Farhanet al. [4], who proposed a 
four-layer Extract–Clean–Load–Transform (ECLT) 
architecture designed for high-performance 
processing of unstructured streams of large text 
data. Within the Spark platform, the model 
demonstrates a considerable reduction in execution 
time as compared to traditional ETL 
methodologies, facilitating efficient cleaning, pre-
processing, and transformation of input streams 
with data volumes up to 1 TB. 

 
Another attempt to address the challenges 

posed by large data sets is shown by Kaliyaperumal 
et al. [5], who introduced the BDQAM (Big Data 
Quality Assessment Model) model for real-time 
streaming quality assessment of unstructured big 
data. The model adeptly integrates machine 
learning algorithms and NLP tools to validate 
streams based on accuracy, completeness, 
consistency, and timeliness criteria, demonstrating 
enhanced efficiency as compared to traditional 

approaches to assessing data quality in decision 
support processes. 

 
A comparative approach and optimization 

in the examined vector are demonstrated by 
Battaglia et al. [6], who conducted a constraint 
analysis of a two-stage approach to unstructured 
data analytics that combines upstream extraction of 
latent variables through information extraction 
models and downstream econometric regression. 
They propose a unified Bayesian inference 
architecture that facilitates joint parameter 
identification and asymptotic unbiased estimates, 
revealing substantial advantages through simulation 
modeling and applied analysis of behavioral 
economic data streams. 

 
Next, Yu [7] proposed a multimodal 

improved Transformer architecture for streaming 
processing of high-dimensional unstructured data 
encompassing diverse modalities—such as text, 
images, audio, and video. The model utilizes the 
multi-threaded input with feature unification in a 
common spatial representation, a cross-modal self-
attention mechanism to discern cross-modal 
dependencies, and sparse optimization for efficient 
processing of long sequences, demonstrating 
superiority in accuracy, precision, and recall 
metrics. 

 
On the contrary, the problem of generating 

suitable datasets was examined by Liu et al. [8], 
who focused on generating streaming unstructured 
data derived from sensory modalities for 
autonomous navigation in complex environments. 
The created dataset provides realistic conditions for 
evaluating algorithms for streaming multimodal 
unstructured data (LiDAR, video, IMU), thereby 
facilitating the advancement of methodologies for 
online integration of sensor streams, real-time 
SLAM analysis, and semantic segmentation. 

 
A novel algorithm for the systematic 

organization of the analyzed datasets was 
introduced by Sukumar et al. [9], who devised a 
streaming architecture for the extraction of 
information from unstructured textual data with 
subsequent construction of knowledge graphs. The 
proposed streaming NLP pipeline includes 
coreference resolution, entity linking, and 
relationship extraction, with automated storage in 
the Neo4j graph database, allowing for the 
transformation of unstructured text streams into real 
time structured semantic representations. 
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Encoding tools were utilized by Glyn-
Davies et al. [10], who proposed Φ-DVAE 
(Physics-informed Dynamical Variational 
Autoencoder) for the streaming of unstructured data 
into dynamic physical models described by 
differential equations. The architecture combines 
nonlinear filtering of the latent state space with 
variational Bayesian estimation, thereby enabling 
the assimilation of video streams and velocity fields 
without an explicit observation operator while 
simultaneously recovering unknown parameters 
accompanied by uncertainty assessment. 

 
The analytical review elucidates the 

vigorous advancement of stream processing 
algorithms tailored for the examination of 
unstructured data, encompassing a wide range of 
technologies — from decomposition methods 
(CEEMDAN, wavelet denoising) and regression 
models (SVR) to variational autoencoders (Φ-
DVAE) and transformers featuring cross-modal 
self-attention. Cutting-edge architectures, including 
ECLT, multimodal Transformer models, NLP 
pipelines with graph semanticization (Neo4j), and 
Bayesian integration frameworks, exhibit 
remarkable efficacy within the realm of high-
dimensional, heterogeneous, and semantically 

diverse streams. The above approaches not only 
enhance accuracy and interpretability but also 
afford scalable real-time processing capabilities, 
which are indispensable for informed decision-
making in dynamic and data-centric environments. 

 
The imperative for advancing unstructured 

data streaming processing algorithms is 
underscored by the constraints of existing solutions 
identified in the analyzed studies: susceptibility to 
complex semantics, reduced accuracy amid 
heterogeneous sources, restricted coverage of 
diverse media types, and inadequate adaptability of 
transformation mechanisms. Enhancements to the 
models should be directed towards increasing noise 
resistance, minimizing processing delays, 
broadening cross-modal representation, and 
facilitating automated quality management of input 
streams. 

3.  METHODS AND MATERIALS  
 

3.1. Research procedure. 
The scheme of this study is given below 

(Figure 1).

 

Figure 1. Research flowchart 
 Source: created by the authors. 

 
 

3.2. Methods. 
The following methods were used in this 

study: 
1. Decomposition analysis method. 

A component decomposition of the tested models 
for processing unstructured data streams (Table 1) 
was performed, which allowed us to determine the 
median set of critical functional blocks (Table 3), 
including ingestion, pre-processing, semantic 
enrichment, analytics, and orchestration. 

2. Method of mathematical 
formalism. A generalized mathematical model of 

processing unstructured data streams (equations 
(1)–(13)) is developed with the formalization of 
stream transformations, semantic enrichment, state 
management, and decision-making logic. 

3. Optimization modeling method. 
A multi-criteria objective function (equation (14)) 
is developed to simultaneously minimize Latency, 
CPU Load, Memory Usage and maximize 
Accuracy, Throughput, and Fault Tolerance, taking 
into account the weighting coefficients of the 
objectives. 

4. Reinforcement learning method. 
An approach for adaptive optimization of streaming 
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processing configurations through a self-adaptive 
agent is proposed, which implements an 
optimization strategy based on feedback regarding 
efficiency metrics (Equation (18)). 

5. Simulation modeling method. A 
model calculation of the algorithm's efficiency was 
performed in the Python environment with an 
assessment of key metrics (Latency, Accuracy, 
Throughput, CPU Load, Memory Usage, Fault 

Tolerance, Adaptability Score, Semantic Alignment 
Score, Scalability Index) — the results are 
consolidated in Table 6.  

 
3.3. Sample. 

The research sample comprises models 
designed for the processing of unstructured data 
streams to support decision-making that were tested 
in real-life conditions (Table 1).

Table 1. Proven models for processing unstructured data streams to support decision-making 

Model Short description Technologies used Scope of application 

Academic 
description in the 

context of the 
studied vector 

Lambd
a 

Archit
ecture 

A combination of batch 
and stream processing with 

separate paths for 
calculations and merging 

of results. 

Apache Hadoop (HDFS, 
MapReduce), Apache 
Storm for real-time, 
Kafka for message 

streams 

Netflix, LinkedIn — 
fault-tolerant analytics 

of log/event data, 
advertising services 

El Aissiet al. [11] 

Kappa 
Archit
ecture 

A streaming processing 
model without batch 

components, focused on 
real time. 

Kafka Streams API, 
Apache Flink for low-
latency stateful stream 

computing 

Uber, Spotify — real-
time event processing, 
monitoring of traffic 

and user actions 

Guan et al. [12] 

Apach
e 

Kafka 
Stream

s 

A framework for building 
streaming applications on 

top of Kafka with low 
latency. 

Kafka Streams DSL + 
Processor API, 
integration with 

RocksDB for local state 
management 

Goldman Sachs, Bank 
of America — fraud 
detection, audit trail 

analysis, KYC 
monitoring 

Padmanaban et al. 
[13] 

Spark 
Structu

red 
Stream

ing 

Micro-batch processing of 
unstructured streams with 

fault tolerance support. 

Apache Spark Structured 
Streaming, Catalyst 

Optimizer, HDFS, Kafka 
for ingestion 

Airbnb, Alibaba — 
IoT streams, 

clickstream analytics, 
real-time user 
segmentation 

Gupta and Yip 
[14] 

Apach
e Flink 
CEP 

Complex event processing 
with support for time 
windows and states. 

Apache Flink CEP, event 
time processing, keyed 
state, windowed joins, 

Kafka integration 

ING, Huawei — rule-
based event 

correlation, financial 
anomaly detection 

Mezati and Aouria 
[15] 

Amazo
n 

Kinesi
s 

Cloud-based streaming 
processing with auto-

scaling. 

Amazon Kinesis Data 
Streams, Firehose, 

Lambda for serverless 
processing, integration 

with S3, Redshift 

Coca-Cola, Autodesk 
— video analytics, 

telemetry, IoT in retail 
networks 

Koschel et al. [16] 

Googl
e 

Datafl
ow 

Universal stream and batch 
processing with a single 
language, Apache Beam. 

Apache Beam model, 
Google Cloud Dataflow 
Engine, integration with 

BigQuery, Pub/Sub 

PayPal, Twitter — 
ETL and 

telemetry/pipeline data 
analytics, real-time ML 

inference 

Ranganathan et al. 
[17] 

ELK 
Stack 
(Logst

ash 
Stream

s) 

Processing unstructured 
logs and real-time 

visualization. 

Beats for streaming log 
collection, Logstash for 
ETL, Elasticsearch for 
indexing, Kibana for 

visualization 

Cisco, eBay — log 
analytics, incident 

detection, 
infrastructure 
monitoring 

Bakraouy et al., 
[18] 

Azure 
Stream 
Analyt

ics 

SQL-driven cloud-based 
stream processing with 
Power BI integration. 

Azure Event Hubs for 
event collection, Stream 
Analytics SQL, Power 

BI for real-time analytics 

Heathrow Airport, 
Schneider Electric — 

Smart City dashboards, 
anomaly detection in 

power grids 

Koschel et al. [19] 
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Model Short description Technologies used Scope of application 

Academic 
description in the 

context of the 
studied vector 

Facebo
ok 

Stream
QL 

High-speed processing of 
unstructured events in 

internal systems. 

StreamQL query engine, 
RocksDB for state 
retention, internal 

distributed execution 
framework 

Meta (Facebook) — 
internal message 

processing, 
recommendation 

systems, behavioral 
triggers 

Kong & Mamouras 
[20] 

Source: created by the authors 
 
 
 

3.4. Tools. 
The following set of metrics are used as 

tools for this study (Table 2). 

Table 2. Metrics for assessing the effectiveness of algorithms for processing unstructured data streams to 
support decision-making 

Metrics Short description Mathematical formulation 

Latency 

Average time between 
the moment an event is 

received and the moment 
it is processed by the 

system 

 , ,
1

1 N

out i in i
i

L t t
N 

  ,  

where N  is the number of events processed; ,in it  is the 

time of occurrence of i -th event; ,out it  is the time to 

obtain the processing result of i -th event 

Accuracy 

The ratio of the number 
of correctly predicted 
outcomes to the total 
number of solutions 

TP TN
A

TP TN FP FN




  
, 

where TP  is true positive cases (correct prediction of 

positive); TN  is true negative cases; FP  is false 

positive cases; FN  is false negative cases 

Throughput 
The number of events 

that the system can 
process per unit of time 

N
S

T
 , 

where N  is the number of processed events; T  is the 
time during which events were processed 

CPU Load 
Average CPU usage 

percentage during thread 
processing 

1

1 n

c i
i

R CPU
n 

  , 

where iCPU  is  CPU usage in i time moment; n  is the 

number of measurements 

Memory 
Usage 

Average amount of RAM 
consumed by the system 
during the performance 

1

1 n

m i
i

R Mem
n 

  , 

where iMem  is memory usage in i is the time moment; 

n  is the number of measurements 

Fault 
Tolerance 

The ability of the system 
to recover from failures 

restored
f

restored failed

N
T

N N



, 

where restoredN  is the number of successfully processed 

events after recovery; failedN  is  the number of events 

failed due to failure 
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Adaptability 

The ability of the 
algorithm to change 
configuration and 

maintain efficiency when 
the environment changes 

1

1
after

d
adjust before

Q
A

T Q
 

 
, 

where adjustT  is the time required for adaptation; 

beforeQ , afterQ  is quality of the result (e.g., accuracy) 

before and after adaptation 

Semantic 
Alignment 

Score 

The degree of alignment 
of the derived results 
with the ontological 
model or knowledge 

model ontology

a
model

E E
S

E


 , 

where modelE  is the set of entities/relationships found by 

the model; ontologyE  is ontological reference set 

Scalability 
Index 

Efficiency of system 
expansion with 

increasing resources 

c m

S

R R
 

  

, 

where S  is increase in throughput; cR , mR  is 

increase in CPU and memory usage respectively 
 

Source: created by the authors 
 

The Python digital environment was used 
for optimization mathematical modeling using 
reinforcement learning methods. 

 
 
 
 
 
 
 

4. RESULTS 
 
In order to identify suitable solutions for 

the formulation of an effective model and algorithm 
for the processing of unstructured data streams to 
facilitate decision-making by the decomposition 
method of tested models (Table 1) was employed to 
ascertain the median component composition of 
software solutions of this type (Table 3). 

Table 3. Median component composition of models and algorithms for processing the stream of unstructured data 

Component Description Implementation examples 

1. Data sources 
Unstructured information streams (logs, video, 

audio, text, sensors) 
Kafka, Event Hubs, IoT brokers 

2. Ingestion Stream capture and routing Kafka, Kinesis Streams, Pub/Sub 

3. Pre-processing 
Normalization, cleaning, decomposition (wavelet, 

CEEMDAN), tokenization 
Spark, Flink, Logstash 

4. Enrichment 
Annotation, entity extraction, ontological 

correspondence 
NLP pipelines, NER, coreference, 

OBDA 

5. Streaming analytics CEP, ML-inference, fuzzy logic, rule-based engines 
Flink CEP, Azure Stream Analytics, 

Spark ML 

6. State/context storage 
Stateful processing for aggregation, semantics, or 

case study analysis 
RocksDB, Redis, NoSQL, GraphDB 

7. Sink Visualization, API, results storage 
Elasticsearch, Power BI, BigQuery, 

Neo4j 

8. Orchestration/Scaling Autoscaling, fault tolerance, QoS guarantees 
Kubernetes, autoscaling policies, 

serverless triggers 
Source: elaborated by the authors. 

For this component composition, we 
devised a generalized mathematical model for the 
streaming processing of unstructured data, aimed at 
supporting decision-making. 

1. Definition of input stream. The stream of 
unstructured events at time:
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        1 2, , , nD t d t d t d t  , (1) 

 

Where  id t U is an element of the 

unstructured data space (text, images, sound, video, 
sensory data). 

2. Ingestion and filtration function. 
The ingestion mechanism can be specified as a 
routing function:  

 : m  U S R  (2) 

where S is the space of semantically 
relevant signals obtained after the function as 
follows:.  

 broker filterf f    (3) 

where brokerf is routing (Kafka, Pub/Sub); 

filterf is predicative filtering. 

3. Normalization and 
decomposition. The pre-processing function is as 
follows:  

 : k RS  (4) 

where the function: 

 denoise decomp normf f f     (4) 

where denoisef is wavelet filtering / 

CEEMDAN; decompf is wavelet - or EMD-

decomposition; normf ‒ tokenization / 

vectorization. 
4. Semantic enrichment. The 

function as follows is used: 

 : k R G  (6) 

where G  is knowledge graph: 

 ,V EG , V entities  , E relation . 

Through the application: 

 NER coref linkingf f f    (5) 

5. Stream analytics. Stream model 
of decision making:

 

        ,t R F D t  D C  (6) 

 
where R  is decision-making logic (e.g. 

classification, alarm signal); F  is analytical 
operator (ML model, rule engine, CEP); C  are 
contextual variables (state, aggregates, history). 

6. State management. The set of 
stream aggregates: 

           1 2, , , ,n statet t t t f window     G  (7) 

 

where statef  is the aggregation in time 

windows tw  , sliding or tumbling. 

7. Inference and operating logic. 
The action function is formalized as follows:  

    : t t  D A  (8) 

where A  is the space of possible actions 
(API calls, triggers, visualizations). 

8. Optimization objective function. 
The goal is to minimize latency and maximize 
accuracy:

 

    1 2, , .
min

F
latency accuracy 

  
     E E  (11) 

 
under the limitations: 

 throughputQoS   (12) 

 decisionerror    (13) 

Using the obtained generalized 
mathematical model of processing the unstructured 
data streams to support decision-making and 
mathematical modeling methods, we will develop 

optimization solutions aimed at improving the 
performance of the existing algorithms (Table 1) in 
their median representation (Table 3): 

1. The goal of optimization is to 
build an adaptive configuration of functional 
blocks.  ,  ,  , F , R , which will ensure 
minimal delay L  , maximum decision-making 
accuracy A  , limited resource consumption (CPU, 
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memory, bandwidth), guaranteed fault tolerance fT  

and scalability S  . 

2. Objective function. Multi-criteria 
objective function in the form of a weighted sum:

  1 2 3 5 6
, , . ,
min 1 c m f

F R
w L w A w R w R w T w S

  
            J  (14) 

 
where L  is the average processing delay; 

A  is the accuracy of the decision-making model; 

cR  is the CPU load; mR  is the memory usage; fT  

is the number of restored/retained flows during a 
failure; S  is system throughput;   is weighting 

factors (importance of each goal), while 

 0,1iw   , and 1 1w   . 

3. Limitations. Introducing 
limitations regarding QoS (15), resource 
consumption (16) as well as for normalizing flows 
to avoid congestion (17):

 max min min min; ; ; f fL L A A S S T T    ; (9) 

 max max;c mR C R M  ; (10) 

   D t   . (11) 

 
4. Optimization algorithm. Utilizing 

the Python digital environment and employing 
advanced reinforcement learning methods, we shall 
delineate a step-by-step algorithm for the 
optimization of a generalized mathematical model 
concerning the streaming processing of 
unstructured data, aimed at enhancing decision-
making capabilities (1) - (13). The following steps 
are performed:  

- preliminary configuration 

initialization:  0 0, ,   ; 

- metrics collection (Table 2); 

- calculation of the objective 
function J  (14); 

- application of an adaptive change 
mechanism (reinforcement learning); 

- repetition until stabilization or 
threshold is reached   (13): 

  1 1t t t      J   (12) 

At the same time, we obtained a 
generalized mathematical representation of an 
optimized model for processing the streaming of 
unstructured data, aimed at enhancing decision-
making capabilities. 

  

 
 
   
   

max

min

max max

min min

;

;
min

, ;

, .

c m

f f

L L

A A

R C R M

T T S S








 

 

      

J  (13) 

 

where  , , , ,F R      is a set of 

configuration parameters. 
According to the generalized 

representation of the optimized unstructured data 
streaming processing model (19), the 
transformation of the generalized mathematical 
model (1) - (13) is obtained. 

1. The input stream of unstructured 
data has a similar formulation (1). 

2. Dynamic ingestion. The equation 
(3) takes the form: 

 
dyn qos

opt broker filterf f    (20) 

3. Adaptive pre-processing. The 
equation (5) takes the form:

 
wavelet adaptive stream

opt denoise decomp normf f f     (21) 

 
4. Context-sensitive enrichment. 

The equation (7) takes the form:

 
context aware lightweight semantic

opt NER coref linkingf f f     (22) 
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5. Optimized analytics. The 

equation (8) takes the form:

        ,opt opt opt optt R F D t  D C  (23) 

 
6. State management. The equation 

(9) takes the form:

      ,sliding
j state tt t f w   G  (24) 

 
7. Optimized action taking. The 

equation (10) takes the form:

    : QoS
opt t t  D A .    (25) 

 
8. Objective function. The equation 

(11) takes the form:

 
     

   
1 2 3

4 5

min
c m

dec

L R R

E A

     

   

                                      

E E E

E E
 (26) 

 
where 

 , , , ,opt opt opt opt optF R     , with the 

restrictions as follows: 

   maxL L  ; (27) 

   minA A  ; (28) 

   minS S  . (29) 

That being said, owing to the application 
of mathematical modeling methods, we developed 
an optimized algorithm for the processing of 
unstructured data streams to facilitate informed 
decision-making. The efficacy of this algorithm can 
be further enhanced through the multi-component 
integration of cutting-edge technologies (Table 4). 

 

Table 4. Median component composition of models and algorithms for processing the stream of unstructured 
Optimization 

direction 
Technological 

solution 
Technologies involved 

Optimization of 
processing 

infrastructure. The 
goal is low latency. 

Kafka + Zero-Copy 
I/O 

‒ Flink + Event Time Processing 
‒ Data locality-aware scheduling (Spark/Flink) | | Scalability | 
- Kubernetes autoscaling 
‒ Partitioned state in Kafka Streams / Flink 
‒ Serverless computing (AWS Lambda, Google Cloud 
Functions) | | Fault Tolerance | - Write-ahead logs (Kafka, 
Flink checkpoints) 
‒ RocksDB-backed state storage 
‒ Replication / failover strategies | 

Optimization of pre-
processing and 

analytics. The goal 
is reduction of the 

computational load. 

CEEMDAN + 
wavelet denoising 
(signal separation) 

‒ Approximate computing / sampling 
‒ Vectorization (spaCy, BERT-tokenizer) | | NLP/NLU 
optimization | - Lightweight models (DistilBERT, MiniLM) 
‒ Batch inference 
‒ ONNX/TensorRT acceleration | | Complex Event 
Processing (CEP) | - Apache Flink CEP 
‒ Azure Stream Analytics Rule Engine 
‒ Esper for pattern detection | 

State and 
aggregation 

management. The 
goal is efficient 

RocksDB 
(Kafka/Flink state 

backend) 

‒ Cassandra / Redis for aggregates 
‒ Windowed joins with pre-aggregation | | Contextual 
adaptation | - Dynamic window sizing 
‒ Adaptive stream joins 
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Optimization 
direction 

Technological 
solution 

Technologies involved 

storage. ‒ Semantic state compaction (GraphDB/Neo4j) | 

ML/AI inference 
optimization. The 

goal is speeding up 
the model. 

ONNX Runtime 

‒ TensorRT 
‒ TFLite / Edge TPU | | Response time reduction | - Model 
caching 
‒ Batching inference 
‒ Stream inference via TensorFlow Serving | | Automatic 
tuning | - AutoML (Google Vertex AI, H2O AutoML) 
‒ Reinforcement learning for pipeline optimization 
‒ Hyperparameter optimization (Bayesian search, Optuna) | 

QoS orchestration 
and control. The 

goal is auto-scaling. 

Kubernetes 
HPA/VPA 

‒ KEDA (Kubernetes Event-Driven Autoscaling) 
‒ Apache YARN capacity scheduler | | Monitoring and 
control | - Prometheus + Grafana 
‒ Elastic APM / New Relic 
‒ Flink Metrics / Spark UI | | Prioritization system | - QoS 
queues 
‒ Backpressure handling (Flink, Kafka) 
‒ Stream partition rebalancing  

Semantic 
optimization. The 
goal is semantic 

merging of streams. 

RDF Stream 
Processing (C-

SPARQL, CQELS) 

‒ Knowledge Graph Fusion 
‒ Context-aware reasoning | | Ontological compression | - 
OWL-based pruning 
‒ Top-k subgraph extractions 
‒ Reasoning cache layers  

Source: elaborated by the authors.

Optimization of the generalized algorithm 
for processing the unstructured data streams was 

carried out by modeling targeted technological 
solutions at each functional stage (Table 5).

Table 5. Comparative decomposition analysis of solutions for optimizing the algorithm for processing the unstructured 
streams 

Optimization 
direction 

Component Generalized algorithm Optimized algorithm 

Ingestion and 
routing 

Brokers Apache Kafka 
Kafka + partition rebalance + QoS-

aware topics 

Filtration Fixed rules 
Dynamic filtering based on a 

policy engine (e.g. Flink filters 
with QoS SLA) 

Buffering FIFO queues 
Backpressure-aware ingestion 

(Flink, Kinesis) 

Pre-processing 

Cleaning/Denoising Wavelet 
CEEMDAN + adaptive wavelet 

decomposition 

Vectorization TF-IDF / static 
DistilBERT / MiniLM via ONNX 

or TensorRT 

Parallelism Batch processing 
Stream-aware pipeline (micro-

batch / stateful operators) 

Semantic 
enrichment 

NER/Linking Room, spaCy 
context-aware NER (REBEL) + 

entity pruning 

Coreference Rule-based 
Lightweight neural coreference 

(NeuralCoref, SpanBERT) 

Knowledge graphs Neo4j regular 
Graph embedding + top-k RDF 

slicing + reasoning cache 

Analytics and 
decision making 

Model XGBoost / Logistic Regression 
DistilBERT, GRU, Transformers 

with priority processing 

Inference Full precision 
Quantized / ONNX / TensorRT 

inference 

Decision making Static rules 
Reinforcement learning / Policy 

optimization 

CEP Fixed templates 
Flink CEP with dynamic pattern 

update 
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Optimization 
direction 

Component Generalized algorithm Optimized algorithm 

State management 
Status repository Redis / PostgreSQL 

RocksDB + pre-aggregated sliding 
windows 

Windows Fixed size 
Adaptive sliding / session-based 

windows 

Orchestration, 
Scaling, and Fault 

Tolerance 

Containerization Docker Kubernetes + KEDA autoscaling 

Monitoring Manual 
Prometheus + Grafana + dynamic 

QoS alerts 

Scaling Vertical 
Horizontal event-driven (Flink, 

Kinesis, Dataflow) 
Source: elaborated by the authors. 

 
Thus, the optimized algorithm (Table 4, 

Table 5) implements adaptive stream processing 
through the utilization of compact neural models 
(ONNX, DistilBERT), asynchronous event 
processing (Kafka, Flink), QoS management via 
backpressure and dynamic rebalancing, stateful 
processing based on RocksDB, and semantic 
alignment using knowledge graphs and reasoning 

cache to enhance the cognitive consistency of 
conclusions.  

In order to practically evaluate the 
optimized algorithm for processing unstructured 
data streams to support decision-making, a model 
calculation was performed using efficiency metrics 
(Table 2) in the Python programming environment 
(Table 6).

Table 6. Comparative calculation of efficiency metrics of generalized and optimized streaming algorithms for 
unstructured data analysis 

Performance metrics 
Model values of the generalized 

algorithm 
Model values of the optimized 

algorithm 
Latency (ms) 250.0 65.0 
Accuracy (%) 82.5 91.3 

Throughput (events/sec) 1100.0 2200.0 
CPU Load (%) 75.0 48.0 

Memory Usage (MB) 1850.0 1020.0 
Fault Tolerance (%) 86.0 96.5 
Adaptability Score 0.52 0.88 

Semantic Alignment Score 0.64 0.91 
Scalability Index 1.4 3.1 

Source: elaborated by the authors. 
 

Hence, the results of the comparative 
assessment (Table 6) substantiate that the optimized 
algorithm provides a significant increase in the 
operational efficiency of unstructured data 
streaming processing systems, ensuring the 
minimization of latency, enhanced accuracy of 
analytics, increased throughput, optimization of of 
computing resources, and improved adaptive-
semantic features. These characteristics validate its 
viability for practical implementation within real-
time smart decision support systems. 

5. DISCUSSION 
 
Let's juxtapose the obtained results in 

terms of compliance with the actual scientometric 
horizon. 

 
Compared to the Turet & Costa [21] 

method, which achieved 80% accuracy through 

data structuring, the optimized algorithm achieved 
91.3% accuracy through adaptive processing and 
semantic integration. This indicates the higher 
efficiency of real-time streaming methods without 
the need for full data transformation. 

 
Mehmood & Anees [22] optimized real-

time ETL by accelerating stream-disk joins, 
reducing disk load. Accordingly, the optimized 
algorithm achieves higher efficiency through 
asynchronous processing and semantic matching 
without direct dependence on disk operations. 

 
Kumar et al. [23] focused on content 

management of unstructured data with the 
subsequent application of analytical engines. The 
optimized algorithm implements streaming 
processing with integrated semantic aggregation 
and real-time inference without intermediate 
storage in content repositories. 
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Koschmider et al. [24] examined the 

application of process mining to analyze 
unstructured data, focusing on challenges and 
underlying solutions. Instead, the optimized 
algorithm implements semantic streaming 
processing with real-time event correlation without 
the classic process discovery stage. 

 
The Maxima [25] study proposed 

integrating unstructured data into RDBMS via 
LSTM classification to improve analysis accuracy. 
The optimized algorithm provides stream-native 
processing with ontological aggregation and real-
time inference without transactional structuring. 

 
Mollá et al. [26] developed an adaptive 

DSS that incrementally integrates data streams for 
explainable inferences in unstable environments. 
The optimized algorithm instead implements 
stream-oriented processing with real-time semantic 
enrichment and predictive reasoning without post-
processing stages. 

 
Jain & Fallon [27] introduced UDNet, a 

multi-strategy ML framework for processing 
multimodal unstructured data using Adaptive 
Confidence Bound and Multi-Fidelity Meta-
Learning, whereas the optimized algorithm 
provides stream-native processing with real-time 
model selection and semantic fusion without a 
multi-layered AutoML orchestration strategy. 

 
König et al. [28] undertook a systematic 

review of the unstructured data utilization in 
process mining, elucidating the dominance of 
textual sources and an emphasis on event 
extraction. On the other hand, the developed 
optimized algorithm performs continuous stream-
native event enrichment and ontological matching 
without the need for prior formation of classical 
event logs. 

 
Richmond [29] investigated the application 

of transformer models, RNNs, and GNNs to stream 
processing of unstructured social media data with a 
focus on sentiment analysis and trend forecasting. 
In turn, the optimized algorithm implements low-
latency multimodal fusion and semantic stream 
reasoning without classical staged processing of 
text data. 

Methuku [30] developed an AI/NLP 
architecture for real-time epidemiological 
monitoring based on NER, sentiment analysis, and 
geospatial trend mining. The optimized algorithm 

implements continuous multilingual stream parsing 
and low-latency anomaly detection without a 
separate static aggregation phase. 

 
A comparative analysis of the considered 

approaches shows that most models for processing 
unstructured data streams are based on transactional 
structuring, content management systems, batch-
oriented transformation, or process-oriented event 
log extraction. Accordingly, the optimized 
algorithm implements asynchronous stream-native 
processing with low-latency semantic fusion, 
dynamic event enrichment, multilingual stream 
parsing, adaptive anomaly detection, and real-time 
predictive reasoning without staged aggregation or 
multi-level AutoML adaptation, which provides 
increased throughput, fault-tolerance, cognitive 
interpretability, and scalability in real-time modes. 

6. LIMITATIONS 
 
The current study is limited by the lack of 

validation in high-entropy streaming environments 
and dynamic concept drift. In addition, the 
algorithm has not been stress-tested on ultra-scale 
heterogeneous datasets with a variable ontological 
structure of streams. 

7. RECOMMENDATIONS 
 
It is recommended to expand the validation 

of the optimized algorithm in high-entropy, multi-
source streaming conditions with active control of 
concept drift and ontological evolution. It is also 
expedient to conduct scalable experiments on ultra-
large multimodal datasets using dynamic resource 
orchestration and adaptive retraining strategies. 

8. CONCLUSION 
 
Based on the decomposition of tested 

models of streaming processing of unstructured data 
(Table 1) and the formalization of the mathematical 
apparatus (equations (1)–(29)), an optimized 
algorithm was developed, focused on minimizing 
Latency, maximizing Accuracy, and ensuring a high 
Scalability Index with guaranteed Fault Tolerance. 
Optimization was achieved through the use of 
asynchronous ingesting infrastructure (Kafka + 
Zero-Copy I/O), adaptive pre-processing 
(CEEMDAN, wavelet denoising), lightweight 
inference models (ONNX, DistilBERT), semantic 
enrichment through knowledge graphs and dynamic 
QoS orchestration (Kubernetes, KEDA). The results 
of comparative modeling in the Python environment 
(Table 6) recorded a 3.8-fold decrease in Latency 
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(from 250.0 to 65.0 ms), an increase in Accuracy to 
91.3%, a doubling of Throughput (from 1100 to 
2200 events/sec), a 27% decrease in CPU Load and 
45% in Memory Usage, as well as a significant 
improvement in Adaptability Score (from 0.52 to 
0.88) and Semantic Alignment Score (from 0.64 to 
0.91). Thus, the optimized algorithm demonstrated 
enhanced cognitive consistency, operational 
efficiency, and suitability for application in real-
time intelligent Decision Support Systems.  

 

The scientific novelty of the current 
research lies in the formalization of a mathematical 
model of streaming processing of unstructured data 
with dynamic ingestion, semantic enrichment, and 
optimization based on reinforcement learning, 
which ensures minimized Latency, increased 
Accuracy and Fault Tolerance in real time. 

 
The practical value of the results obtained 

lies in the development of an optimized algorithm 
that provides increased throughput, reduced 
computational costs, and increased adaptability, 
which allows its effective application in Smart City, 
financial analytics, medicine, and cybersecurity 
systems. 
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