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ABSTRACT 
 

This text is an iterative major study that discusses colorectal cancer (CRC), which is also a formidable 
malignancy for most countries in the world, with early detection making it a boon for improving survival 
rates. This is an empirical review of recent works that apply machine learning (ML), deep learning (DL), 
and multi-omics-based biosensor systems toward CRC diagnosis and prognosis. In the field of Information 
Technology (IT), this research fills a fundamental requirement for the development of deployable 
healthtech systems by providing a standardized, computationally grounded framework for performance 
benchmarking. This framework allows for fair comparisons and reproducibility. This review, unlike other 
previous reviews, applies a six-metric evaluation framework accuracy, precision, recall, RMSE, inference 
delay, and computational complexity to benchmark models systematically between imaging and non-
imaging modalities. Hybrid models such as CMNV2, DeepCPD, and MACGAN achieved classification 
accuracies exceeding 99%, with CMNV2 proving most effective at 99.95% and perfect recall for 
histopathological datasets. Furthermore, designs utilizing a transformer architecture like MLPFormer and 
MSNet outperformed baseline models in segmentation tasks, improving Dice scores of 3-5%. Among these 
mutants, however, genomic and survival models for example DeepSEA Further enhance this prediction 
with good interpretability but have moderates performance (CIindex ~0.71). The visual analytics using the 
above medium like violin plots, heat maps, and correlation will reveal the performance trends and the 
expression of trade-offs made between accuracy and model complexity. The paper, therefore, establishes a 
high-resolution benchmarking map that informs one on model selection depending on application needs 
ranging from polyp detection to survival predictions. Future research directions are identified toward the 
goal of having explainable and lightweight multi-modal architectures and validation in multi-center 
prospective clinical trials in process. 
Keywords: Colorectal Cancer, Deep Learning, Machine Learning, Diagnostic Modeling, Survival 

Prediction, Scenarios. 
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1. INTRODUCTION  

Colorectal cancer (CRC) continues to be a major 
public health burden across the globe, with the third 
most commonly diagnosed progressing in males 
and the second in females. With an increasing 
burden of cases with a considerable proportion 
being detected at advanced stages [1, 2, 3], 
therefore, an early diagnosis is key to reducing 
mortality and saving survival outcomes. 
Conventional diagnostic tools, including 
colonoscopy, biopsy, and imaging procedures, have 
variable sensitivities and specificity. But resource 
consumption, operator dependency, and failure to 
absorb the increasing number of high-dimensional 
patient data samples have made these modalities 
less attractive. In consequence [4, 5, 6], the advent 
of artificial intelligence (AI), namely machine 
learning (ML) and deep learning (DL) techniques, 
has ushered in several transformative initiatives 
enhancing CRC diagnosis, segmentation, staging, 
and risk predictions. Despite the fact that CRC 
innovations powered by AI have exploded, there is 
an inchoate territory punctuated by siloed studies 
focusing on isolated pipelines such as 
histopathological image classification, colonoscopy 
with polyp segmentation, genetic biomarker 
analysis, or patient-specific survival predictions. 
This putative coherence should somehow qualify 
their comparative effectiveness. Of greater concern, 
most prior reviews are typically very weak in their 
numerical rigor, which makes it impossible to 
standardize them oil the methodology, providing 
only descriptive qualitative reviews without 
empirical measure benchmarking or architectural 
scrutiny. This paradigm limits their translation for 
clinical purposes and makes it difficult for actual 
researchers and clinicians to assess trade-offs, 
scalability [7, 8, 9], and real-time applicability of 
competing models. For the above reasons, we 
anticipate that the gap for a solidly statistical, 
multimodal, integrative review of contemporary 
CRC detection mechanisms across various data 
types, model classes, and application settings is 
conspicuous and undeniably urgent in process. 

1.1 Motivation for the Study 

The motivation behind this work stems from four 
main gaps brought out in the literature. Absence of 
Quantitative Benchmarking: While many reviews 
list model types and datasets, very few synthesize 
key performance metrics such as accuracy, recall, 
precision, Dice coefficient, or inference delay 

across papers. Without this, performance claims 
remain anecdotal and non-reproducible in the 
process. Lack of Cross-Modality Comparison: 
Imaging-centric studies dominate the literature, 
often ignoring advancements in genomic analysis, 
transcriptomics, proteomics, or patient-specific 
clinical data modeling processes. There exists a 
need for reviews that analyze ML/DL tools across 
imaging and non-imaging domains. Insufficient 
Discussion of Computational Trade-Offs: Clinical 
deployment hinges not just on accuracy but also on 
model complexity, interpretability, delay, and data 
requirements. Yet, few reviews discuss these 
dimensions in sufficient detail in the process. No 
Structured Visual Analytics: The interpretive power 
of plots—such as heatmaps, correlation matrices, or 
F1-score trends—is often missing in prior works in 
the process. Such visual tools are essential for 
discerning global performance patterns and 
decision-making trade-offs. The current review is 
driven by the necessity to overcome these 
limitations through an empirical, statistically 
enriched, and visually annotated synthesis of 40 
state-of-the-art CRC detection and prognosis 
studies in process. These studies span a variety of 
methodological frameworks—including ResNet 
variants, U-Net architectures, attention-based 
transformers, ensemble classifiers, multi-omics 
analytics, and explainable AI techniques. 

1.2 Scope and Contribution 

This review undertakes a serious analysis of peer-
reviewed publications that have recently appeared 
pertaining to CRC and other cancers analyzed via 
computational modeling. The contributions of this 
work are manifold, Multidimensional Evaluation 
Framework: Each model is analyzed using six 
numerical metrics—accuracy, precision, recall, 
RMSE, inference delay, and computational 
complexity—enabling standardized comparisons. 
Methodological Diversity: Various methods such as 
CNNs, GANs, Vision Transformers, ensemble 
learning, logistic regression, decision trees, PPI 
networks, spatial transcriptomics, and survival 
analysis models are all included in the review. 
Numbered Tables and Graphs: Structured tables 
pool performance values, whereas bar graphs, 
scatter plots, violin plots, heatmaps, pie charts, and 
joint density plots would provide visual insight into 
model behavior across dimensions in the process. 
Strength-Limitation Mapping: Each of the papers 
reviewed comes with an exhaustive narrative of 
strengths and weaknesses, unmasking real-time 
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feasibility, generalizability, overfitting, 
interpretability, and dataset availability gaps in 
process. Insights Across Domains: The review 
synthesizes works that model polyp detection, 
gland segmentation, and genetic biomarker 
identification (e.g., IPO11, ferroptosis-related 
genes) with long non-coding RNA modeling to 
present a consolidated view of CRC diagnostics. 
Pathways to Future Research: The review proposes 
strong recommendations for future studies, such as 
developing multi-centre datasets, interpretable 
models, fusion-based pipelines, lightweight 
architectures, and validation directed toward future 
validations in process. 

The IT community has a critical opportunity to help 
solve this problem by creating healthcare models 
that are computationally advanced, scalable, and 
easy to understand. When looking at IT systems 
engineering from a real-world integration 
standpoint, there is a noticeable absence of 
standardized computational evaluation methods, 
model scalability assessments, and deployment 
feasibility analyses. So, this research fills a 
significant need in IT research by creating a 
repeatable, multi-dimensional benchmarking 
framework that evaluates 40 cutting-edge CRC 
modeling methods from imaging and non-imaging 
domains. 

1.3 Impact of This Work 

This review puts high-accuracy models such as 
CMNV2, MACGAN, and DeepCPD next to the 
interpretable yet throughput-low genomic tools 
such as SHAP-based classifiers and survival 
predictors. This gives a balanced understanding of 
the CRC modeling landscape. Actionable 
intelligence for data scientists, biomedical 
researchers, and clinical practitioners alike in 
process. In academy terms, this paper is going to 
act as a tutorial and a roadmap-aiding researchers in 
identifying high-performing models and trading-off 
performance on the architecture design between 
hybrid or fused based on empirical evidences. By 
demolishing the barriers existing between statistical 
analysis, methodological taxonomy, and clinical 
relevance, this review will pave the way for a new 
generation of CRC diagnostic platforms that not 
only provide accuracy but also possess robustness, 
interpretability, and deploy ability in the process. 

1.4 Risks to the Reliability 

Despite careful planning, this research nevertheless 
faces a number of challenges to its internal and 
external validity: 

1.There is a selection bias because only models 
having publicly available performance metrics 
and a peer-reviewed status were considered for 
inclusion in the review, even though it covers 
40 models from the past. We may have missed 
relevant models that were published in sources 
that are not indexed or in whitepapers from the 
industry. 

2.Absolute comparisons were, at best, 
approximations due to uneven assessment 
protocols, inconsistent evaluation setups, and 
diverse datasets used in the original 
investigations. While we did our best to 
standardize the numerical estimates, we did 
infer some performance figures, so there may be 
some small variations. 

3.Research did not consistently report on all 
relevant parameters. Surrogate or similarly 
related values were utilized in these instances. 
The consistency of interpretations across 
models could be affected by this. 

4.A large number of models were trained using 
tiny, regional datasets that were not validated 
externally. This raises the question of whether 
or not these performance claims are applicable 
in international clinical contexts.  

5.Tool Reproducibility: We were unable to do 
direct replication and head-to-head testing on 
several of the models we examined because 
their source code was not publicly available. So, 
rather than a reimplementation or 
rebenchmarking, this study is still a meta-
analysis synthesis. 

When considering the clinical or engineering 
implications of this review, it is important to keep 
in mind these limitations, which are a reflection of 
the real-world constraints of literature-based meta-
analysis. 

1.5 Criticism Standards and Their Justification 

Aiming for a balanced relevance to clinical 
outcome utility and IT system design, the six 
performance and design criteria utilized in this 
review accuracy, precision, recall, RMSE, inference 
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latency, and computing complexity were 
purposefully chosen: 

In diagnostic classification tasks, accuracy is the 
most commonly reported metric since it captures 
the total correctness of predictions. 

Accuracy: Essential in healthcare settings for 
minimizing unnecessary procedures and biopsies, 
as well as for making safe diagnostic conclusions. 

Important in colorectal cancer (CRC), where early 
discovery greatly improves prognosis, recall 
(sensitivity) has a direct effect on early cancer 
detection by decreasing false negatives. 

For regression-based tasks like survival estimation 
and biomarker prediction, the Root Mean Square 
Error (RMSE) is a useful metric to use since it 
gives insight into the extent of the error. 

Inference Delay: Measures how long it takes for a 
model to return findings after input; this is a crucial 
metric for endoscopic and surgical real-time 
diagnostics. 

Scalability, energy consumption, and training and 
deployment costs are all aspects of computational 
complexity that are critical for integration in edge 
devices, cloud platforms, or clinical settings with 
limited resources. 

2. REVIEW OF EXISTING MODELS 
FORCOLORECTAL CANCER ANALYSIS 

Colorectal cancer (CRC) is still an issue of great 
concern internationally. Among malignancies, it 
ranks high for the diagnoses given to men and 
women. Much research has gone into its molecular 
basis, advances made in diagnosis, and the 
computational means by which the disease can be 
addressed, forming a complicated and evolving 
global landscape for research into this multi-faceted 
topic. This literature review encapsulates these 
currents in CRC research today, specifically within 
the fields of biomarker identification, the 
characterization of the tumor microenvironment 
(TME), and the creation of AI and deep learning-
based models. This very much takes an iterative 
and empirical eye, so that an intelligent comparison 
can be made for detection, classification, 
segmentation, and prognosis. 

2.1 Molecular Biomarkers and Genomic Drivers 

At a molecular level, the role of some specific 
proteins and genetic mutations in CRC 
development has become more topical. Importin-11 
(IPO11), which is a nuclear transport receptor, was 
reported as a potential therapeutic biomarker since 
it is up-regulated in subtypes of CRC [1]. It was 
shown that the IPO11-β-catenin axis regulates cell 
proliferation, and alterations in the IPO11 gene 
corresponded to mutated survival outcomes. In the 
same manner, systematic review was performed for 
ferroptosis-related genes and long non-coding 
RNAs (lncRNAs) to determine their prognostic 
significance. Meta-analysis of 220 reports brought 
to light different genes (e.g., CDKN2A, NOX4) and 
lncRNAs (e.g., ZEB1-AS1) that were significantly 
impactful to patient outcome [3] sets. These show 
the molecular heterogeneity of CRC and accentuate 
the rationale for omics data integration into a 
diagnosis framework in process. 

2.2 Tumor Microenvironment and Spatial 
Transcriptomics 

The tumor microenvironment (TME) is 
increasingly acknowledged to be a key regulator of 
CRC. Studies of the last few months or years have 
used spatial transcriptomics and RNA sequencing 
to map out the architecture of immune and stromal 
cells in CRC tissue [2]. A number of new 
computational deconvolution techniques such as 
MCPcounter, XCELL, and EPIC are providing 
conditioning levels in profiling cellular 
subpopulations. For instance, an association was 
discovered between two fibroblast subgroups (F1 
and F2) that were enriched into cancer-associated 
pathways like oxidative phosphorylation and E2F 
targets carrying interesting genes (e.g., APOE, 
CXCL10) and outcome-related immunoregulation 
sets. These results illustrate the importance of TME 
heterogeneity as a way to define disease trajectory 
and response to treatments. 
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Figure 1. Model’s Accuracy Analysis 

2.3 Deep Learning in CRC Detection and 
Classification 

Iteratively, Next, as per table 1 & figure 1, 
Advances in artificial intelligence that include deep 
learning have improved the analysis of images for 
CRC at a much higher rate in recent years. High 
diagnostic accuracy for colon cancer detection is 
provided by the ResNet-based models. Among 
these, CoC-ResNet50V2 achieved an astonishing 

accuracy of 99.55% for histopathologic images, 
supporting its applicability in the clinic [4]. A 
CNN-based model, DeepCRC, has also marked a 
strong performance across different CRC stages, 
proving the effectiveness of CNN on the diagnostic 
workflow [8] In process. Transformer architectures 
have also recently emerged in this area sets. The 
DeepCPD model, which combines linear multihead 
self-attention, outshone other models designed for 
polyp classification from colonoscopy images, 
achieving more than 98% in all the critical metrics 
[6]. Also, MLPFormer, equipped with a multi-head 
MLP mixer, produced a segmentation accuracy that 
surpassed existing segmentation baselines by a 
margin of 3% in the dice coefficient, showing how 
valuable these hybrid transformer architectures are 
for tissue segmentation [5] in process. 

 

Table 1. Model’s Empirical Review Analysis 

Refer
ence 

Method 
Used 

Findings Strengths Limitations Recommendatio
ns to Overcome 
these Limitations 

[1] Multi-omics 
biomarker 
analysis 
using IPO11 
expression 
profiling 

IPO11 is a promising 
therapeutic biomarker 
in CRC, with high 
expression linked to 
poor survival 

Integrates 
multi-omics 
data and 
bioinformatic 
platforms 

Relies on 
existing 
datasets without 
experimental 
validation 

Future work 
should include in 
vitro and in vivo 
functional 
validation studies 

[2] Spatial 
transcriptomi
cs with 
RNA-seq 
and 
deconvolutio
n algorithms 

Reveals spatial 
heterogeneity in CRC 
tumor 
microenvironment 

Provides high-
resolution 
spatial atlas of 
cell types 

Limited by 
sample 
diversity and 
lack of temporal 
dynamics 

Expand datasets 
and integrate 
temporal analysis 
for progression 
tracking 

[3] Meta-
analysis of 
ferroptosis-
related genes 
and lncRNAs 

Identifies several genes 
and lncRNAs with 
prognostic significance 
in CRC 

Comprehensiv
e integration 
of multiple 
studies 

Lacks 
experimental 
validation of 
prognostic 
markers 

Experimental 
studies are needed 
to confirm 
prognostic utility 

[4] Deep 
learning 
using ResNet 
variants on 
histopatholog
ic images 

CoC-ResNet50V2 
achieved superior 
accuracy in CRC 
detection 

High precision 
and recall 
across 
multiple 
ResNet 
models 

Limited to static 
image datasets 

Integrate real-time 
image acquisition 
for clinical 
feasibility 

[5] Transformer-
based 
MLPFormer 
for tissue 

Enhanced segmentation 
accuracy in similar 
tissue stages 

Improves edge 
detection and 
multi-scale 
feature fusion 

Complex 
architecture 
may limit 
interpretability 

Develop 
simplified and 
explainable 
transformer 
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segmentation variants 

[6] DeepCPD 
model 
combining 
transformers 
with LMSA 

Accurately classifies 
colonoscopy images 
and reduces training 
time 

High 
performance 
across 
multiple 
datasets 

Model 
performance in 
low-resource 
settings is 
unclear 

Assess 
generalizability in 
real-world clinical 
environments 

[7] Machine 
learning 
using five 
classification 
algorithms 

Categorical Boosting 
outperformed other 
methods on histological 
data 

Compares 
multiple 
algorithms 
with strong 
evaluation 
metrics 

Conventional 
ML methods 
may 
underperform 
on complex 
patterns 

Hybrid 
approaches with 
deep learning 
could improve 
performance 

[8] CNN-based 
DeepCRC 
model for 
CRC stage 
classification 

Demonstrates high 
robustness in stage-
wise classification 

Effective in 
detecting 
varying CRC 
stages 

Dependent on 
dataset quality 
and annotations 

Include multi-
center datasets to 
improve 
generalizability 

[9] AI-based 
detection 
system using 
image 
processing 
and ML 

Improves polyp 
detection and 
classification in 
endoscopic images 

Enhances 
diagnostic 
accuracy 
during 
colonoscopy 

Interpretability 
and real-time 
deployment not 
addressed 

Develop 
explainable 
models for real-
time use 

[10] Predictive 
modeling 
using logistic 
regression 
and decision 
trees 

Identifies demographic 
and clinical predictors 
for CRC 

Supports 
personalized 
care through 
risk-based 
screening 

Limited to 
structured data 
inputs 

Integrate 
unstructured 
clinical notes and 
imaging data 

[11] Attention-
guided 
segmentation 
with TTA for 
polyp 
detection 

Significant accuracy 
improvement with TTA 
integration 

Lightweight 
model with 
high 
segmentation 
metrics 

TTA increases 
computational 
overhead 

Optimize TTA 
strategies for 
faster inference 

[12] Genetic 
association 
analysis 
using LDSC 
and LCV 

Finds genetic overlaps 
between CRC and 
other cancers 

Identifies 
shared gene 
loci across 
multiple 
cancer types 

No functional 
validation of 
associations 

Confirm findings 
through 
laboratory and 
clinical studies 

[13] Graph-based 
random walk 
with restart 
for essential 
protein 
discovery 

Highlights key proteins 
in CRC-related PPI 
networks 

Combines 
topological 
and biological 
data 
effectively 

High 
complexity may 
hinder 
scalability 

Develop 
computationally 
efficient variants 
for large networks 

[14] Deep 
learning with 
CMNV2 
architecture 
for image 
classification 

Achieves near-perfect 
accuracy in colon 
cancer classification 

Excellent 
performance 
across 
multiple 
metrics 

May not 
generalize to 
unseen clinical 
settings 

Validate model in 
diverse, real-
world 
environments 

[15] Deep-SEA 
framework 

Improves accuracy in 
post-cancer survival 

Utilizes 
clinical, 

Requires large, 
multimodal 

Establish data-
sharing 
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using 
multimodal 
data for 
survival 
estimation 

prediction radiology, and 
histology data 
synergistically 

datasets for 
training 

frameworks to 
access varied 
datasets 

[16] MSFF-UNet 
with spatial 
attention and 
RFEM for 
gland 
segmentation 

Enhances segmentation 
of colorectal glands 

Improves 
DICE and 
MIOU over 
standard U-
Net 

Model 
complexity may 
limit clinical 
integration 

Streamline 
architecture for 
real-time 
segmentation 
tasks 

[17] GDSR 
algorithm 
with SMOTE 
and ECFS 
for feature 
selection 

Improves accuracy and 
reduces false detection 
rates 

Comprehensiv
e 
preprocessing 
and feature 
engineering 

Generalizability 
across datasets 
not established 

Test across 
diverse CRC 
datasets to 
confirm 
robustness 

[18] CNN-based 
model for 
malignant vs. 
benign CRC 
tissue 
detection 

Enhances diagnostic 
accuracy in 
histopathology 

Effective 
feature 
extraction 
with CNN 

No comparison 
with other state-
of-the-art 
models 

Include 
comparative 
benchmarks for 
validation 

[19] AI 
framework 
for 
endoscopic 
polyp 
detection and 
classification 

Significant 
improvements in polyp 
identification rates 

Real-time 
applicability 
in endoscopic 
procedures 

Details on 
latency and 
deployment 
speed lacking 

Evaluate in live 
clinical settings to 
assess 
performance 

[20] Machine 
learning 
using clinical 
and 
demographic 
data for CRC 
prediction 

Enables early detection 
and patient 
stratification 

Simplifies 
integration 
into clinical 
workflows 

Limited to 
traditional ML 
algorithms 

Explore deep 
learning models 
for improved 
predictive power 

 

Figure 2. Model’s Precision Analysis 

2.4 Optimized Machine Learning and Hybrid 
Architectures 

Iteratively, Next, as per table 2& figure 2, Not all of 
the classical machine learning models have 
mastered the art of skipping into some oblivion. 

Decision trees, K-nearest-neighbors, and category 
boosting models have maintained high 
classification accuracy in process. The latter 
achieved an accuracy of 90.67% with good 
sensitivity and specificity on histological image 
datasets [7]. In addition to this, CNN-based 
ensemble learning strategies with attention and 
residual connectionsCAR model [30], and with 
multi-headed CNNsMHCNN [25], increase 
classification performance with decreased 
computational effort. Some of the more recent 
hybrid models, CMNV2 being one of them, which 
combines CAFFE and MobileNetV2 architecture, 
achieved 99.95% accuracy differentiating colon 
adenocarcinoma from benign tissue [14] in process. 
Likewise, MSFF-UNet improved gland 
segmentation in colorectal tissues by 1.95% in dice 
scores due to channel-wise multi-scale feature 
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fusion and boundary loss optimization [16] sets. 
These models outperform the traditional methods 
by a good margin in all the comparative metrics, 
substantiating the synergy between architectural 
innovations and domain-specific optimizations. 

 

2.5 Endoscopic Imaging and Real-Time 
Diagnostics 

In endoscopic image analytics, real-time 
classification and segmentation are critical. Models 
such as PVTAdpNet, which fuse Pyramid Vision 
Transformer with adapter-based residual blocks, 
have shown candidates for clinical deployment with 
high dice coefficients (0.8851) and intersection-
over-union scores (0.8167) [31]. Similarly, 
attention U-Net derivatives have high accuracy in 
polyp boundary delineation [40]. These systems are 
designed to help endoscopists in real-time during 
colonoscopy, to combat a long-standing issue 
characterized by high polyp miss rates [31] in the 
process. 

 

2.6 Multimodal and Prognostic Frameworks 

Beyond detection, it is of utmost importance to 
predict survival outcome and treatment response. 
Deep-SEA is a deep learning platform that 
combines clinical, radiological, and histological 
data to provide a survival prediction with a 
concordance index of 0.7181 [15]. This non-linear, 
patient-specific model optimizing the Cox model's 
hazard baseline is indeed a big step forward in 
personalized prognosis assessments.In a similar 
vein, GDSR-like approaches combined with ECFS, 
SMOTE, and other feature selection methods 
showed increased accuracy in early detection along 
with computational efficiency [17]. Interpretable AI 
was also stressed in works utilizing SHAP and 
LIME for gene importance estimation in cancer 
classification [32], lending support to clinical 
transparency and the decision-making process. 

 

Table 2. Model’s Empirical Review Analysis 

Refere
nce 

Method 
Used 

Findings Strengths Limitations Recommendati
ons to 
Overcome 
these 
Limitations 

[21] CNN-based 
classification 
using 
multiple pre-
trained 
models 

High accuracy across 
various architectures 
for colon and lung 
cancer detection 

Strong 
comparative 
analysis across 
CNN models 

Focused only on 
static dataset 
without real-time 
validation 

Expand study to 
include live 
clinical settings 
for validation 

[22] MACGAN 
with multi-
head 
attention and 
GAN for 
image 
classification 

Achieves near-
perfect accuracy in 
histopathology image 
classification 

Combines 
attention, GAN, 
and optimization 
for enhanced 
accuracy 

GAN-based 
models may face 
training 
instability 

Implement 
stability 
techniques and 
test on real-time 
data 

[23] LBP with 
transfer 
learning for 
cancer 
classification 

LBP + transfer 
learning yields 99% 
accuracy in 
colon/lung cancer 
detection 

Simple, efficient, 
and high-
performing 
framework 

Limited 
robustness 
testing across 
datasets 

Validate on 
external 
datasets and 
noisy data 

[24] MSBC-Net 
for MRI-
based rectal 
cancer 
segmentation 

Accurately segments 
rectal tumors with 
dice coefficient of 
0.801 

Effective region-
based 
segmentation 
with deformable 
modules 

MRI-specific; 
generalizability 
to other imaging 
modalities 
untested 

Extend 
validation to 
CT and 
endoscopy 
modalities 
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[25] Lightweight 
MHCNN 
with 
Tikhonov-
based 
preprocessin
g 

High accuracy model 
with quantization for 
faster deployment 

Efficient training 
and testing with 
high 
performance 

Performance not 
benchmarked on 
multi-class 
classification 

Expand model 
capability to 
multi-class 
colon lesion 
detection 

[26] MSNet with 
CNN-
transformer 
hybrid for GI 
segmentation 

Achieves strong 
performance on 
endoscopic datasets 
for colon polyp 
segmentation 

Combines multi-
scale and 
boundary 
modules 
effectively 

Evaluated only 
on benchmark 
sets 

Conduct cross-
hospital testing 
to assess 
generalizability 

[27] SENET for 
CT-based 
lung cancer 
detection 
with 
optimization 
filters 

Attains 99.2% 
accuracy with image 
preprocessing 
enhancements 

Robust 
preprocessing 
and effective 
CNN usage 

Focused on lung 
CT; lacks 
integration into 
clinical pipelines 

Evaluate 
deployment 
strategies in 
hospital CT 
systems 

[28] DL 
framework 
for RCC 
grading using 
H&E images 

Outperforms seven 
baseline models in 
grade prediction 
accuracy 

Effective in 
distinguishing 
RCC grades 
from pathology 
images 

Model 
explainability not 
addressed 

Incorporate 
explainable AI 
tools for 
clinical trust 

[29] Review of 
ML/DL for 
cancer 
survival 
prediction 
using 
genomic data 

Identifies trends and 
gaps in survival 
models across 
cancers 

Comprehensive 
synthesis of 
existing methods 

Primarily 
literature-based 
with no new 
model proposed 

Translate 
findings into 
prototype 
survival models 
for testing 

[30] Hybrid CAR 
model with 
CNN, 
attention, and 
residual links 

Achieves over 98% 
accuracy in breast 
cancer image 
datasets 

Mitigates 
vanishing 
gradients with 
residuals 

Tested only on 
breast cancer 
datasets 

Replicate and 
benchmark 
model on 
colorectal data 

[31] PVTAdpNet 
for polyp 
detection 
using vision 
transformers 

High segmentation 
scores in out-of-
distribution 
colonoscopy datasets 

Lightweight and 
real-time capable 

Polyp types are 
limited; lacks 
pathology 
validation 

Extend analysis 
to rare polyp 
types and 
histology 
linkages 

[32] Explainable 
ML for gene-
based 
bladder 
cancer 
classification 

Uses SHAP, LIME, 
and PFI to highlight 
effective genes 

Promotes 
interpretability 
and gene 
relevance in 
classification 

Limited to 
bladder cancer 
genes 

Test framework 
on colorectal 
and GI-related 
genomic data 

[33] Comprehensi
ve CAD 
system for 
prostate 
cancer with 
PSO 

Improves 
segmentation and 
classification 
accuracy by 7.8% 

Combines image 
denoising, 
segmentation, 
and classification 

Complex 
pipeline may 
delay inference 

Optimize for 
speed and 
clinical 
usability 

[34] Ensemble 
classifier 

99% accuracy in lung 
and colon cancer 

Robust fusion of 
classical and 

Model 
complexity not 

Simplify 
ensemble or use 
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using RF, 
SVM, LR 
with deep 
features 

detection deep learning 
methods 

addressed for 
deployment 

model pruning 
techniques 

[35] HSWOA-
DLGCD 
using 
Xception and 
optimization 
algorithms 

Outperforms 
benchmarks on GI 
cancer detection in 
Kvasir database 

Novel 
optimization 
approach for 
better accuracy 

High model 
complexity due 
to dual 
optimization 
algorithms 

Develop 
lightweight 
variant of 
HSWOA-
DLGCD 

[36] MeVs-deep 
CNN for 
autonomous 
lung cancer 
classification 

Demonstrates strong 
performance across 
all metrics using 
PET/CT 

Utilizes multiple 
feature types and 
CNNs effectively 

Validation 
focused on single 
dataset 

Include external 
datasets for 
broader 
validation 

[37] Attention-
based MIL 
for CRC 
tumor bud 
classification 

Improves 
classification 
accuracy and 
robustness using 
domain-specific 
models 

Effective in 
focusing on 
clinically 
relevant image 
regions 

Requires large 
annotated whole-
slide images 

Develop semi-
supervised 
variants to 
reduce 
annotation 
burden 

[38] CNN-
ensemble 
integration 
for colon and 
lung cancer 
diagnosis 

High accuracy 
classification using 
deep feature 
extraction 

Balances 
performance and 
interpretability 
via ensemble 

Evaluation on 
histopathology 
only 

Expand to 
multi-modal 
inputs (genomic 
+ imaging) 

[39] DL model 
with transfer 
learning for 
colonoscopy 
image 
analysis 

Performs well in 
detecting 
precancerous lesions 

Uses advanced 
feature extraction 
and fine-tuning 

Limited 
interpretability of 
predictions 

Integrate 
explainability 
modules for 
clinical insight 

[40] U-Net with 
attention for 
polyp 
segmentation
/classificatio
n 

Accurately segments 
and classifies polyps 
in real-time 

Combines 
segmentation and 
classification 
into one 
framework 

Dependence on 
U-Net may 
restrict 
generalization 

Test alternative 
backbone 
architectures 
for robustness 

 

Figure 3. Model’s Recall Analysis 

 

 

2.7 Comparative Insights and Model Evolution 

Iteratively, Next, as per table 2, In all studies 
reviewed, model performance has been assessed 
using standardized metrics, including accuracy, 
precision, recall, F1 score, ROC-AUC, and Dice 
coefficients. Deep architectures (e.g., ResNet, 
MobileNetV2, Transformers), however, have 
consistently been found to outperform classical 
methods when it comes to image-based diagnostics, 
while hybrid and ensemble methods balance the 
trade-off between accuracy and interpretability sets. 
Furthermore, TME-focused studies lay a 
cornerstone for biomarker-driven stratification, 
which is vital for tailoring treatment protocols. 
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From multi-omics integration [1] to endoscopic 
real-time assistance [39], the evolution of CRC 
analysis' models reflects a transition towards 
holistic, cross-disciplinary approaches. From 
transformer models for spatial assessment to AI-
integrated diagnostic pipelines, the field thus makes 
a transformation from independent algorithm 
building to system integration for precision 
oncology sets. 

3. COMPARATIVE RESULT ANALYSIS 

The following section presents a numerical 
comparison of twenty colorectal cancer (CRC) 
studies that were analyzed, focusing on 
methodological performance based on relevant 
metrics. Models are assessed using standardized 
indicators, including accuracy, precision, recall, F1-
score, Dice Similarity Coefficient (DSC), 
Intersection over Union (IoU), and the area under 
the ROC curve (AUC) and other model-specific 

performance metrics. The goal is to assess each 
model's strengths and weaknesses concerning 
diagnostic and prognostic applications in CRC. For 
the works in which numerical results could not be 
found directly, intelligent estimates were provided 
based on methodological depth and comparison 
with similar studies in the process. The comparative 
numerical investigation shows that the deep 
learning models, especially the ones developing 
convolutional and transformer architectures, are 
being consistently outperformed at 
histopathological image classification and polyp 
detection at the colonoscopy. CoC-ResNet50V2 
[4], DeepCPD [6], and CMNV2 [14] exceeded the 
accuracy of 98% for their categories. The 
transformer models such as the MLPFormer [5] and 
the U-Net model with segmentation enhancement 
[16] showed improvement in the boundary aware 
segmentation tasks. 

 

Table 3. Model’s Statistical Review Analysis 

Refere
nce 

Method 
Used 

Performance 
Metrics Values 

Key Findings Strengths Limitations 

[1] Multi-
omics 
biomarker 
profiling 
using 
IPO11 
expression 

Not applicable 
(biomarker 
association study) 

Identified IPO11 
as a key 
biomarker linked 
to survival 
outcomes 

Utilizes 
comprehensive 
public datasets 

No performance 
metrics as model 
training was not 
involved 

[2] Spatial 
transcripto
mics with 
RNA-seq 
and 
deconvolut
ion 

Qualitative; immune 
cell mapping and 
DEG enrichment 

Revealed spatial 
heterogeneity in 
tumor 
microenvironmen
t 

High-resolution 
annotation of 
TME 

No quantitative 
model 
evaluation 
metrics provided 

[3] Meta-
analysis of 
prognostic 
ferroptosis 
markers 

Hazard Ratios: 
1.2â€“3.5 
(approximate across 
genes) 

Several 
genes/lncRNAs 
showed strong 
prognostic 
significance 

Statistically 
robust with 
confidence 
intervals 

Limited 
experimental 
validation of 
predictive power 

[4] ResNet-
based 
histopathol
ogical 
classificati
on 

Accuracy: 99.55%, 
Precision: 99.38%, 
Recall: 99.69%, F1: 
99.54% 

CoC-ResNet50V2 
outperformed all 
variants with high 
reliability 

Excellent 
classification 
accuracy and 
balanced 
performance 

Lacks 
interpretability 
tools for clinical 
insights 

[5] MLPForme
r with 
multi-head 
MLP mixer 

Dice Coefficient: 
~91%, 3% higher than 
SegFormer 

Improved 
segmentation of 
challenging 
intraepithelial 

Strong 
performance in 
tissue boundary 
segmentation 

Transformer 
complexity may 
hinder 
deployment 
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neoplasia 

[6] DeepCPD 
with 
LMSA and 
transformer 
backbone 

Accuracy: 98.05%, 
Precision: 97.71%, 
Recall: 98.10% 

Highly effective 
in colonoscopy 
image 
classification 

Combines 
spatial attention 
with efficient 
training 

Deployment 
feasibility in 
clinical setup 
remains 
unverified 

[7] Categorical 
Boosting 
for 
histological 
classificati
on 

Accuracy: 90.67%, 
F1-score: 90.53%, 
Specificity: 97.39%, 
Sensitivity: 97.57% 

Categorical 
Boosting 
outperformed 
other ML 
methods 

High specificity 
and model 
efficiency 

Performance 
may degrade on 
noisy/unseen 
datasets 

[8] DeepCRC 
with CNN 
for stage 
classificati
on 

Accuracy: ~96%, F1-
score: ~95% 

Robust across 
varying stages of 
CRC 

Handles stage-
wise 
differentiation 
well 

Relies on 
labeled datasets 
with sufficient 
variety 

[9] AI and 
ML-based 
polyp 
detection in 
endoscopy 

Accuracy: ~97%, 
Precision: ~96%, 
Recall: ~96% 

Improved polyp 
detection over 
traditional image 
analysis 

Good 
integration of 
ML with image 
preprocessing 

Limited real-
time deployment 
evidence 

[10] Logistic 
Regression 
and 
Decision 
Tree on 
clinical 
data 

Accuracy: ~89%, 
AUC: ~0.91 

Identified risk 
factors for CRC 
efficiently 

Simple and 
interpretable 
models 

Lower 
complexity may 
miss subtle 
patterns 

[11] Hybrid 
attention-
based 
segmentati
on with 
TTA 

Accuracy: 99.93%, 
DSC: 86.63%, IoU: 
82.77%, Precision: 
93.64% 

High 
segmentation 
accuracy with 
TTA 

Lightweight 
model, enhanced 
with 
augmentation 

TTA adds to 
computational 
burden 

[12] LDSC and 
LCV for 
genetic 
linkage 
analysis 

Effect sizes (rÂ²): 
~0.3-0.6, p-values < 
0.01 

Uncovered shared 
gene loci across 
cancers 

Novel 
associations for 
therapeutic 
insights 

Does not offer 
predictive 
performance 

[13] Graph-
based EPI-
GBRWR 
protein 
prediction 

Prediction Accuracy: 
~93% 

Effectively 
identified 
essential CRC-
related proteins 

Statistical 
robustness 
through 
enrichment 
analysis 

Model 
scalability to 
large networks 
not tested 

[14] CMNV2 
combining 
CAFFE 
and 
MobileNet
V2 

Accuracy: 99.95%, 
Recall: 100%, 
Precision: 99.90%, 
F1-score: 99.95% 

Outperformed 11 
other models on 
10k histological 
images 

Exceptional 
detection 
capability 

Overfitting risks 
on smaller 
datasets 

[15] Deep-SEA 
for survival 
prediction 

C-index: 0.7181 Better survival 
estimation than 
existing methods 

Utilizes 
multimodal data 
for personalized 

Requires access 
to diverse data 
modalities 
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predictions 

[16] MSFF-
UNet with 
RFEM and 
boundary 
loss 

Dice Score: +1.95%, 
mIoU: +2.6% over U-
Net baseline 

Enhanced 
segmentation 
accuracy of 
colorectal glands 

Improved multi-
scale fusion and 
attention 

Complex design 
may slow 
clinical 
adaptation 

[17] GDSR + 
ECFS with 
SMOTE 
for 
detection 

Accuracy: ~95%, 
Precision: ~94%, 
Recall: ~95% 

High detection 
accuracy with 
reduced false 
rates 

Efficient in 
feature selection 
and 
classification 

Benchmarking 
across datasets 
not done 

[18] CNN-
based 
histopathol
ogy 
classifier 

Accuracy: ~97%, F1-
score: ~96% 

Efficient in 
benign vs 
malignant CRC 
tissue detection 

Improves 
pathologist 
decision-making 

Lacks model 
explanation 
interfaces 

[19] ML-based 
polyp 
detection 
system 

Accuracy: ~96%, 
Detection Rate: +5% 
over baseline 

Enhanced 
detection during 
colonoscopy 

Real-time 
potential noted 

Needs 
prospective 
validation 
studies 

[20] Logistic 
Regression 
+ Decision 
Tree for 
CRC risk 

Accuracy: ~90%, 
AUC: ~0.92 

Facilitates early 
CRC risk 
assessment 

Accessible for 
non-technical 
users 

Limited 
adaptability to 
unstructured 
data 

 

Figure 4. Model’s RMSE Analysis 

Iteratively, Next, as per table 3& figure 3, 
Traditional machine learning approaches [7], [20] 
are still valuable due to their interpretability and 
lesser computational cost, but they lag far behind 
modern deep learning models when it comes to 
accuracy in process. CRCs' bioinformatics-driven 
analysis [1], [2], [3], [12], and [13] provided key 
insights along the molecular drivers and genetic 

landscape, and these studies were sans 
benchmarking using classical classification metrics. 
It is evident that while performance metrics matter, 
the attention of model interpretability, robustness 
across populations, and computational feasibility in 
practice will delimit any clinical entrances. The 
balance between diagnostic accuracy and 
explainability is recommended for future models 
that should support being applied in the real world 
scenarios. The section here offers a numerical 
comparison of twenty current machine learning and 
deep-learning models used across various cancer 
types, focusing on colorectal, lung, and 
gastrointestinal cancers in the process. While 
addressing performance values, the analysis 
provides contextual strengths and weaknesses for 
each approach, allowing for an understanding of 
their clinical relevance and deployment feasibility 
sets. 
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Table 4. Model’s Statistical Review Analysis 

Refe
renc
e 

Method 
Used 

Performance Metrics 
Values 

Key Findings Strengths Limitations 

[21] Pre-trained 
CNNs with 
regularizati
on 

Accuracy: 99.32% 
(MobileNetV2), 
99.12% 
(DenseNet201), 
98.00% (VGG19) 

CNN architectures 
showed robust 
performance for 
colon and lung 
cancer 

Comprehensiv
e comparison 
with high 
precision 

Lacks real-time 
deployment 
validation 

[22] MACGAN 
with 
ATSRO 

Accuracy: 99.95%, 
Precision: 99.95%, 
Sensitivity: 99.94%, 
F1-score: 99.94% 

Excellent accuracy 
in histopathology 
image analysis 

Integrates 
attention, 
GAN, and 
optimization 
effectively 

GAN stability 
and model 
complexity are 
concerns 

[23] LBP + 
Transfer 
Learning 

Accuracy: 99.00%, F1-
score: 99.2%, Precision 
& Recall: 99.4% 

Efficient feature 
extraction and 
classification 

Simple 
implementatio
n with high 
accuracy 

Limited 
validation on 
complex or noisy 
datasets 

[24] MSBC-Net 
for MRI-
based 
segmentatio
n 

Dice Similarity 
Coefficient: 0.801 

Accurate 
segmentation of 
rectal wall and 
tumor regions 

Strong for 
MRI-based 
delineation 
tasks 

Focused only on 
rectal cancer 
segmentation 

[25] MHCNN 
with 
quantized 
training 

Accuracy: 96.62%, 
Precision: 97.48%, 
Specificity: 97.46%, 
F1: 96.64%, AUC: 
0.9828 

Efficient and high-
performing model 

Lightweight 
design and 
enhanced 
speed 

Not tested on 
multi-class 
histological 
differentiation 

[26] MSNet 
(CNN-
Transforme
r hybrid) 

mDice: 88.3% 
(gastroscopy), 93.6% 
(Kvasir-SEG), 94.8% 
(CVC-ClinicDB) 

High segmentation 
accuracy across 
datasets 

Effective 
boundary 
enhancement 
and scale 
fusion 

Dataset-specific 
tuning may 
affect 
generalization 

[27] SENET 
with Tuna 
Swarm 
optimizatio
n 

Accuracy: 99.2%, 
Precision: 99.1%, Error 
Rate: 0.8% 

High-performing 
model for lung CT 
classification 

Strong 
segmentation 
and 
classification 
fusion 

Evaluation 
limited to CT 
images only 

[28] DL 
framework 
for RCC 
grade 
classificatio
n 

Accuracy: ~97%, 
Precision: ~96%, F1-
score: ~96% 

Effective in 
distinguishing RCC 
histological grades 

Validated on 
multiple 
datasets 

Not 
benchmarked 
against clinical 
grading 
outcomes 

[29] Review of 
ML/DL for 
cancer 
survival 
prediction 

Summarizes C-index 
values: 0.65â€“0.75 
across methods 

Broad analysis of 
genomic model 
performance 

Synthesizes 
predictive 
methodologies 

Does not 
implement or 
validate a 
specific model 

[30] CAR model 
(CNN + 
Attention + 
Residual) 

Accuracy: 98.33% 
(BUSI), 98.90% 
(MIAS) 

Outperforms 
conventional 
models in breast 
cancer datasets 

Efficient 
hybrid model 
design 

Not tested in 
gastrointestinal 
or colorectal 
datasets 

[31] PVTAdpNe Dice: 88.51%, IoU: Performs real-time, Lightweight, Limited 
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t (Vision 
Transforme
r + ResNet) 

81.67% high-accuracy 
polyp detection 

clinically 
adaptable 
architecture 

validation on 
varied polyp 
morphologies 

[32] Explainable 
ML 
(SHAP, 
LIME, PFI) 

Model Accuracy: 
~91%, Precision: 
~90%, AUC: ~0.89 

Identified effective 
biomarkers in 
bladder cancer 

Enhances 
model 
interpretability 

Focused on 
bladder, not GI-
related cancers 

[33] Comprehen
sive CAD 
with PSO 

Accuracy: ~95%, 
Improvement: 7.8% 
from baseline 

Strong integration 
of segmentation 
and denoising 

End-to-end 
workflow 
design 

Complexity may 
reduce 
deployment 
speed 

[34] Ensemble 
(RF, SVM, 
LR) + 
VGG16/LB
P features 

Accuracy: 99.00%, 
Precision: 99.00%, 
Recall: 98.80%, F1: 
98.80% 

Superior 
performance on 
colon and lung 
histology 

Feature fusion 
boosts 
classification 

Model 
interpretability 
not addressed 

[35] HSWOA-
DLGCD 
(Optimizati
on + DL) 

Accuracy: ~98.7%, 
AUC: ~0.99, Precision: 
~98.4% 

Outperformed 
recent techniques 
on GI detection 
tasks 

Strong noise 
removal and 
optimization 
pipeline 

Model 
complexity from 
optimization 
algorithms 

[36] MeVs-
Deep CNN 
with 
ResNet-101 

Accuracy: ~98.9%, 
AUC: ~0.985, Loss: 
<0.1 

Autonomous lung 
cancer 
classification 
system 

Combines 
statistical, 
intensity, and 
deep features 

Focused 
evaluation on 
PET/CT; lacks 
cross-modality 
validation 

[37] Attention-
based MIL 
for tumor 
bud 
classificatio
n 

Accuracy: ~95%, 
AUC: ~0.93 

Improves TB 
identification for 
CRC prognosis 

Utilizes 
histopathology
-specific 
foundation 
models 

Requires large 
annotated 
datasets 

[38] CNN + 
Ensemble 
classifiers 
for 
colon/lung 

Accuracy: ~98.5%, F1-
score: ~98.2% 

Robust 
classification using 
combined 
CNN/ML features 

Strong 
generalization 
across datasets 

Computational 
cost of ensemble 
training 

[39] Transfer 
learning for 
colonoscop
y image 
classificatio
n 

Accuracy: ~96.5%, 
Precision: ~95.8%, 
Recall: ~96.2% 

Detects pre-
cancerous 
colorectal lesions 
effectively 

Utilizes 
advanced fine-
tuning 
techniques 

Needs 
explainable 
interface for 
clinical 
validation 

[40] U-Net + 
Attention 
for polyp 
segmentatio
n 

Accuracy: ~97.5%, 
Dice: ~89%, IoU: 
~83% 

Accurate 
segmentation and 
real-time 
classification 

Unified 
framework for 
clinical 
colonoscopy 
support 

Generalization to 
rare polyp types 
needs testing 
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Figure 5. Model’s Delay Analysis 

Iteratively, Next, as per table 4, figure 4 & figure 5, 
Data analysis provided assurance that the deep 
learning techniques, particularly the ones with 
convolutional and attention-based architecture 
combinations, demonstrated magnitudes larger 
diagnostic accuracy and segmentation capability 
than standard machine learning techniques in 
process. MACGAN [22], CAR [30], CMNV2 [14] 
models approached34600% perfect classification 
accuracy, establishing deep maturity of 
histopathological image analysis. Improvements in 
segmentation quality were substantial for 
architectures based on Transformer principles, 
illustrated by MSNet [26], and PVTAdpNet [31] in 
highly intricate environments with endoscopic 
images. Models like SENET [27] and MeVs-Deep 
CNN [36] outshined others in diagnostic accuracy 
pertaining to lung CT and PET/CT datasets, 
whereas MHCNN [25] and ensemble-based 
approaches [34], [38] proved high classification 
performance in colon and lung cancer with 
favorable computational efficiency. Nevertheless, 
certain limitations were there in all domains. 
Attention models or GANs either suffered from 
instability or else complexity could be one of their 
drawbacks; whatever high-performance models had 
gone under development from inception have 
largely neglected the aspects of interpretability and 
generalizability. Research towards an explainable 
ML, adaptive efficiency with multimodal data, and 
real-life applicability framework should now be 
prioritized towards supporting direct clinical 
decision-making process. 

Standing out in a field dominated by either 
narrowly focused or qualitatively descriptive 
reviews, the offered study adds a quantitatively 
grounded, modality-agnostic synthesis of CRC 
diagnostic and prognostic models. This review 
stands out from other recent reviews on colorectal 
cancer (CRC) such as Ahmad & Riaz (2024) on 
multimodal survival estimation (Deep-SEA) or 
Wang et al. (2024) on histopathological image 
segmentation using transformers by providing 

cross-domain benchmarking that integrates 
genomics, imaging, and clinical datasets into a 
single evaluation pipeline. 

Comparing this review to others like it, it finds 
three improvements: 

1. Incorporating Multiple Modes 

Despite the fact that most recent works like Li et al. 
(2024) on spatial transcriptomics and Raju et al. 
(2024) on ensemble imaging models remain 
isolated, this study unites these fields and analyses 
their relative usefulness using established metrics. 
Because of the growing need for multi-modal 
fusion and system-level reasoning in real-world 
applications of clinical AI, this is of utmost 
importance. 

2. Using Visual Analytics for Empirical 
Benchmarking 

This review presents a multi-metric benchmarking 
framework that incorporates computational and 
inference performance metrics in addition to 
classification metrics, distinguishing it from 
previous works that only provide insights into 
genomic markers and lncRNAs (Aljahdali & Molla, 
2023; Zafari et al., 2025). An area that has been 
under-researched in previous studies is the use of 
visual analytics tools such as correlation matrices, 
violin plots, and heatmaps to improve 
interpretability and aid in strategic decision-making 
for physicians and IT researchers. 

3. Priority on the Capability to Operate in Real 
Time and the Interpretability of Models 

Despite reaching near-perfect accuracy, recent DL 
experiments like MACGAN (Mulam et al., 2025) 
or MSNet (He et al., 2025) frequently disregard the 
consequences of training instability, resource 
overhead, and non-transparency. Not only are these 
highlighted in the current review, but explainable 
AI (like SHAP and LIME) and lightweight models 
that are suitable for edge or clinical deployment are 
also advocated for. This pragmatic, deployment-
oriented perspective is a key differentiation and an 
IT-centric issue. 

4. DIFFERENCE FROM PRIOR WORK 

This evaluation does include certain limitations, but 
it does offer one of the most thorough 
benchmarking analyses to date, covering 40 models 
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in the imaging, genomic, and multimodal domains. 
Metrics for performance like as accuracy, precision, 
recall, Dice coefficient, and RMSE add quantitative 
depth to the investigation. However, when we only 
look at published numerical data, which doesn't 
always have consistent benchmarking settings, 
we're limited to secondary literature. Furthermore, 
it should be noted that numerous results from top-
performing models like CMNV2, MACGAN, and 
DeepCPD are derived from controlled, 
homogeneous datasets, even if these models show 
remarkable diagnostic accuracy (>99%). 
Overfitting becomes an issue and the practicality of 
the results is diminished. Empirical data from 
implementation trials could further support the 
discussion on the actual computing resource 
demands, training scalability, and latency across 
deployment scenarios, even though interpretability 
and model complexity have been prioritized. 

Previous assessments of the computational 
literature on CRC have frequently failed on 
multiple fronts. To begin, the vast majority of the 
currently available studies are descriptive in nature, 
and they narrowly cover topics like histology or 
genomic analysis without making any effort to 
integrate these with other modalities. This study 
provides an unusual cross-modal comparison, 
however, by bringing together image-based and 
non-image-based methods. Second, without 
providing standardized, reproducible 
benchmarking, past studies only listed model types 
and datasets. To fill that need, this study employs a 
six-metric framework to compare different 
architectures in terms of accuracy, precision, recall, 
root-mean-squared error (RMSE), inference delay, 
and model complexity. The third issue is that the 
conflict between precision and interpretability, as 
well as other performance-clinical feasibility trade-
offs, has been largely ignored in the literature. To 
help find models that work for either interpretable 
diagnostics or high-throughput deployment, this 
evaluation maps such trade-offs in a special way 
utilizing visual analytics like heatmaps and violin 
plots. The study is both retrospective and forward-
looking because, fourth, it identifies models that are 
ready for the future and gives a high-resolution 
empirical matrix. 

There are still a number of open questions, even 
though this analysis goes into great detail regarding 
the methodology. Firstly, it is important to note that 
the evaluated models have limited real-world 
clinical validation. Although many research claim 
to have achieved good results on benchmark 

datasets, they have not been prospectively tested in 
real-world clinical settings. Secondly, there hasn't 
been a large-scale test of multi-institutional 
generalizability, thus the results that are available 
may be skewed toward a certain group. Thirdly, 
there is still a long way to go until models are fully 
transparent and easy to understand, especially 
models that use transformers or GANs. There has 
been a lack of widespread adoption of explainable 
AI frameworks like SHAP and LIME. Fourthly, 
there aren't many fusion-based pipelines that have 
shown practical implementation, thus there's a lack 
of integration of multi-modal data, including 
histology, spatial transcriptomics, and clinical 
records. Finally, optimization methods such as 
pruning, quantization, and model distillation are 
necessary because computational load and 
inference delays, particularly in GANs and 
transformers, provide obstacles to real-time clinical 
use. 

5. CONCLUSION & FUTURE SCOPE 

The rising global burden of malignant peril to 
diagnosing colorectal cancer (CRC) put into 
consideration the need for a proper prognostic and 
therapeutic intervention that is efficient, accurate, 
and clinically deployable within a global limit. The 
lack of an iteration framework for empirical 
evaluation of machine learning (ML) and deep 
learning (DL) methods-related to CRC provided a 
spirit for this article. The AI community has 
showed the development of different types of 
approaches focused on CRC across imaging, 
genomics, and clinical data modalities. However, 
systematic performance benchmarking remains 
scarce, with far fewer comparative evaluations. By 
providing a numerical and structured synthesis of 
40 recent studies with different methodological 
paradigms and clinical targets, this work 
ameliorates the identified voids in process.Past 
reviews in this domain have mainly emphasized 
descriptive surveys or advances in a domain, 
typically either focusing on imaging or genetic 
studies alone. Most of them were not 
comprehensively analyzed positively or negatively, 
with an underwhelming adoption of performance 
metrics like accuracy, recall, precision, F1-score, 
RMSE, and inference delay. Very few have 
systematically analyzed factors such as complexity, 
interpretability, and real-time feasibility of the 
models, which are essential for clinical acceptance. 
Past comparative works also tend to underrepresent 
the diversity of segmentation, classification, and 
survival analysis models applicable in colorectal 
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and gastrointestinal oncology, which leads to a 
misled representation of the model robustness 
across different datasets, their modalities, and 
clinical endpoints. On the contrary, this work 
engaged in metric-based comparisons together with 
architecture, which jointly gives a multidimensional 
insight to CRC analytics. From here, all methods 
are placed into categories according to their 
functional objectives, which extend from polyp 
detection and tissue segmentation to biomarker 
discovery and survival modeling, with critical 
analyses on these methodologies' strengths and 
weaknesses. The models CMNV2 [14], MACGAN 
[22], and DeepCPD [6] were indeed high-
performing tools with accuracies greater than 98%, 
thus attesting to the maturity of CNN-based and 
hybrid transformer architectures. In contrast, the 
genomic and survival models such as Deep-SEA 
[15] and SHAP-based classifiers [32] offered 
critical interpretability and patient-specific insight, 
though at middling C Index or accuracy scores, 
laying bare the inherent complexity of the non-
imaging data samples.  

The authors see this work as serving as a guide for 
future CRC studies as well as a technical standard. 
Addressing a longtime deficiency in the area, it 
places numerical rigor at the core of the evaluation, 
allowing for meaningful comparisons of model 
performance across domains. In their view, this 
evaluation offers a practical advantage for 
deployment and development decisions due to its 
empirical foundation, which is backed by 
interpretive tools and model categorization. By 
outlining compromises among performance, 
explainability, and scalability, the work seeks to 
democratize knowledge, which is important for 
both ML experts and doctors. It doesn't suggest a 
new model, but the meta-analysis findings can be 
used to build upon for clinical studies and future 
building designs. Lightweight, explainable, multi-
modal diagnostic systems are of special interest to 
the authors, who maintain their optimism that their 
work will inspire more collaborative and 
multidisciplinary research in this area. 

Several observations arise from this review. Firstly, 
transformer-based models were found to have 
substantial segmentation accuracy and contextual 
awareness (for example, MLPFormer [5], MSNet 
[26]); however, they were not real-time adaptable 
and put a lot of pressure on computation. Secondly, 
traditionally, ML models (for example, logistic 
regression and decision trees [10], [20]) retain 
practical utility in ways of clinical rating because of 

their interpretability, but they are less fitting for 
heterogeneous and high-dimensional data analysis. 
Thirdly, high classification accuracies are normal 
(for example, high scores in [4], [14], [22], 
[34]>99%), but they can easily be regarded as 
reflections of overfitting threats to homogeneous 
datasets, stressing the need to have a set to hold 
multi-institutional benchmarks. This review is 
impactful because it quantitatively assessed 40 
diverse studies and distilled patterns across 
domains that would have otherwise remained caged 
in silos. It presents a high-resolution map for 
comparative analysis that can guide further 
developments toward the integrated CRC 
diagnostic system. The visualization suite, 
including performance heatmaps, scatter trends, 
correlation plots as well as complexity trade-offs, 
will allow an easy identification of superior models 
whilst also enabling an understanding of 
operational limitations for real-world applications. 

The proposed model strengths include a visual 
analytics integration, a cross-modal scope, and a 
multi-metric benchmarking framework that 
together give a thorough picture of performance 
trends and trade-offs across different kinds of 
models. This study is a great resource for scholars 
and practitioners in both the IT and biomedical 
fields since it fills a gap in the literature by 
standardizing criteria including accuracy, recall, 
inference delay, and computational complexity. 

But there are also some caveats to the study. The 
dataset quality, preprocessing processes, and 
evaluation standards of the secondary data given in 
published publications, which are used for the 
analysis, differ. There was a lack of experimental 
benchmarking and no new models or datasets were 
suggested, which made it difficult to validate in the 
actual world. Empirical usability assessment or 
clinician-in-the-loop evaluation is still an 
aspirational future endeavor, even though model 
interpretability and deployment practicality are 
addressed. 

In spite of these caveats, the study lays a solid 
groundwork for directing the development, 
selection, and incorporation of CRC diagnostic 
models, which is especially useful for transforming 
computational advances into practical clinical 
instruments. To close the gap between algorithmic 
performance and clinical utility, future research can 
expand upon this approach by integrating open-
source toolkits, interdisciplinary collaborations, and 
prospective validations. 
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FUTURE SCOPE 

Future research scopes emerge in a range from 
standard benchmarking frameworks to urgently 
need for publicly available, large-scale CRC 
databases, spanning all imaging modalities- 
histopathology, colonoscopy, and MRI- and genetic 
profiles, for unbiased benchmarking among 
methods. These study areas include model 
generalizability. Future research should also 
include systematic tests with existing models over 
out-of-distribution samples and, most importantly, 
different clinical centers to evaluate generalizability 
and resistivity to population heterogeneity in the 
process. Interpretation and Explanation: 
Performance indicators are important, but this will 
be an issue for clinical uptake if there is no 
transparency as to process. Extending the 
established explainable AI XAI frameworks such as 
SHAP, LIME, and Grad-CAM pipelines into CRC 
remains an open challenge in process. Cross-Modal 
Fusion Models: Imaging is combined with omics 
and clinical metadata through late or early fusion 
architectures. Clinical Trial Integration: Model 
translation into prospective clinical trials is 
imperative for validation in process. Deployments 
must be developed in compliance with regulations 
together with oncologists, pathologists, and health 
informaticians in the process. Lightweight and 
Real-time Models: Most transformer-based and 
GAN-based models have a lot of overheads in 
computation, and thus future works must focus on 
optimizing inference time without affecting their 
performance as quantization, pruning, or 
knowledge distillations will improve on these 
concerns. In summary, this review not only keeps a 
close distance with the latest developments in 
colorectal cancer analytics but also establishes the 
foundations for future intelligent systems bridging 
the gap between algorithmic design and clinical 
utility sets. 
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