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ABSTRACT

This text is an iterative major study that discusses colorectal cancer (CRC), which is also a formidable
malignancy for most countries in the world, with early detection making it a boon for improving survival
rates. This is an empirical review of recent works that apply machine learning (ML), deep learning (DL),
and multi-omics-based biosensor systems toward CRC diagnosis and prognosis. In the field of Information
Technology (IT), this research fills a fundamental requirement for the development of deployable
healthtech systems by providing a standardized, computationally grounded framework for performance
benchmarking. This framework allows for fair comparisons and reproducibility. This review, unlike other
previous reviews, applies a six-metric evaluation framework accuracy, precision, recall, RMSE, inference
delay, and computational complexity to benchmark models systematically between imaging and non-
imaging modalities. Hybrid models such as CMNV2, DeepCPD, and MACGAN achieved classification
accuracies exceeding 99%, with CMNV2 proving most effective at 99.95% and perfect recall for
histopathological datasets. Furthermore, designs utilizing a transformer architecture like MLPFormer and
MSNet outperformed baseline models in segmentation tasks, improving Dice scores of 3-5%. Among these
mutants, however, genomic and survival models for example DeepSEA Further enhance this prediction
with good interpretability but have moderates performance (Clindex ~0.71). The visual analytics using the
above medium like violin plots, heat maps, and correlation will reveal the performance trends and the
expression of trade-offs made between accuracy and model complexity. The paper, therefore, establishes a
high-resolution benchmarking map that informs one on model selection depending on application needs
ranging from polyp detection to survival predictions. Future research directions are identified toward the
goal of having explainable and lightweight multi-modal architectures and validation in multi-center
prospective clinical trials in process.

Keywords: Colorectal Cancer, Deep Learning, Machine Learning, Diagnostic Modeling, Survival

Prediction, Scenarios.
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1. INTRODUCTION

Colorectal cancer (CRC) continues to be a major
public health burden across the globe, with the third
most commonly diagnosed progressing in males
and the second in females. With an increasing
burden of cases with a considerable proportion
being detected at advanced stages [1, 2, 3],
therefore, an early diagnosis is key to reducing
mortality and saving survival outcomes.
Conventional diagnostic tools, including
colonoscopy, biopsy, and imaging procedures, have
variable sensitivities and specificity. But resource
consumption, operator dependency, and failure to
absorb the increasing number of high-dimensional
patient data samples have made these modalities
less attractive. In consequence [4, 5, 6], the advent
of artificial intelligence (AI), namely machine
learning (ML) and deep learning (DL) techniques,
has ushered in several transformative initiatives
enhancing CRC diagnosis, segmentation, staging,
and risk predictions. Despite the fact that CRC
innovations powered by Al have exploded, there is
an inchoate territory punctuated by siloed studies
focusing on isolated pipelines such as
histopathological image classification, colonoscopy
with polyp segmentation, genetic biomarker
analysis, or patient-specific survival predictions.
This putative coherence should somehow qualify
their comparative effectiveness. Of greater concern,
most prior reviews are typically very weak in their
numerical rigor, which makes it impossible to
standardize them oil the methodology, providing
only descriptive qualitative reviews without
empirical measure benchmarking or architectural
scrutiny. This paradigm limits their translation for
clinical purposes and makes it difficult for actual
researchers and clinicians to assess trade-offs,
scalability [7, 8, 9], and real-time applicability of
competing models. For the above reasons, we
anticipate that the gap for a solidly statistical,
multimodal, integrative review of contemporary
CRC detection mechanisms across various data
types, model classes, and application settings is
conspicuous and undeniably urgent in process.

1.1 Motivation for the Study

The motivation behind this work stems from four
main gaps brought out in the literature. Absence of
Quantitative Benchmarking: While many reviews
list model types and datasets, very few synthesize
key performance metrics such as accuracy, recall,
precision, Dice coefficient, or inference delay

across papers. Without this, performance claims
remain anecdotal and non-reproducible in the
process. Lack of Cross-Modality Comparison:
Imaging-centric studies dominate the literature,
often ignoring advancements in genomic analysis,
transcriptomics, proteomics, or patient-specific
clinical data modeling processes. There exists a
need for reviews that analyze ML/DL tools across
imaging and non-imaging domains. Insufficient
Discussion of Computational Trade-Offs: Clinical
deployment hinges not just on accuracy but also on
model complexity, interpretability, delay, and data
requirements. Yet, few reviews discuss these
dimensions in sufficient detail in the process. No
Structured Visual Analytics: The interpretive power
of plots—such as heatmaps, correlation matrices, or
F1-score trends—is often missing in prior works in
the process. Such visual tools are essential for
discerning global performance patterns and
decision-making trade-offs. The current review is
driven by the necessity to overcome these
limitations through an empirical, statistically
enriched, and visually annotated synthesis of 40
state-of-the-art CRC detection and prognosis
studies in process. These studies span a variety of
methodological frameworks—including ResNet
variants, U-Net architectures, attention-based
transformers, ensemble classifiers, multi-omics
analytics, and explainable Al techniques.

1.2 Scope and Contribution

This review undertakes a serious analysis of peer-
reviewed publications that have recently appeared
pertaining to CRC and other cancers analyzed via
computational modeling. The contributions of this
work are manifold, Multidimensional Evaluation
Framework: Each model is analyzed using six
numerical metrics—accuracy, precision, recall,
RMSE, inference delay, and computational
complexity—enabling standardized comparisons.
Methodological Diversity: Various methods such as
CNNs, GANs, Vision Transformers, ensemble
learning, logistic regression, decision trees, PPI
networks, spatial transcriptomics, and survival
analysis models are all included in the review.
Numbered Tables and Graphs: Structured tables
pool performance values, whereas bar graphs,
scatter plots, violin plots, heatmaps, pie charts, and
joint density plots would provide visual insight into
model behavior across dimensions in the process.
Strength-Limitation Mapping: Each of the papers
reviewed comes with an exhaustive narrative of
strengths and weaknesses, unmasking real-time
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feasibility, generalizability, overfitting,
interpretability, and dataset availability gaps in
process. Insights Across Domains: The review
synthesizes works that model polyp detection,
gland segmentation, and genetic biomarker
identification (e.g.,, IPO11, ferroptosis-related
genes) with long non-coding RNA modeling to
present a consolidated view of CRC diagnostics.
Pathways to Future Research: The review proposes
strong recommendations for future studies, such as
developing multi-centre datasets, interpretable
models, fusion-based pipelines, lightweight
architectures, and validation directed toward future
validations in process.

The IT community has a critical opportunity to help
solve this problem by creating healthcare models
that are computationally advanced, scalable, and
easy to understand. When looking at IT systems
engineering from a real-world integration
standpoint, there is a noticeable absence of
standardized computational evaluation methods,
model scalability assessments, and deployment
feasibility analyses. So, this research fills a
significant need in IT research by creating a
repeatable,  multi-dimensional ~ benchmarking
framework that evaluates 40 cutting-edge CRC
modeling methods from imaging and non-imaging
domains.

1.3 Impact of This Work

This review puts high-accuracy models such as
CMNV2, MACGAN, and DeepCPD next to the
interpretable yet throughput-low genomic tools
such as SHAP-based classifiers and survival
predictors. This gives a balanced understanding of
the CRC modeling landscape. Actionable
intelligence for data scientists, biomedical
researchers, and clinical practitioners alike in
process. In academy terms, this paper is going to
act as a tutorial and a roadmap-aiding researchers in
identifying high-performing models and trading-off
performance on the architecture design between
hybrid or fused based on empirical evidences. By
demolishing the barriers existing between statistical
analysis, methodological taxonomy, and clinical
relevance, this review will pave the way for a new
generation of CRC diagnostic platforms that not
only provide accuracy but also possess robustness,
interpretability, and deploy ability in the process.

1.4 Risks to the Reliability

Despite careful planning, this research nevertheless
faces a number of challenges to its internal and
external validity:

1.There is a selection bias because only models
having publicly available performance metrics
and a peer-reviewed status were considered for
inclusion in the review, even though it covers
40 models from the past. We may have missed
relevant models that were published in sources
that are not indexed or in whitepapers from the
industry.

2.Absolute  comparisons  were, at  Dbest,
approximations due to uneven assessment
protocols, inconsistent evaluation setups, and
diverse datasets used in the original
investigations. While we did our best to
standardize the numerical estimates, we did
infer some performance figures, so there may be
some small variations.

3.Research did not consistently report on all
relevant parameters. Surrogate or similarly
related values were utilized in these instances.
The consistency of interpretations across
models could be affected by this.

4.A large number of models were trained using
tiny, regional datasets that were not validated
externally. This raises the question of whether
or not these performance claims are applicable
in international clinical contexts.

5.Tool Reproducibility: We were unable to do
direct replication and head-to-head testing on
several of the models we examined because
their source code was not publicly available. So,
rather than a  reimplementation  or
rebenchmarking, this study is still a meta-
analysis synthesis.

When considering the clinical or engineering
implications of this review, it is important to keep
in mind these limitations, which are a reflection of
the real-world constraints of literature-based meta-
analysis.

1.5 Criticism Standards and Their Justification

Aiming for a balanced relevance to clinical
outcome utility and IT system design, the six
performance and design criteria utilized in this
review accuracy, precision, recall, RMSE, inference
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latency, and computing
purposefully chosen:

complexity  were

In diagnostic classification tasks, accuracy is the
most commonly reported metric since it captures
the total correctness of predictions.

Accuracy: Essential in healthcare settings for
minimizing unnecessary procedures and biopsies,
as well as for making safe diagnostic conclusions.

Important in colorectal cancer (CRC), where early
discovery greatly improves prognosis, recall
(sensitivity) has a direct effect on early cancer
detection by decreasing false negatives.

For regression-based tasks like survival estimation
and biomarker prediction, the Root Mean Square
Error (RMSE) is a useful metric to use since it
gives insight into the extent of the error.

Inference Delay: Measures how long it takes for a
model to return findings after input; this is a crucial
metric for endoscopic and surgical real-time
diagnostics.

Scalability, energy consumption, and training and
deployment costs are all aspects of computational
complexity that are critical for integration in edge
devices, cloud platforms, or clinical settings with
limited resources.

2. REVIEW OF EXISTING MODELS
FORCOLORECTAL CANCER ANALYSIS

Colorectal cancer (CRC) is still an issue of great
concern internationally. Among malignancies, it
ranks high for the diagnoses given to men and
women. Much research has gone into its molecular
basis, advances made in diagnosis, and the
computational means by which the disease can be
addressed, forming a complicated and evolving
global landscape for research into this multi-faceted
topic. This literature review encapsulates these
currents in CRC research today, specifically within
the fields of biomarker identification, the
characterization of the tumor microenvironment
(TME), and the creation of Al and deep learning-
based models. This very much takes an iterative
and empirical eye, so that an intelligent comparison
can be made for detection, classification,
segmentation, and prognosis.

2.1 Molecular Biomarkers and Genomic Drivers

At a molecular level, the role of some specific
proteins and genetic mutations in CRC
development has become more topical. Importin-11
(TPO11), which is a nuclear transport receptor, was
reported as a potential therapeutic biomarker since
it is up-regulated in subtypes of CRC [1]. It was
shown that the IPO11-B-catenin axis regulates cell
proliferation, and alterations in the TPO11 gene
corresponded to mutated survival outcomes. In the
same manner, systematic review was performed for
ferroptosis-related genes and long non-coding
RNAs (IncRNAs) to determine their prognostic
significance. Meta-analysis of 220 reports brought
to light different genes (e.g., CDKN2A, NOX4) and
IncRNAs (e.g., ZEB1-AS1) that were significantly
impactful to patient outcome [3] sets. These show
the molecular heterogeneity of CRC and accentuate
the rationale for omics data integration into a
diagnosis framework in process.

2.2 Tumor Microenvironment and Spatial
Transcriptomics

The tumor microenvironment (TME) is
increasingly acknowledged to be a key regulator of
CRC. Studies of the last few months or years have
used spatial transcriptomics and RNA sequencing
to map out the architecture of immune and stromal
cells in CRC tissue [2]. A number of new
computational deconvolution techniques such as
MCPcounter, XCELL, and EPIC are providing
conditioning  levels in  profiling cellular
subpopulations. For instance, an association was
discovered between two fibroblast subgroups (F1
and F2) that were enriched into cancer-associated
pathways like oxidative phosphorylation and E2F
targets carrying interesting genes (e.g., APOE,
CXCL10) and outcome-related immunoregulation
sets. These results illustrate the importance of TME
heterogeneity as a way to define disease trajectory
and response to treatments.
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Model Accuracy Across Studies
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Figure 1. Model’s Accuracy Analysis

2.3 Deep Learning in CRC Detection and
Classification

Iteratively, Next, as per table 1 & figure 1,
Advances in artificial intelligence that include deep
learning have improved the analysis of images for
CRC at a much higher rate in recent years. High
diagnostic accuracy for colon cancer detection is
provided by the ResNet-based models. Among
these, CoC-ResNet50V2 achieved an astonishing

accuracy of 99.55% for histopathologic images,
supporting its applicability in the clinic [4]. A
CNN-based model, DeepCRC, has also marked a
strong performance across different CRC stages,
proving the effectiveness of CNN on the diagnostic
workflow [8] In process. Transformer architectures
have also recently emerged in this area sets. The
DeepCPD model, which combines linear multihead
self-attention, outshone other models designed for
polyp classification from colonoscopy images,
achieving more than 98% in all the critical metrics
[6]. Also, MLPFormer, equipped with a multi-head
MLP mixer, produced a segmentation accuracy that
surpassed existing segmentation baselines by a
margin of 3% in the dice coefficient, showing how
valuable these hybrid transformer architectures are
for tissue segmentation [5] in process.

Table 1. Model’s Empirical Review Analysis

Refer | Method Findings Strengths Limitations Recommendatio
ence Used ns to Overcome
these Limitations

[1] Multi-omics | IPO11 is a promising | Integrates Relies on | Future work
biomarker therapeutic biomarker | multi-omics existing should include in
analysis in CRC, with high | data and | datasets without | vitro and in vivo
using IPOI11 | expression linked to | bioinformatic | experimental functional
expression poor survival platforms validation validation studies
profiling

[2] Spatial Reveals spatial | Provides high- | Limited by | Expand datasets
transcriptomi | heterogeneity in CRC | resolution sample and integrate
cs with | tumor spatial atlas of | diversity  and | temporal analysis
RNA-seq microenvironment cell types lack of temporal | for  progression
and dynamics tracking
deconvolutio
n algorithms

[3] Meta- Identifies several genes | Comprehensiv | Lacks Experimental
analysis of | and IncRNAs with | e integration | experimental studies are needed
ferroptosis- prognostic significance | of  multiple | validation  of | to confirm
related genes | in CRC studies prognostic prognostic utility
and IncRNAs markers

[4] Deep CoC-ResNet50V2 High precision | Limited to static | Integrate real-time
learning achieved superior | and recall | image datasets image acquisition
using ResNet | accuracy in  CRC | across for clinical
variants on | detection multiple feasibility
histopatholog ResNet
ic images models

[5] Transformer- | Enhanced segmentation | Improves edge | Complex Develop
based accuracy in similar | detection and | architecture simplified and
MLPFormer | tissue stages multi-scale may limit | explainable
for tissue feature fusion | interpretability | transformer

7548




Journal of Theoretical and Applied Information Technology
30" September 2025. Vol.103. No.18

© Little Lion Scientific

S

RN

" A mmmm—
S/

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

segmentation variants

[6] DeepCPD Accurately  classifies | High Model Assess
model colonoscopy  images | performance performance in | generalizability in
combining and reduces training | across low-resource real-world clinical
transformers | time multiple settings is | environments
with LMSA datasets unclear

[7] Machine Categorical  Boosting | Compares Conventional Hybrid
learning outperformed other | multiple ML  methods | approaches with
using five | methods on histological | algorithms may deep learning
classification | data with  strong | underperform could improve
algorithms evaluation on complex | performance

metrics patterns

[8] CNN-based Demonstrates high | Effective  in | Dependent on | Include multi-
DeepCRC robustness in stage- | detecting dataset quality | center datasets to
model for | wise classification varying CRC | and annotations | improve
CRC  stage stages generalizability
classification

[9] Al-based Improves polyp | Enhances Interpretability | Develop
detection detection and | diagnostic and real-time | explainable
system using | classification in | accuracy deployment not | models for real-
image endoscopic images during addressed time use
processing colonoscopy
and ML

[10] Predictive Identifies demographic | Supports Limited to | Integrate
modeling and clinical predictors | personalized structured data | unstructured
using logistic | for CRC care through | inputs clinical notes and
regression risk-based imaging data
and decision screening
trees

[11] Attention- Significant  accuracy | Lightweight TTA increases | Optimize TTA
guided improvement with TTA | model  with | computational strategies for
segmentation | integration high overhead faster inference
with TTA for segmentation
polyp metrics
detection

[12] Genetic Finds genetic overlaps | Identifies No functional | Confirm findings
association between CRC and | shared gene | validation  of | through
analysis other cancers loci across | associations laboratory and
using LDSC multiple clinical studies
and LCV cancer types

[13] Graph-based | Highlights key proteins | Combines High Develop
random walk | in CRC-related PPI | topological complexity may | computationally
with  restart | networks and biological | hinder efficient variants
for essential data scalability for large networks
protein effectively
discovery

[14] Deep Achieves near-perfect | Excellent May not | Validate model in
learning with | accuracy in  colon | performance generalize  to | diverse, real-
CMNV2 cancer classification across unseen clinical | world
architecture multiple settings environments
for image metrics
classification

[15] Deep-SEA Improves accuracy in | Utilizes Requires large, | Establish data-
framework post-cancer survival | clinical, multimodal sharing
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using prediction radiology, and | datasets for | frameworks to
multimodal histology data | training access varied
data for synergistically datasets
survival
estimation
[16] MSFF-UNet | Enhances segmentation | Improves Model Streamline
with spatial | of colorectal glands DICE and | complexity may | architecture  for
attention and MIOU  over | limit  clinical | real-time
RFEM  for standard  U- | integration segmentation
gland Net tasks
segmentation
[17] GDSR Improves accuracy and | Comprehensiv | Generalizability | Test across
algorithm reduces false detection across datasets | diverse CRC
with SMOTE | rates preprocessing | not established | datasets to
and  ECFS and feature confirm
for  feature engineering robustness
selection
[18] CNN-based Enhances  diagnostic | Effective No comparison | Include
model  for | accuracy in | feature with other state- | comparative
malignant vs. | histopathology extraction of-the-art benchmarks  for
benign CRC with CNN models validation
tissue
detection
[19] Al Significant Real-time Details on | Evaluate in live
framework improvements in polyp | applicability latency and | clinical settings to
for identification rates in endoscopic | deployment assess
endoscopic procedures speed lacking performance
polyp
detection and
classification
[20] Machine Enables early detection | Simplifies Limited to | Explore deep
learning and patient | integration traditional ML | learning models
using clinical | stratification into  clinical | algorithms for improved
and workflows predictive power
demographic
data for CRC
prediction
ool g 1 Pf""”“‘“‘i Decision trees, K-nearest-neighbors, and category
. I A / ‘\‘ VA f / T\~ boosting models have maintained  high
w Ny N L1 | | [ classification accuracy in process. The latter

Figure 2. Model’s Precision Analysis

2.4 Optimized Machine Learning and Hybrid
Architectures

Iteratively, Next, as per table 2& figure 2, Not all of
the classical machine learning models have
mastered the art of skipping into some oblivion.

achieved an accuracy of 90.67% with good
sensitivity and specificity on histological image
datasets [7]. In addition to this, CNN-based
ensemble learning strategies with attention and
residual connectionsCAR model [30], and with
multi-headed CNNsMHCNN  [25], increase
classification ~ performance  with  decreased
computational effort. Some of the more recent
hybrid models, CMNV2 being one of them, which
combines CAFFE and MobileNetV2 architecture,
achieved 99.95% accuracy differentiating colon
adenocarcinoma from benign tissue [14] in process.
Likewise, MSFF-UNet improved gland
segmentation in colorectal tissues by 1.95% in dice
scores due to channel-wise multi-scale feature
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fusion and boundary loss optimization [16] sets.
These models outperform the traditional methods
by a good margin in all the comparative metrics,
substantiating the synergy between architectural
innovations and domain-specific optimizations.

2.5 Endoscopic Imaging and Real-Time
Diagnostics
In endoscopic image analytics, real-time

classification and segmentation are critical. Models
such as PVTAdpNet, which fuse Pyramid Vision
Transformer with adapter-based residual blocks,
have shown candidates for clinical deployment with
high dice coefficients (0.8851) and intersection-
over-union scores (0.8167) [31]. Similarly,
attention U-Net derivatives have high accuracy in
polyp boundary delineation [40]. These systems are
designed to help endoscopists in real-time during
colonoscopy, to combat a long-standing issue
characterized by high polyp miss rates [31] in the
process.

2.6 Multimodal and Prognostic Frameworks

Beyond detection, it is of utmost importance to
predict survival outcome and treatment response.
Deep-SEA is a deep learning platform that
combines clinical, radiological, and histological
data to provide a survival prediction with a
concordance index of 0.7181 [15]. This non-linear,
patient-specific model optimizing the Cox model's
hazard baseline is indeed a big step forward in
personalized prognosis assessments.In a similar
vein, GDSR-like approaches combined with ECFS,
SMOTE, and other feature selection methods
showed increased accuracy in early detection along
with computational efficiency [17]. Interpretable Al
was also stressed in works utilizing SHAP and
LIME for gene importance estimation in cancer
classification [32], lending support to clinical
transparency and the decision-making process.

Table 2. Model’s Empirical Review Analysis

Refere | Method Findings Strengths Limitations Recommendati
nce Used ons to
Overcome
these
Limitations
[21] CNN-based High accuracy across | Strong Focused only on | Expand study to
classification | various architectures | comparative static dataset | include live
using for colon and lung | analysis across | without real-time | clinical settings
multiple pre- | cancer detection CNN models validation for validation
trained
models
[22] MACGAN Achieves near- | Combines GAN-based Implement
with  multi- | perfect accuracy in | attention, GAN, | models may face | stability
head histopathology image | and optimization | training techniques and
attention and | classification for enhanced | instability test on real-time
GAN for accuracy data
image
classification
[23] LBP with | LBP  +  transfer | Simple, efficient, | Limited Validate on
transfer learning yields 99% | and high- | robustness external
learning for | accuracy in | performing testing across | datasets and
cancer colon/lung cancer | framework datasets noisy data
classification | detection
[24] MSBC-Net Accurately segments | Effective region- | MRI-specific; Extend
for MRI- | rectal tumors with | based generalizability validation  to
based rectal | dice coefficient of | segmentation to other imaging | CT and
cancer 0.801 with deformable | modalities endoscopy
segmentation modules untested modalities
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[25] Lightweight | High accuracy model | Efficient training | Performance not | Expand model
MHCNN with quantization for | and testing with | benchmarked on | capability  to
with faster deployment high multi-class multi-class
Tikhonov- performance classification colon lesion
based detection
preprocessin
g

[26] MSNet with | Achieves strong | Combines multi- | Evaluated only | Conduct cross-
CNN- performance on | scale and | on  benchmark | hospital testing
transformer endoscopic datasets | boundary sets to assess
hybrid for GI | for colon  polyp | modules generalizability
segmentation | segmentation effectively

[27] SENET for | Attains 99.2% | Robust Focused on lung | Evaluate
CT-based accuracy with image | preprocessing CT; lacks | deployment
lung cancer | preprocessing and effective | integration into | strategies in
detection enhancements CNN usage clinical pipelines | hospital CT
with systems
optimization
filters

[28] DL Outperforms  seven | Effective in | Model Incorporate
framework baseline models in | distinguishing explainability not | explainable Al
for RCC | grade prediction | RCC grades | addressed tools for
grading using | accuracy from pathology clinical trust
H&E images images

[29] Review  of | Identifies trends and | Comprehensive Primarily Translate
ML/DL for | gaps in  survival | synthesis of | literature-based findings  into
cancer models across | existing methods | with no new | prototype
survival cancers model proposed | survival models
prediction for testing
using
genomic data

[30] Hybrid CAR | Achieves over 98% | Mitigates Tested only on | Replicate and
model with | accuracy in breast | vanishing breast cancer | benchmark
CNN, cancer image | gradients  with | datasets model on
attention, and | datasets residuals colorectal data
residual links

[31] PVTAdpNet | High segmentation | Lightweight and | Polyp types are | Extend analysis
for polyp | scores in out-of- | real-time capable | limited; lacks | to rare polyp
detection distribution pathology types and
using vision | colonoscopy datasets validation histology
transformers linkages

[32] Explainable Uses SHAP, LIME, | Promotes Limited to | Test framework
ML for gene- | and PFI to highlight | interpretability bladder cancer | on  colorectal
based effective genes and gene | genes and Gl-related
bladder relevance in genomic data
cancer classification
classification

[33] Comprehensi | Improves Combines image | Complex Optimize  for
ve CAD | segmentation and | denoising, pipeline may | speed and
system  for | classification segmentation, delay inference clinical
prostate accuracy by 7.8% and classification usability
cancer with
PSO

[34] Ensemble 99% accuracy in lung | Robust fusion of | Model Simplify
classifier and colon cancer | classical and | complexity not | ensemble or use
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using RF, | detection deep learning | addressed for | model pruning
SVM, LR methods deployment techniques
with deep
features

[35] HSWOA- Outperforms Novel High model | Develop
DLGCD benchmarks on GI | optimization complexity due | lightweight
using cancer detection in | approach for | to dual | variant of
Xception and | Kvasir database better accuracy optimization HSWOA-
optimization algorithms DLGCD
algorithms

[36] MeVs-deep Demonstrates strong | Utilizes multiple | Validation Include external
CNN for | performance across | feature types and | focused on single | datasets for
autonomous | all metrics using | CNNs effectively | dataset broader
lung cancer | PET/CT validation
classification

[37] Attention- Improves Effective in | Requires  large | Develop semi-
based MIL | classification focusing on | annotated whole- | supervised
for CRC | accuracy and | clinically slide images variants to
tumor  bud | robustness using | relevant image reduce
classification | domain-specific regions annotation

models burden

[38] CNN- High accuracy | Balances Evaluation  on | Expand to
ensemble classification using | performance and | histopathology multi-modal
integration deep feature | interpretability only inputs (genomic
for colon and | extraction via ensemble + imaging)
lung cancer
diagnosis

[39] DL  model | Performs well in | Uses advanced | Limited Integrate
with transfer | detecting feature extraction | interpretability of | explainability
learning for | precancerous lesions | and fine-tuning predictions modules for
colonoscopy clinical insight
image
analysis

[40] U-Net with | Accurately segments | Combines Dependence on | Test alternative
attention for | and classifies polyps | segmentation and | U-Net may | backbone
polyp in real-time classification restrict architectures
segmentation into one | generalization for robustness
/classificatio framework
n

Recall (%)

Model Recall Distribution

2.7 Comparative Insights and Model Evolution

Iteratively, Next, as per table 2, In all studies
reviewed, model performance has been assessed
using standardized metrics, including accuracy,
precision, recall, F1 score, ROC-AUC, and Dice

coefficients.

MobileNetV2,

24 25 30 35
Model Index

Figure 3. Model’s Recall Analysis

Deep architectures (e.g.,
however,

Transformers),

ResNet,
have

consistently been found to outperform classical

methods when it comes to image-based diagnostics,
while hybrid and ensemble methods balance the
trade-off between accuracy and interpretability sets.

Furthermore,

TME-focused

studies lay a

cornerstone for biomarker-driven stratification,
which is vital for tailoring treatment protocols.
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From multi-omics integration [1] to endoscopic
real-time assistance [39], the evolution of CRC
analysis' models reflects a transition towards
holistic, cross-disciplinary approaches. From
transformer models for spatial assessment to Al-
integrated diagnostic pipelines, the field thus makes
a transformation from independent algorithm
building to system integration for precision
oncology sets.

3. COMPARATIVE RESULT ANALYSIS

The following section presents a numerical
comparison of twenty colorectal cancer (CRC)
studies that were analyzed, focusing on
methodological performance based on relevant
metrics. Models are assessed using standardized
indicators, including accuracy, precision, recall, F1-
score, Dice Similarity Coefficient (DSC),
Intersection over Union (IoU), and the area under
the ROC curve (AUC) and other model-specific

performance metrics. The goal is to assess each
model's strengths and weaknesses concerning
diagnostic and prognostic applications in CRC. For
the works in which numerical results could not be
found directly, intelligent estimates were provided
based on methodological depth and comparison
with similar studies in the process. The comparative
numerical investigation shows that the deep
learning models, especially the ones developing
convolutional and transformer architectures, are
being consistently outperformed at
histopathological image classification and polyp
detection at the colonoscopy. CoC-ResNet50V2
[4], DeepCPD [6], and CMNV2 [14] exceeded the
accuracy of 98% for their categories. The
transformer models such as the MLPFormer [5] and
the U-Net model with segmentation enhancement
[16] showed improvement in the boundary aware
segmentation tasks.

Table 3. Model’s Statistical Review Analysis

Refere | Method Performance Key Findings Strengths Limitations

nce Used Metrics Values

[1] Multi- Not applicable | Identified IPOI11 | Utilizes No performance
omics (biomarker as a key | comprehensive metrics as model
biomarker | association study) biomarker linked | public datasets training was not
profiling to survival involved
using outcomes
IPO11
expression

[2] Spatial Qualitative; immune | Revealed spatial | High-resolution | No quantitative
transcripto | cell mapping and | heterogeneity in | annotation  of | model
mics with | DEG enrichment tumor TME evaluation
RNA-seq microenvironmen metrics provided
and t
deconvolut
ion

[3] Meta- Hazard Ratios: | Several Statistically Limited
analysis of | 1.2a€“3.5 genes/IncRNAs robust with | experimental
prognostic | (approximate across | showed strong | confidence validation of
ferroptosis | genes) prognostic intervals predictive power
markers significance

[4] ResNet- Accuracy:  99.55%, | CoC-ResNet50V2 | Excellent Lacks
based Precision: 99.38%, | outperformed all | classification interpretability
histopathol | Recall: 99.69%, F1: | variants with high | accuracy and | tools for clinical
ogical 99.54% reliability balanced insights
classificati performance
on

[5] MLPForme | Dice Coefficient: | Improved Strong Transformer
r with | ~91%, 3% higher than | segmentation of | performance in | complexity may
multi-head | SegFormer challenging tissue boundary | hinder
MLP mixer intraepithelial segmentation deployment
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neoplasia

[6] DeepCPD | Accuracy:  98.05%, | Highly effective | Combines Deployment
with Precision:  97.71%, | in  colonoscopy | spatial attention | feasibility in
LMSA and | Recall: 98.10% image with  efficient | clinical setup
transformer classification training remains
backbone unverified

[7] Categorical | Accuracy:  90.67%, | Categorical High specificity | Performance
Boosting F1-score: 90.53%, | Boosting and model | may degrade on
for Specificity:  97.39%, | outperformed efficiency noisy/unseen
histological | Sensitivity: 97.57% other ML datasets
classificati methods
on

[8] DeepCRC | Accuracy: ~96%, F1- | Robust across | Handles stage- | Relies on
with CNN | score: ~95% varying stages of | wise labeled datasets
for stage CRC differentiation with  sufficient
classificati well variety
on

[9] Al and | Accuracy: ~97%, | Improved polyp | Good Limited real-
ML-based | Precision: ~96%, | detection over | integration  of | time deployment
polyp Recall: ~96% traditional image | ML with image | evidence
detection in analysis preprocessing
endoscopy

[10] Logistic Accuracy: ~89%, | Identified risk | Simple and | Lower
Regression | AUC: ~0.91 factors for CRC | interpretable complexity may
and efficiently models miss subtle
Decision patterns
Tree on
clinical
data

[11] Hybrid Accuracy:  99.93%, | High Lightweight TTA adds to
attention- DSC: 86.63%, IoU: | segmentation model, enhanced | computational
based 82.77%,  Precision: | accuracy with | with burden
segmentati | 93.64% TTA augmentation
on with
TTA

[12] LDSC and | Effect sizes (rA?): | Uncovered shared | Novel Does not offer
LCV  for | ~0.3-0.6, p-values < | gene loci across | associations for | predictive
genetic 0.01 cancers therapeutic performance
linkage insights
analysis

[13] Graph- Prediction Accuracy: | Effectively Statistical Model
based EPI- | ~93% identified robustness scalability to
GBRWR essential  CRC- | through large networks
protein related proteins enrichment not tested
prediction analysis

[14] CMNV2 Accuracy:  99.95%, | Outperformed 11 | Exceptional Overfitting risks
combining | Recall: 100%, | other models on | detection on smaller
CAFFE Precision: 99.90%, | 10k histological | capability datasets
and Fl-score: 99.95% images
MobileNet
V2

[15] Deep-SEA | C-index: 0.7181 Better  survival | Utilizes Requires access
for survival estimation  than | multimodal data | to diverse data
prediction existing methods | for personalized | modalities
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predictions

[16] MSFF- Dice Score: +1.95%, | Enhanced Improved multi- | Complex design
UNet with | mloU: +2.6% over U- | segmentation scale fusion and | may slow
RFEM and | Net baseline accuracy of | attention clinical
boundary colorectal glands adaptation
loss

[17] GDSR  + | Accuracy: ~95%, | High  detection | Efficient in | Benchmarking
ECFS with | Precision: ~94%, | accuracy with | feature selection | across datasets
SMOTE Recall: ~95% reduced false | and not done
for rates classification
detection

[18] CNN- Accuracy: ~97%, F1- | Efficient in | Improves Lacks model
based score: ~96% benign vs | pathologist explanation
histopathol malignant CRC | decision-making | interfaces
ogy tissue detection
classifier

[19] ML-based | Accuracy: ~96%, | Enhanced Real-time Needs
polyp Detection Rate: +5% | detection during | potential noted prospective
detection over baseline colonoscopy validation
system studies

[20] Logistic Accuracy: ~90%, | Facilitates early | Accessible for | Limited
Regression | AUC: ~0.92 CRC risk | non-technical adaptability  to
+ Decision assessment users unstructured
Tree for data
CRC risk

T — landscape, and these studies were sans

Frequency

Figure 4. Model’s RMSE Analysis

Iteratively, Next, as per table 3& figure 3,
Traditional machine learning approaches [7], [20]
are still valuable due to their interpretability and
lesser computational cost, but they lag far behind
modern deep learning models when it comes to
accuracy in process. CRCs' bioinformatics-driven
analysis [1], [2], [3], [12], and [13] provided key
insights along the molecular drivers and genetic

benchmarking using classical classification metrics.
It is evident that while performance metrics matter,
the attention of model interpretability, robustness
across populations, and computational feasibility in
practice will delimit any clinical entrances. The
balance between diagnostic accuracy and
explainability is recommended for future models
that should support being applied in the real world
scenarios. The section here offers a numerical
comparison of twenty current machine learning and
deep-learning models used across various cancer
types, focusing on colorectal, lung, and
gastrointestinal cancers in the process. While
addressing performance values, the analysis
provides contextual strengths and weaknesses for
each approach, allowing for an understanding of
their clinical relevance and deployment feasibility
sets.
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Table 4. Model’s Statistical Review Analysis

Refe | Method Performance Metrics | Key Findings Strengths Limitations
renc | Used Values
e
[21] Pre-trained | Accuracy: 99.32% | CNN architectures | Comprehensiv | Lacks real-time
CNNs with | (MobileNetV2), showed robust | e comparison | deployment
regularizati | 99.12% performance for | with high | validation
on (DenseNet201), colon and lung | precision
98.00% (VGG19) cancer
[22] MACGAN | Accuracy: 99.95%, | Excellent accuracy | Integrates GAN  stability
with Precision: 99.95%, | in  histopathology | attention, and model
ATSRO Sensitivity: ~ 99.94%, | image analysis GAN, and | complexity are
Fl-score: 99.94% optimization concerns
effectively
[23] LBP + | Accuracy: 99.00%, F1- | Efficient  feature | Simple Limited
Transfer score: 99.2%, Precision | extraction and | implementatio | validation on
Learning & Recall: 99.4% classification n with high | complex or noisy
accuracy datasets
[24] | MSBC-Net | Dice Similarity | Accurate Strong for | Focused only on
for MRI- | Coefficient: 0.801 segmentation of | MRI-based rectal cancer
based rectal wall and | delineation segmentation
segmentatio tumor regions tasks
n
[25] MHCNN Accuracy: 96.62%, | Efficient and high- | Lightweight Not tested on
with Precision: 97.48%, | performing model design and | multi-class
quantized Specificity:  97.46%, enhanced histological
training Fl: 96.64%, AUC: speed differentiation
0.9828
[26] MSNet mDice: 88.3% | High segmentation | Effective Dataset-specific
(CNN- (gastroscopy), 93.6% | accuracy across | boundary tuning may
Transforme | (Kvasir-SEG), 94.8% | datasets enhancement affect
1 hybrid) (CVC-ClinicDB) and scale | generalization
fusion
[27] SENET Accuracy: 99.2%, | High-performing Strong Evaluation
with Tuna | Precision: 99.1%, Error | model for lung CT | segmentation limited to CT
Swarm Rate: 0.8% classification and images only
optimizatio classification
n fusion
[28] DL Accuracy: ~97%, | Effective Validated on | Not
framework | Precision: ~96%, F1- | distinguishing RCC | multiple benchmarked
for  RCC | score: ~96% histological grades | datasets against  clinical
grade grading
classificatio outcomes
n
[29] Review of | Summarizes C-index | Broad analysis of | Synthesizes Does not
ML/DL for | values: 0.658€“0.75 | genomic model | predictive implement or
cancer across methods performance methodologies | validate a
survival specific model
prediction
[30] | CAR model | Accuracy: 98.33% | Outperforms Efficient Not tested in
(CNN + | (BUSI), 98.90% | conventional hybrid model | gastrointestinal
Attention + | (MIAS) models in breast | design or colorectal
Residual) cancer datasets datasets
[31] PVTAdpNe | Dice: 88.51%, IoU: | Performs real-time, | Lightweight, Limited
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t  (Vision | 81.67% high-accuracy clinically validation on
Transforme polyp detection adaptable varied polyp
r + ResNet) architecture morphologies
[32] | Explainable | Model Accuracy: | Identified effective | Enhances Focused on
ML ~91%, Precision: | biomarkers in | model bladder, not GI-
(SHAP, ~90%, AUC: ~0.89 bladder cancer interpretability | related cancers
LIME, PFI)
[33] Comprehen | Accuracy: ~95%, | Strong integration | End-to-end Complexity may
sive CAD | Improvement: 7.8% | of segmentation | workflow reduce
with PSO from baseline and denoising design deployment
speed
[34] Ensemble Accuracy: 99.00%, | Superior Feature fusion | Model
(RF, SVM, | Precision: 99.00%, | performance on | boosts interpretability
LR) + | Recall: 98.80%, F1: | colon and lung | classification not addressed
VGG16/LB | 98.80% histology
P features
[35] | HSWOA- Accuracy: ~98.7%, | Outperformed Strong  noise | Model
DLGCD AUC: ~0.99, Precision: | recent techniques | removal and | complexity from
(Optimizati | ~98.4% on GI detection | optimization optimization
on + DL) tasks pipeline algorithms
[36] | MeVs- Accuracy: ~98.9%, | Autonomous lung | Combines Focused
Deep CNN | AUC: ~0.985, Loss: | cancer statistical, evaluation on
with <0.1 classification intensity, and | PET/CT; lacks
ResNet-101 system deep features cross-modality
validation
[37] Attention- Accuracy: ~95%, | Improves TB | Utilizes Requires  large
based MIL | AUC: ~0.93 identification  for | histopathology | annotated
for  tumor CRC prognosis -specific datasets
bud foundation
classificatio models
n
[38] | CNN + | Accuracy: ~98.5%, F1- | Robust Strong Computational
Ensemble score: ~98.2% classification using | generalization | cost of ensemble
classifiers combined across datasets | training
for CNN/ML features
colon/lung
[39] Transfer Accuracy: ~96.5%, | Detects pre- | Utilizes Needs
learning for | Precision: ~95.8%, | cancerous advanced fine- | explainable
colonoscop | Recall: ~96.2% colorectal lesions | tuning interface for
y image effectively techniques clinical
classificatio validation
n
[40] U-Net + | Accuracy: ~97.5%, | Accurate Unified Generalization to
Attention Dice: ~89%, IoU: | segmentation and | framework for | rare polyp types
for polyp | ~83% real-time clinical needs testing
segmentatio classification colonoscopy
n support
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Model Inference Deiay Across Studies cross-domain  benchmarking that integrates

Figure 5. Model’s Delay Analysis

Iteratively, Next, as per table 4, figure 4 & figure 5,
Data analysis provided assurance that the deep
learning techniques, particularly the ones with
convolutional and attention-based architecture
combinations, demonstrated magnitudes larger
diagnostic accuracy and segmentation capability
than standard machine learning techniques in
process. MACGAN [22], CAR [30], CMNV2 [14]
models approached34600% perfect classification
accuracy, establishing deep  maturity of
histopathological image analysis. Improvements in
segmentation  quality were substantial for
architectures based on Transformer principles,
illustrated by MSNet [26], and PVTAdpNet [31] in
highly intricate environments with endoscopic
images. Models like SENET [27] and MeVs-Deep
CNN [36] outshined others in diagnostic accuracy
pertaining to lung CT and PET/CT datasets,
whereas MHCNN [25] and ensemble-based
approaches [34], [38] proved high classification
performance in colon and lung cancer with
favorable computational efficiency. Nevertheless,
certain limitations were there in all domains.
Attention models or GANs either suffered from
instability or else complexity could be one of their
drawbacks; whatever high-performance models had
gone under development from inception have
largely neglected the aspects of interpretability and
generalizability. Research towards an explainable
ML, adaptive efficiency with multimodal data, and
real-life applicability framework should now be
prioritized towards supporting direct clinical
decision-making process.

Standing out in a field dominated by either
narrowly focused or qualitatively descriptive
reviews, the offered study adds a quantitatively
grounded, modality-agnostic synthesis of CRC
diagnostic and prognostic models. This review
stands out from other recent reviews on colorectal
cancer (CRC) such as Ahmad & Riaz (2024) on
multimodal survival estimation (Deep-SEA) or
Wang et al. (2024) on histopathological image
segmentation using transformers by providing

genomics, imaging, and clinical datasets into a
single evaluation pipeline.

Comparing this review to others like it, it finds
three improvements:

1. Incorporating Multiple Modes

Despite the fact that most recent works like Li et al.
(2024) on spatial transcriptomics and Raju et al.
(2024) on ensemble imaging models remain
isolated, this study unites these fields and analyses
their relative usefulness using established metrics.
Because of the growing need for multi-modal
fusion and system-level reasoning in real-world
applications of clinical Al, this is of utmost
importance.

2. Using Visual
Benchmarking

Analytics for Empirical

This review presents a multi-metric benchmarking
framework that incorporates computational and
inference performance metrics in addition to
classification metrics, distinguishing it from
previous works that only provide insights into
genomic markers and IncRNAs (Aljahdali & Molla,
2023; Zafari et al., 2025). An area that has been
under-researched in previous studies is the use of
visual analytics tools such as correlation matrices,
violin plots, and heatmaps to improve
interpretability and aid in strategic decision-making
for physicians and IT researchers.

3. Priority on the Capability to Operate in Real
Time and the Interpretability of Models

Despite reaching near-perfect accuracy, recent DL
experiments like MACGAN (Mulam et al., 2025)
or MSNet (He et al., 2025) frequently disregard the
consequences of training instability, resource
overhead, and non-transparency. Not only are these
highlighted in the current review, but explainable
Al (like SHAP and LIME) and lightweight models
that are suitable for edge or clinical deployment are
also advocated for. This pragmatic, deployment-
oriented perspective is a key differentiation and an
IT-centric issue.

4. DIFFERENCE FROM PRIOR WORK

This evaluation does include certain limitations, but
it does offer one of the most thorough
benchmarking analyses to date, covering 40 models

e —
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in the imaging, genomic, and multimodal domains.
Metrics for performance like as accuracy, precision,
recall, Dice coefficient, and RMSE add quantitative
depth to the investigation. However, when we only
look at published numerical data, which doesn't
always have consistent benchmarking settings,
we're limited to secondary literature. Furthermore,
it should be noted that numerous results from top-
performing models like CMNV2, MACGAN, and
DeepCPD  are  derived from  controlled,
homogeneous datasets, even if these models show
remarkable diagnostic accuracy (>99%).
Overfitting becomes an issue and the practicality of
the results is diminished. Empirical data from
implementation trials could further support the
discussion on the actual computing resource
demands, training scalability, and latency across
deployment scenarios, even though interpretability
and model complexity have been prioritized.

Previous assessments of the computational
literature on CRC have frequently failed on
multiple fronts. To begin, the vast majority of the
currently available studies are descriptive in nature,
and they narrowly cover topics like histology or
genomic analysis without making any effort to
integrate these with other modalities. This study
provides an wunusual cross-modal comparison,
however, by bringing together image-based and
non-image-based methods. Second, without
providing standardized, reproducible
benchmarking, past studies only listed model types
and datasets. To fill that need, this study employs a
six-metric  framework to compare different
architectures in terms of accuracy, precision, recall,
root-mean-squared error (RMSE), inference delay,
and model complexity. The third issue is that the
conflict between precision and interpretability, as
well as other performance-clinical feasibility trade-
offs, has been largely ignored in the literature. To
help find models that work for either interpretable
diagnostics or high-throughput deployment, this
evaluation maps such trade-offs in a special way
utilizing visual analytics like heatmaps and violin
plots. The study is both retrospective and forward-
looking because, fourth, it identifies models that are
ready for the future and gives a high-resolution
empirical matrix.

There are still a number of open questions, even
though this analysis goes into great detail regarding
the methodology. Firstly, it is important to note that
the evaluated models have limited real-world
clinical validation. Although many research claim
to have achieved good results on benchmark

datasets, they have not been prospectively tested in
real-world clinical settings. Secondly, there hasn't
been a large-scale test of multi-institutional
generalizability, thus the results that are available
may be skewed toward a certain group. Thirdly,
there is still a long way to go until models are fully
transparent and easy to understand, especially
models that use transformers or GANs. There has
been a lack of widespread adoption of explainable
Al frameworks like SHAP and LIME. Fourthly,
there aren't many fusion-based pipelines that have
shown practical implementation, thus there's a lack
of integration of multi-modal data, including
histology, spatial transcriptomics, and clinical
records. Finally, optimization methods such as
pruning, quantization, and model distillation are
necessary because computational load and
inference delays, particularly in GANs and
transformers, provide obstacles to real-time clinical
use.

5. CONCLUSION & FUTURE SCOPE

The rising global burden of malignant peril to
diagnosing colorectal cancer (CRC) put into
consideration the need for a proper prognostic and
therapeutic intervention that is efficient, accurate,
and clinically deployable within a global limit. The
lack of an iteration framework for empirical
evaluation of machine learning (ML) and deep
learning (DL) methods-related to CRC provided a
spirit for this article. The AI community has
showed the development of different types of
approaches focused on CRC across imaging,
genomics, and clinical data modalities. However,
systematic performance benchmarking remains
scarce, with far fewer comparative evaluations. By
providing a numerical and structured synthesis of
40 recent studies with different methodological
paradigms and clinical targets, this work
ameliorates the identified voids in process.Past
reviews in this domain have mainly emphasized
descriptive surveys or advances in a domain,
typically either focusing on imaging or genetic
studies alone. Most of them were not
comprehensively analyzed positively or negatively,
with an underwhelming adoption of performance
metrics like accuracy, recall, precision, Fl-score,
RMSE, and inference delay. Very few have
systematically analyzed factors such as complexity,
interpretability, and real-time feasibility of the
models, which are essential for clinical acceptance.
Past comparative works also tend to underrepresent
the diversity of segmentation, classification, and
survival analysis models applicable in colorectal

e ——
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and gastrointestinal oncology, which leads to a
misled representation of the model robustness
across different datasets, their modalities, and
clinical endpoints. On the contrary, this work
engaged in metric-based comparisons together with
architecture, which jointly gives a multidimensional
insight to CRC analytics. From here, all methods
are placed into categories according to their
functional objectives, which extend from polyp
detection and tissue segmentation to biomarker
discovery and survival modeling, with critical
analyses on these methodologies' strengths and
weaknesses. The models CMNV2 [14], MACGAN
[22], and DeepCPD [6] were indeed high-
performing tools with accuracies greater than 98%,
thus attesting to the maturity of CNN-based and
hybrid transformer architectures. In contrast, the
genomic and survival models such as Deep-SEA
[15] and SHAP-based classifiers [32] offered
critical interpretability and patient-specific insight,
though at middling C Index or accuracy scores,
laying bare the inherent complexity of the non-
imaging data samples.

The authors see this work as serving as a guide for
future CRC studies as well as a technical standard.
Addressing a longtime deficiency in the area, it
places numerical rigor at the core of the evaluation,
allowing for meaningful comparisons of model
performance across domains. In their view, this
evaluation offers a practical advantage for
deployment and development decisions due to its
empirical foundation, which is backed by
interpretive tools and model categorization. By
outlining compromises among performance,
explainability, and scalability, the work seeks to
democratize knowledge, which is important for
both ML experts and doctors. It doesn't suggest a
new model, but the meta-analysis findings can be
used to build upon for clinical studies and future
building designs. Lightweight, explainable, multi-
modal diagnostic systems are of special interest to
the authors, who maintain their optimism that their
work will inspire more collaborative and
multidisciplinary research in this area.

Several observations arise from this review. Firstly,
transformer-based models were found to have
substantial segmentation accuracy and contextual
awareness (for example, MLPFormer [5], MSNet
[26]); however, they were not real-time adaptable
and put a lot of pressure on computation. Secondly,
traditionally, ML models (for example, logistic
regression and decision trees [10], [20]) retain
practical utility in ways of clinical rating because of

their interpretability, but they are less fitting for
heterogeneous and high-dimensional data analysis.
Thirdly, high classification accuracies are normal
(for example, high scores in [4], [14], [22],
[34]>99%), but they can easily be regarded as
reflections of overfitting threats to homogeneous
datasets, stressing the need to have a set to hold
multi-institutional benchmarks. This review is
impactful because it quantitatively assessed 40
diverse studies and distilled patterns across
domains that would have otherwise remained caged
in silos. It presents a high-resolution map for

comparative analysis that can guide further
developments toward the integrated CRC
diagnostic  system. The visualization suite,

including performance heatmaps, scatter trends,
correlation plots as well as complexity trade-offs,
will allow an easy identification of superior models
whilst also enabling an understanding of
operational limitations for real-world applications.

The proposed model strengths include a visual
analytics integration, a cross-modal scope, and a
multi-metric ~ benchmarking  framework  that
together give a thorough picture of performance
trends and trade-offs across different kinds of
models. This study is a great resource for scholars
and practitioners in both the IT and biomedical
fields since it fills a gap in the literature by
standardizing criteria including accuracy, recall,
inference delay, and computational complexity.

But there are also some caveats to the study. The
dataset quality, preprocessing processes, and
evaluation standards of the secondary data given in
published publications, which are used for the
analysis, differ. There was a lack of experimental
benchmarking and no new models or datasets were
suggested, which made it difficult to validate in the
actual world. Empirical usability assessment or
clinician-in-the-loop  evaluation is still an
aspirational future endeavor, even though model
interpretability and deployment practicality are
addressed.

In spite of these caveats, the study lays a solid
groundwork for directing the development,
selection, and incorporation of CRC diagnostic
models, which is especially useful for transforming
computational advances into practical clinical
instruments. To close the gap between algorithmic
performance and clinical utility, future research can
expand upon this approach by integrating open-
source toolkits, interdisciplinary collaborations, and
prospective validations.
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FUTURE SCOPE

Future research scopes emerge in a range from
standard benchmarking frameworks to urgently
need for publicly available, large-scale CRC
databases, spanning all imaging modalities-
histopathology, colonoscopy, and MRI- and genetic

profiles, for unbiased benchmarking among
methods. These study areas include model
generalizability. Future research should also

include systematic tests with existing models over
out-of-distribution samples and, most importantly,
different clinical centers to evaluate generalizability
and resistivity to population heterogeneity in the
process. Interpretation and Explanation:
Performance indicators are important, but this will
be an issue for clinical uptake if there is no
transparency as to process. Extending the
established explainable AT XAI frameworks such as
SHAP, LIME, and Grad-CAM pipelines into CRC
remains an open challenge in process. Cross-Modal
Fusion Models: Imaging is combined with omics
and clinical metadata through late or early fusion
architectures. Clinical Trial Integration: Model
translation into prospective clinical trials is
imperative for validation in process. Deployments
must be developed in compliance with regulations
together with oncologists, pathologists, and health
informaticians in the process. Lightweight and
Real-time Models: Most transformer-based and
GAN-based models have a lot of overheads in
computation, and thus future works must focus on
optimizing inference time without affecting their
performance as quantization, pruning, or
knowledge distillations will improve on these
concerns. In summary, this review not only keeps a
close distance with the latest developments in
colorectal cancer analytics but also establishes the
foundations for future intelligent systems bridging
the gap between algorithmic design and clinical
utility sets.
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