Journal of Theoretical and Applied Information Technology ~
30 September 2025. Vol.103. No.18 N
© Little Lion Scientific

~
S/

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

ADAPTATION OF LOSS RECOVERY MECHANISMS FOR
IMPROVING SCALABILITY AND QUALITY OF SERVICES
IN IOT NETWORKS

ABOURRICHE SAMIRA!, ZYANE ABDELLAH2, GHAMMAZ ABDELILLAH?

12 LAPSSII Laboratory, EST SAFI, Cadi Ayyad University, Safi, Morocco.
3L.S.E.E.T, FST-G Marrakech, Cadi Ayyad University,Marrakech, Morocco.

E-mail: 's.abourriche.ced@uca.ac.ma, a.zyane@uca.ac.ma,’ a.ghammaz@uca.ma

ABSTRACT

Over the past decade, the Internet has undergone significant transformations in various sectors such as
healthcare, transportation, and the environment. These developments are built upon the TCP/IP model
protocols, a four-layer architecture where the transport layer plays a crucial role in enabling Internet
communication and managing Quality of Service (QoS). This evolution spans from the original ARPANET
design to the emergence of Web 3.0, including Web 1.0 and Web 2.0. It has enabled the development of
new communication paradigms such as the Internet of Things (IoT), which seeks to connect physical
objects and devices across diverse domains within a unified infrastructure, supporting real-time monitoring
and control [1].As a result, IoT has become a leading technology in multiple sectors, with connected
devices projected to increase from 30.7 trillion in 2020 to 75.4 trillion by 2025 [2]. This massive number of
connected things introduces numerous challenges, particularly in terms of QoS and scalability, which
present obstacles for IoT and, more specifically, Machine-to-Machine (M2M) networks.The main objective
of this paper is to provide a comprehensive contribution toward implementing mechanisms for autonomous
scalability management and Quality of Service (QoS). The approach integrates Transport Layer loss
recovery protocols from the TCP/IP model within the middleware layer of IoT networks.. The outcome of
this work proposes a new architecture for the existing IoTScal approach, incorporating additional
components to simulate loss recovery mechanisms. This enhancement boosts the success rate of e-Health
traffic from 95% to 99.99%, delivering a clear and significant improvement over the existing reference
approach.

Keywords: Quality Of Service,Internet Of Things,Scalability, M2M Networks,Loss Recovery Mechanisms
1. INTRODUCTION anything, anywhere, any time, enhancing daily life
with minimal human intervention.Moreover, IoT is

Since its creation in the 1960s, the Internet has a collection of objects equipped with a number of

relied on a standard and universal model that
defines a set of communication protocols for
network interaction.This model is TCP/IP where
TCP and IP play an important roles.In this model,
the Transport Layer plays a vital role in Internet
communications. It guarantees end-to-end
communication between applications and provides
essential services like flow control, congestion
control, and reliable transfer through loss recovery
mechanisms in order to satisfy functional and non-
functional requirements. Internet known over time a
huge progress,evolving beyond human connections
to include objects,giving birth to the IoT.Coined by
Kevin Ashton in 1999 Co-founder of MIT’s
Automatic Identification Center-[1],]JoT connects

sensors and actuators that allows to collect and
transfer information about the surroundings via
Internet in order to understand and control it
[2],leading to applications in areas like smart cities,
industries, and E Health. The connected devices of
the IoT, overall, and Machine-to-Machine
communications, specifically, provide significant
opportunities but also present challenges due to the
large number of users and their connected devices
[3]. This requires the system to adapt to various
requests and the vast amount of information
exchanged among all involved parts (users,
applications...), while ensuring a maintained
acceptable level of QoS.The number of works that
suggest a solution to the problem of scalability in

7507

Journal of Theoretical and Applied Information Technology ~
30 September 2025. Vol.103. No.18 N

© Little Lion Scientific

" A mmmm—
S/

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

IoT networks is limited.Among the most famous
approaches dealing the scalability issue
are:NDN(Name Data Networking) that allows to
enhance the scale of IoT-Cloud
[4],DINAS(DIstributed NAming Service) that
represents a novel approach to naming and service
discovery in resource limited wireless sensor
networks [5] ,SDNSNA(Secure DNS name auto-
configuration) which was designed to automatically
assign domain names for IPv6-based IoT
applications within the DNS system [6]. In contrast
, the different proposed methods aim to tackle the
scalability challenge by focusing on how to name,
protect, and authenticate the variety of devices in an
IoT system. Still, none of these methods seem to
offer a solution that can effectively handle all
incoming requests from identified users or devices
without impacting specific quality measurements,
such as Round-Trip Time (RTT).To solve the
problem mentioned previously ,the proposed
approach at the work [7] seeks to satisfy the
maximum number of incoming requests as well as
to respect the QoS metrics.Inside this solution
named loTScal-H ,a part of the traffic are rejected
:5% for E-health ,50% for industrial and 80% for
transportation.Our contribution is centred on the
integration of loss recovery mechanisms derived
from the simple Automatic Repeat reQuest (ARQ)
family into this approach.By incorporating these
ARQ mechanisms,our solution can identify and
retransmit lost data in order to guarantee the
reliability of the overall IoT system.Our work
focuses on improving scalability and QoS in IoT
networks by the integration of these mechanisms at
the Transport Layer ,assuming this layer as the core
communication framewrok.While our approach is
designed to improve scalability in specific IoT
domains—such as e-health, industrial systems, and
transportation—it also makes a fundamental
assumption: the reliability of the underlying
physical and link layers is not the focus of this
study. Instead, we concentrate on the Transport
Layer’s ability to mitigate data loss and preserve
QoS indicators such as Round-Trip Time (RTT).
The scope of our work is limited to simulation-
based evaluation and does not cover large-scale
real-world deployments.The structure of this
document is as follows: the second section will
provide a detailed overview of the Transport Layer,
emphasizing its importance for proper data routing
and the loss recovery mechanisms, particularly
those from the ARQ family. The third section will
present the tests and results related to the impact of

these mechanisms on QoS. The fourth section will
discuss our upcoming contribution, which aims to
enhance the loTScal-H approach by integrating loss
recovery mechanisms to improve scalability and
QoS. Finally, the sixth section will conclude the
paper.

2. TRANSPORT LAYER,GENERALITIES
AND PROTOCOL MECHANISMS.

2.1 General Description of The Transport
Layer

Situated between the network and application
layers ,the transport layer is a vital part of internet
communications, acting as a bridge between lower
TCP/IP layers and upper layers. It provides end-to-
end transport services between applications,
offering two types: non-connection-oriented and
unreliable and reliable and connection-oriented. The
layer also provides a logical communication
channel between applications on different hosts
using transport protocols like TCP(Transmission
Control Protocol) and UDP(User Datagram
Protocol). It enhances reliability, confidentiality,
and data integrity, providing uninsured network
layer functionalities.

e UDP protocol [8] :is one of the transport
protocol.It’s unreliable and non connection-
oriented protocol with
multiplexing/demultiplexing service for
transport data between application and
networks layers ,ensuring also a fast delivery
service.That’s why many applications like
DNS use it.In addition,many applications are
better suited to UDP for the following
reasons Firstly,UDP isn’t based to a
congestion control mechanism and
consequently,the data transmission doesn’t
take a lot of time .Furthermore,the real time
applications which often require minimal
debit,doesn’t wish to delay segment
transmission excessively and can tolerate
data loss.Secondly ,UDP doesn’t allow to do
a three way handshake between sender and
receiver.Third reason ,UDP gives no idea
about the connection status between systems
and finally ,UDP has a segment of a
minimum size equal 8 bytes at the header
level shown in Figure 1.Among applications
using UDP,we find;NFS,SNMP,RIP,DNS as

well as some recent applications like
«Internet phone» and «streaming
multimedia».

7508

Journal of Theoretical and Applied Information Technology ~
30" September 2025. Vol.103. No.18]

© Little Lion Scientific o

S/

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

B T E—C S | >

Source poart #

Dest port #

Length hecksum

Application
data
[messagel

TCP

header agicingfl [RO

Figure 1.UDP segment structure

TCP protocol [9] :is a reliable transport
protocol,connection-oriented and it relies to
many mechanisms (Errors
detection,cumulative
acknowledgements,sequence number and
Timer).Moreover ,TCP runs only in the end
systems and provides a connection in
bidirectional mode(full-duplex) whose data
can flow in both directions ,respecting a
minimal segment size (MSS) ,knowing that
the receiver and the sender has a buffer to
manage the flow control. TCP is connection
oriented means that before an application
process begins to send data to the other,the
both must do a three way handshake .TCP
implements a reliable data transfer service
under unreliable IP service.It’s based on the
following mechanisms :cumulative
acknowledgements,segment
pipeline,retransmissions triggered by timer
expiration or by receipt of a duplicate
acquittal. TCP provides also a flow control
service to the applications for prevent the
possibility of the sender overflowing the
receiver buffer without forgetting congestion
control.The below picture Figure 2 shows the
TCP segment structure.

;"[_ Source port I[Destination puﬂ'j
[Sequence number
[Ack Qowleﬂgmenr

SRHANR

[Checksum H Urgentpointe:]
[Oplions] [Padding
(_ Data

Figure 2.TCP segment structure

[W W] V" | S— —

2.2 Protocol Mechanisms and Functions

Connection Establishment Mechanism [10]:
Also known as the signaling mechanism,
this is a three-phase process used by TCP
before data transmission. It operates in
client/server mode, where the client initiates

e
7509

the connection and the server acknowledges
it, establishing communication.

Data Segmentation and Sequencing: TCP
involves segmenting and sequencing data
during transmission. The sender cuts data
from its send buffer into segments, each
with a maximum size defined by the MSS,
and assigns sequence numbers to ensure
reliability. These segments are encapsulated
in datagrams at the network layer and stored
in the receiver’s buffer.

Flow Control [11]: TCP provides flow
control, preventing the sender from
overwhelming the receiver's buffer. It
ensures speed matching, adjusting the
sending rate to the receiver's capacity by
limiting transmission based on available
buffer space.

Congestion Control [12]: TCP wuses the
AIMD algorithm to control congestion by
increasing bandwidth gradually and
reducing it when congestion occurs. This
mechanism adjusts the sender’s transmission
rate by increasing bandwidth when the
network is clear and reducing it when packet
loss or congestion is detected.

Transfer Reliability [13]: Reliable data
transfer is supported by protocols at the
Data-link, Transport, or Application layers.
These protocols create a reliable channel,
ensuring data transmission without errors or
loss. TCP achieves this through a reliable
data transfer protocol (RDT) and a system of
acknowledgements and sequence numbers,
allowing the sender and receiver to confirm
successful data delivery.

b.Service implementation

a. Provided service

B Cata — Packet

Figure 3.Reliable Data Transfer

Journal of Theoretical and Applied Information Technology ~
30" September 2025. Vol.103. No.18]

© Little Lion Scientific

" A mmmm—
S/

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

3. PRESENTATION OF LOSS RECOVERY
MECHANISMS

A reliable data protocol (rdt) is crucial for IT
networks, ensuring data delivery to recipients.
Designing a dependable transfer protocol involves
using complex protocols, resulting in a faultless and
reliable transfer protocol, unlike unreliable ones.

e Rdt 1.0 [13]: is a protocol that ensures
reliable and orderly data transfer without
error bits or packet loss. The sender sends
data in the underlying channel, while the
receiver reads it at the end. No feedback is
required from the receiver side.

e Rdt 2.0 and its secondaires [13]:into this
protocol ,the channel is considered orderly
and unreliable ,i.e ,it can damage bits of the
packet without any loss of the packet when
it propagates.The errors are detected through
error control.If this control is correct ,the
receiver explicitly indicates the correct
receipt of the packet by sending a positif
ACK,otherwise,the receiver explicitly
indicates the incorrect reception of the
packet through a negative ACK (NACK)
and the sender will retransmit the wrong
packet.The derivatives of this protocol are :
rdt 2.1 which allows to add alternating
sequence number (0 or 1) as well as rdt 2.2
which has the same rdt2.1 functionalities but
it uses only ACKs.

e Rdt 3.0 [13]:In this protocol, the channel can
lose packets (data or ACKs). Even with
included mechanisms like checksums,
sequence numbers, positive ACKs, and
retransmissions, these may not be enough.
To recover lost packets, a tool called a timer
needs to be integrated.

3.1 Classification
To ensure transfer reliability, there are two main
classes of mechanisms:

e Reactive Mechanisms (ARQ Simple): Also
known as Automatic Repeat reQuest (ARQ),
these mechanisms ensure orderly packet
transmission without loss or error through
retransmissions. Types include Stop and Go,
Stop and Wait, Go-Back-N, and Selective
Repeat.

e Proactive Mechanisms (ARQ Hybrid): ARQ
Hybrid mechanisms add redundancy packets
to allow receivers to recover lost packets

without requiring retransmissions. They
include HARQ type I, HARQ type II, and
HARQ type II1.

3.2 Reactive Mechanisms (ARQ Simple)

The ARQ protocol, developed by Van Duiiren in
1943, is a loss/error recovery algorithm designed
for reliable data transmission. Commissioned in the
Netherlands in 1947, it uses positive and negative
acknowledgements along with a timer to ensure
efficient transmission. The performance of ARQ
depends on the reliability of the round-trip channel
and the Round-Trip Time (RTT) between sender
and receiver, making it a widely used solution in IT
networks. Key elements of ARQ include CRC,
positive and negative acknowledgements, a timer,
and sequence numbers. Figure 4 illustrates the basic
elements of the ARQ protocol.

Information Frame

A
r 1
Data Header Data cRrRC Reck
Srnr — [Hecsrrer
L
e
After a frame
transmission, the ACK -Fl'al“E
sender set a timer
e

ACK NACK

Figure 4.Basics elements of an ARQ protocol

Data

There are a various types of simple ARQ
mechanisms, these include:

e Stop and Go: The most basic ARQ form,
where a packet is sent and the sender waits
for either a positive acknowledgement
(ACK) or a negative acknowledgement
(NACK) from the receiver, who checks
packet integrity using checksum
calculations.

e Stop and Wait: In this mechanism, the
transmitter sends a packet and waits for an
acknowledgement before sending the next
one. This can limit hardware capabilities and
bandwidth. To allow multiple packets to be
transmitted without waiting for each
acknowledgement, the sequence number
range must be expanded, and buffers added.

To allow the transmitter to send multiple packets
in-flight without waiting for each acknowledgement
and to optimize bandwidth usage, the sequence
number range must be expanded, and buffers must
be added at both the sender and receiver. These
adjustments depend on how the transfer protocol
handles lost and corrupted packets. The simple
ARQ family includes two key pipeline protocols:

7510

Journal of Theoretical and Applied Information Technology ~
30" September 2025. Vol.103. No.18]

© Little Lion Scientific

" A mmmm—
S/

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

e Go-Back-N (GBN): The sender can transmit
multiple packets, but the total number must
not exceed a specified maximum N. The
receiver acknowledges all packets up to N
and generates duplicate acknowledgements
for missing packets, only acknowledging the
expected sequence numbers.

e Selective Repeat (SR): This protocol
minimizes unnecessary retransmissions by
only requesting retransmission of lost or
corrupted packets. The receiver
acknowledges and buffers correctly received
packets, improving efficiency by ensuring
that only lost or corrupted packets are
retransmitted.

3.3 Proactive Mechanisms (ARQ Hybrid)

e HARQ type I:known as Chase Combining
(CC), is a fundamental form of HARQ,
combining ARQ with FEC encoding,
requiring small receiver memory and
suitable for low-noise channels.

e HARQ type Il:Incremental Redundancy (IR)
is a HARQ that improves decoding chances
and outperforms Chase Combining,
particularly for fast-fading channels, if
initial transmission errors persist.

e HARQ type III: is an extension of HARQ
II, encoding each code word with
independent information and parity bits,
requiring larger receiver memory than CC
for decodable individual or combined
transmissions.

3.4 Principles of Simples ARQ Mechanisms

In the previous section ,an overview of reactive
mechanisms (Basic ARQ) was made.Indeed ,the
Basic ARQ family, consisting of four mechanisms:
Stop and Go, Stop and Wait, Go Back N, and
Selective Repeat, ensures orderly service
transmission without packet loss or error by
detecting errors and retransmissions, each described
in pseudo code for easy understanding.

3.4.1 Stop and go mechanism
The simplest form of the simple ARQ family
operates as follows:

e Principle: A packet is sent only after
receiving an acknowledgement (ACK) for
the previous one.

e Assumptions: No errors occur on
acknowledgements, and no packets are lost.

e Description

o Sender (A)

= Sends a packet to the receiver and
waits for either an ACK or a
NACK.

= Sends the next packet only after
receiving an ACK.

o Receiver (B)

= Upon receiving the packet, the
receiver checks its integrity by
verifying the packet's correctness,
usually through a checksum or
similar error-detection
mechanism.. If the packet is error-
free:

e B sends an ACK; otherwise,
e BsendsaNACK.

e Errors processed: Corrupted data.

e Stop and Go Algorithm

The two algorithms below illustrate the detailed
pseudo code of the ARQ Stop and Go protocol.The
first algorithm depicted in Table 1 represents the
sender's process, detailing how it sends a packet and
waits for an acknowledgement (ACK) or negative
acknowledgement (NACK). The Table 2 outlines
the receiver's process, demonstrating how it checks
the integrity of each packet and responds
accordingly by sending either an ACK or a NACK.
These algorithms ensure reliable data transmission
by handling errors and retransmissions in an orderly
manner.

Table 1: Stop and Go sending procedure.

Stop and Go sending procedure

Packet Type :
int type
int sum
Message payload
Emission (Message data)
Packet pdata, pack
pdata.payload « data
pdata.sum « calculate_sum (pdata)
repeat
send_packet(pdata)
wait_packet (pack)
until pack.type = ACK

7511

Journal of Theoretical and Applied Information Technology ~

30" September 2025. Vol.103. No.18

RN

© Little Lion Scientific

" A mmmm—
S/

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

Table 2: Stop and Go receiving procedure.

number for incoming packets. Upon
receiving a packet, the receiver

Stop and Go receiving procedure

checks its integrity:

Packet Type :
int type
int sum
Message payload
Reception (Message data)
Packet pdata, pack

Boolean exit < FALSE
repeat
wait_paquet(pdata)
if check sum(pdata) = TRUE then
data < pdata.payload
pack.type «+— ACK
exit « TRUE
else
pack.type «— NACK
send_packet(pack)

until exit = TRUE

= If the packet is valid and its
sequence number matches the
expected one, the receiver extracts
the data and sends an ACK with
that sequence number.

= If the sequence number
doesn't match or the packet is
corrupted, the receiver rejects the
packet and either sends an ACK
for the last correctly received
packet or does not send an ACK
at all, making the sender believe
the packet was lost

3.4.2 Stop and wait mechanism

This mechanism is an improvement over the
Stop and Go protocol, featuring the following
characteristics:

e Principle: It combines the 'Stop and Go'
technique, requiring the sender to retransmit
a packet if the desired acknowledgement
(ACK) is not received within a specified
time-out.

e Assumptions: The system assumes no
multiplexing, user data segmentation, and
follows a modulo 2 approach for sequence
number calculation, ensuring no errors or
losses on acknowledgements.

e Description

o Sender (A):A field is added to the
packet to contain a sequence number (0
or 1). If there is data to send, the sender
creates a packet with a specific
sequence number and transmits it. The
sender then waits for an
acknowledgement for a specified time:

= If an ACK with the -correct
sequence number is received
before the time-out expires, the
sender sends the next packet with
the following sequence number.

= Jf no ACK is received, or if the
wrong ACK is received, the
sender retransmits the same
packet.

o Receiver
maintains

(B):The receiver also
an expected sequence

e Advantages

o Simplicity in transmission and
reception procedures.

o Low memory cost since only one
packet needs to be stored at both the
sender and receiver.

e Disadvantages

o The sender stays inactive until it
receives an acknowledgement, which
may hinder performance.

e Errors Processed:Corrupted Data and lost
Data

e Stop and Wait Algorithm

The Stop and Wait algorithm will be
demonstrated through pseudo-code , with one
representing the transmitting side detailed in Table
3 and the other illustrating the receiving station
shown in Table 4

7512

Journal of Theoretical and Applied Information Technology
30" September 2025. Vol.103. No.18

S

RN

© Little Lion Scientific

" A mmmm—
S/

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

Table 3: Stop and Wait sending procedure.

Stop and Wait sending procedure

Packet Type :
int type
int sum
Message payload
Emission (Message data)
Packet pdata,
pack int numSeq «— 0
Boolean exit < FALSE
pdata.numPack < numSeq
pdata.payload « data
pdata.sum « calculate sum(pdata)
repeat
send_packet(pdata)
wait(time)
if receive_packet(pack) = FALSE then
Continue
else
// Is this a reliable ACK?
if pack.numPack = numSeq then
exit « TRUE
numSeq «— increment(numSeq)
else
exit < FALSE
until exit = TRUE

Table 4: Stop and Wait receiving procedure.

Stop and Wait receiving procedure

Packet
Type :
int type
int sum
Message payload
Reception (Message data)
Packet pdata,pack
int expected_numSeq « 0
Boolean exit— FALSE
repeat
receive_packet(pdata)

if check sum(pdata) = FALSE or pdata.numPack =/=

expected_numSeq
then

Continue
// New packet or copy ?
data «— pdata.payload
exit «— TRUE

pack.numPack « expected_numSeq Send_packet(pack)

expected_numSeq «— increment(expected_numSeq)
until exit = TRUE

3.4.3 Go back n mechanism

Go Back N is a sliding window protocol,
commonly used for error and loss control in both

the Link and Transport Layers. This
mechanism is characterized by the following:

ARQ

e Principle:The transmitter can send multiple
packets within a window without waiting for

an acknowledgement (ACK) for
individual packet, unlike Stop and Wait.

each

7513

e Assumptions

o The sequence number
calculation is based on the number of
packets in the window.

o No errors or losses occur on
acknowledgements.

. Remarks

The sender manages a window that consists
of four parts (illustrated in Figure. 5):

o [0-base-1]: Packets that have
already been transmitted and
acknowledged.

o [base, nextseqnum-1]: Packets
that have been transmitted but not yet
acknowledged.

o [nextseqnum, base+N-1]:
These are the packets that the sender is
permitted to transmit immediately
without waiting for an
acknowledgement from the receiver.

o numseq > base+N: Untransmitted and
unacknowledged packets within the
window.

o Base: The sequence number of the
oldest packet that has been sent but has
not yet received an acknowledgement.

o Nextseqnum: The smallest unused
sequence number.
base nextsegnum

REERROO0NO00000EE00a0000

Window size

N
Already
ACK'd
Sent, nat
yet ACK'd

Usable, not
|| yetsent

[I Not usable

[] Usable, not yet sent

Figure 5. Go Back N sender’s window[14]

e Description

o Sender (A): The GBN sender handles
three types of events:

= Invocation from the top:

e If there is data to send, A
first checks if the window is
full (i.e., there are N
unacknowledged packets).

Journal of Theoretical and Applied Information Technology ~

30 September 2025. Vol.103. No.18 ~J
© Little Lion Scientific P
Sl
ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195
e If the window is not full, A o GBN «can lead to unnecessary

creates a packet, sends it,
starts the timer, and updates
its variables.

e If the window is full, A
refuses new data, indicating
the window is full

= Receipt of an ACK:
e An ACK for a packet with

sequence number N s
considered cumulative,
meaning that all packets

with sequence numbers less
than or equal to N have been
received correctly.

e [If base = nextseqnum, A
stops the timer.

e Otherwise, A starts the

timer.
= Timer expiration:

e If a time-out occurs, the
sender (A) retransmits all
packets that have been sent

but have not yet been
acknowledged.
o Receiver (B): The GBN receiver

operates as follows:

= [f a packet with sequence number
N is received in order and without
errors, B sends an ACK for the
packet and delivers the packet
data to the top layer.

= If the packet is out of order or
corrupted, B rejects all
subsequent packets and
retransmits an ACK for the last
correctly received packet.

e Errors Processed: Corrupted and lost data.
e Advantages

o GBN reduces the waiting time between
transmissions seen in Stop and Wait by

allowing continuous transmission
within a window (anticipation
window).

o It improves transmission efficiency and
optimizes link usage.

e Disadvantages

retransmissions for out-of-sequence
packets, increasing processing and
bandwidth usage.

e Go Back N algorithm

The Go Back N algorithm will be illustrated
through pseudo-code showing in Table 5 and 6,
with one version depicting the sender's operations
and the other showing the receiver's processes.

Table 5: Go Back N sending procedure.

Go Back N sending procedure

Packet Type :
int type
int sum
Message payload
Emission (Message data)

Packet pack

Packet[MAX] tab_packet //Using a Packet type array to store packets

to send

int base <« 0 //The sequence number of the oldest unacknowledged

packet

int nextseqnum <«— 0 //the smallest sequence not in use

int numSeq «— 0

int N « 2"m-1

Boolean exit «<— FALSE

inti«—0

repeat nextseqnum <= base + N then
tab_packet[numSeq].payload < data
tab_packet[numSeq].numPack < numSeq
tab_packet[numSeq].sum «—

calculate_sum(tab_paquet[numSeq])

send_packet(tab_paquet[nextseqnumy])
nextseqnum «— nextseqnum + 1
numSeq « increment(numSeq)

end repeat

wait(time)

if received_packet(pack) = TRUE then
if pack.numPack >= base and pack.numPack <= base + N then

base « increment(pack.numPack)
if base = nextseqnum then

//The size of the window

exit «— TRUE numSeq < 0
else
continue
else
i— base

repeat i=/= nextseqnum
send_packet(tab_paquet[i]) i« increment(i)
end repeat
exit «— FALSE
until exit = TRUE

7514

Journal of Theoretical and Applied Information Technology ~
30" September 2025. Vol.103. No.18

© Little Lion Scientific

RN

" A mmmm—
S/

ISSN: 1992-8645 www.jatit.org

E-ISSN: 1817-3195

Table 6: Go Back N receiving procedure

Go Back N receiving procedure

Packet Type :
int type
int sum
Message payload
Reception(Message data)
Packet pdata ,pack
int numseq_attendu « 0
Boolean « FALSE
repeat
while expected_numSeq <= 2"m-1 //The same value of M used
at the sender
receive packet(pdata)
if check sum(pdata) = TRUE then
if (pdata.numPack = expected_numseq) then
data «— pdata.payload
pack.numPack « expected_numSeq
expected_numSeq «—
increment(expected_numSeq)
send_packet(pack) //This ACK will be
transmitted in two cases : If packet contains
errors or it’s hors sequence
end repeat
exit «— TRUE
Expected_numSeq« 0
until exit = TRUE

3.4.4 Selective repeat mechanism

This mechanism represents a specific
implementation of the ARQ protocol and utilizes a
sliding window at both the sender and receiver. Its
features are as follows:

e Principle: The Selective Repeat (SR)
protocol optimizes retransmissions by
sending only the lost or corrupted packets to
the receiver. The receiver acknowledges and
buffers all received packets, passing the data
to the application layer.

e Assumptions

o The sequence number calculation
depends on the window size, ensuring
that the sender and receiver correctly
manage and track packets within the
defined window range.

o No errors or losses in
acknowledgements.

e Remarks: Both sender and receiver operate
with a window of the same size, as
illustrated in the accompanying diagram
showing the window views at both ends.

e Description:

7515

o Sender (A) : The SR sender (A)
addresses three types of events:

Data received from above: The
sender checks if the data's
sequence number is within the
window. If so, the packet is sent.
Otherwise, data is rejected,
indicating a full window.

Timer expiration: Each packet has
its own timer. If a packet's timer
expires, only that packet is
retransmitted.

Receiving an ACK: On receiving
an ACK, the sender checks if it
falls within the window. If it does,
the sender marks the associated
packet as acknowledged and
adjusts the window base if
needed.

o Receiver: The SR receiver (B)
responds to three types of events:

Reception of a packet: If the
packet's sequence number is
within the expected range, the
data is delivered to the application
layer, and the window is
advanced.Out-of-order packets
are buffered, and a selective
acknowledgement (ACK) is sent
to indicate which packets have
been correctly received.

Acknowledgement of previously
received packets: An ACK is sent
for packets within the previous
range to ensure all data is
correctly processed.

Ignoring non-relevant packets:
Packets outside the expected
sequence are ignored.

Errors Processed: Corrupted and lost data.

Advantages and Disadvantages: The
Selective Repeat protocol is more efficient
than other ARQ mechanisms by reducing
unnecessary retransmissions. However, it is
more complex to implement

Selective Repeat algorithm

The pseudo-code outlines the operations of the
Selective Repeat (SR) protocol, providing a clear
representation of how the receiver and sender

Journal of Theoretical and Applied Information Technology ~
30" September 2025. Vol.103. No.18]

© Little Lion Scientific

" A mmmm—
S/

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

handle data transfer and error recovery. This
detailed explanation is broken into two sections,
each showing their respective roles in Table 7 and
Table 8.

Table 7: Selective Repeat receiving procedure

Selective Repeat receiving procedure
Type Packet:
Integer numPack
Integer sum
Message payload
Reception (Message data)
Packet pack, pdata
Packet[MAX] packet_array
Integer rcv_base «— 0
Integer N «— 2"m - 1
Integeri«— 0
Boolean exit «— FALSE
Repeat
while rcv_base <= N do
receive_packet(pdata)
if check sum(pdata) = TRUE then
if pdata.numPack >=rcv_base and pdata.numPack <=rcv_base
+ N then
if pdata.numPack = rcv_base then
pack.numPack « rcv_base
send_packet(pack)
data < pdata.payload
rcv_base «— rcv_base + 1
forj=0toido
if packet_array[j].numPack = rcv_base then
rcv_base « packet_array[j].numPack + 1
data < packet_array[j].payload
else
break // Exit the loop
end if
end for
else
packet_array[i] < pdata
i—i+1
pack.numPack « packet array[i].numPack
send_packet(pack)
end if
else
if pdata.numPack >=rcv_base - N and pdata.numPack <=
rcv_base - 1 then
pack.numPack « pdata.numPack
send_packet(pack)
else
continue
end if
end if
end if
end while
exit «— TRUE
rev_base « 0
until exit = TRUE

7516

Table 8: Selective Repeat receiving procedure

Selective Repeat sending procedure

Type Packet:
Integer numPack
Integer sum
Message payload
Emission (Message data)
Packet pack
Packet[MAX] packet_array
Integer base < 0
Integer nextseqnum «— 0
Integer numSeq «— 0
Integeri« 0
Integer m «— 0
Integer N «—2"m - 1
Packet[N] received_packets_array
Boolean exit «<— FALSE
while nextseqnum <= base + N do
packet_array[nextseqnum].payload « data
packet_array[nextseqnum].numPack « numSeq
packet_array[nextseqnum].sum «—
calculate_sum(packet_array[nextseqnum])
send_packet(packet array[nextseqnum])
nextseqnum «— nextseqnum + 1
numSeq « increment(numSeq) / Increment based on modulo N
end while
//Labell
repeat
wait(time)
if receive_packet(pack) = TRUE then
if pack.numPack >= base and pack.numPack <= base + N then
if pack.numPack = base then
if base = N then
exit «— TRUE
numSeq «— 0
else
base « pack.numPack + 1
end if
forj=0toido
if received_packets_array[j].numPack = base then
if packet_array[j].numPack = N then

exit «— TRUE
numSeq « 0
else
base « received_packets_array[j].numPack + 1
end if
else
go to Label 1
end if
end for
else
received_packets_array[i] « pack
i—i+1
end if
else
i« base

send_packet(packet_array[i])
exit < FALSE
end if
end if
until exit = TRUE

Journal of Theoretical and Applied Information Technology ~
30" September 2025. Vol.103. No.18]

© Little Lion Scientific

" A mmmm—
S/

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

3.4.5 Illustrations of loss recovery mechanisms

The figures below figure 6,figure 7,figure 8 and
figure 9 explains how different loss recovery
mechanisms handle packet loss and ensure reliable
data transmission. Stop-and-Wait ARQ waits for an
acknowledgement before sending the next packet,
ensuring reliability but reducing efficiency. Go-
Back-N ARQ improves throughput by allowing
multiple packets to be sent without waiting for
acknowledgements, but if a packet is lost, all
subsequent packets are retransmitted. Selective
Repeat ARQ retransmits only the lost packet, which
is more efficient but requires handling out-of-order
packets, making it more complex. Each mechanism
balances reliability, complexity, and efficiency in
data transmission.

Sender Receiver

P acket 1

[l

wx

-
%
Packery
RCK
4 4

Figure 6.Principle of Stop and Go mechanism
Receiver
packegj
>

w
K

.

Sender

D

Time-out

MK

Packet ;

Figure 7.Principle of Stop and Wait mechanism

Sond Raagr

1oy Pockat send ACK

tey Packst) dscard send ACK
)

1oy Pagkst dcardsond ACK
(]
Timeout
ResendPacktl oPacha]
104 Paiket e send ACK
T Packet & dalveraend ACK
1oy Packst 3 dalersend ACK)

Figure 8.Principle of GBN mechanism

i e

1ev Packet Qemd ALK D

v Pahel Lbaflie Atd ACK 2

v Pachid 1 buflrise sond ACK 1

Timeout
Rud Packit

oy Pk 1 gkt ond ACK

o Pact i annd K4

1w Packet dekversend ALK §

Figure 9.Principle of Selective Repeat mechanism

4. IMPLEMENTATION OF LOSS
RECOVERY MECHANISMS,TESTS AND
RESULTS
4.1 Implementation of Simple ARQ Loss
Recovery Mechanisms

The implementation of simple ARQ loss
recovery mechanisms is structured as a modular
software system, designed to encapsulate the sender
and receiver behaviours within discrete units. This
modular approach aligns with principles of modular
programming, which organizes code into
manageable, logical units, facilitating code reuse,
maintenance, and enhancement. The overall design
is monolithic, meaning it is developed as a single
cohesive unit but consists of several interconnected
modules.

4.1.1 The core modules in the implementation

e udp.h and udp.c: These modules define and
implement the functions necessary to

7517

Journal of Theoretical and Applied Information Technology
30" September 2025. Vol.103. No.18]

S

© Little Lion Scientific

SATIT

ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195
emulate a UDP socket. They handle the low- o Timer Management: Handles

level details of socket communication, retransmission time-outs to ensure

providing the foundational layer for packet
transmission and reception.

libktf util.h and libktf util.c: These utility
modules offer additional functionalities such
as checksum calculation, sequence number
incrementation, and timer management.
They support the core ARQ mechanisms by
ensuring packet integrity, proper
sequencing, and timeout handling.

libktf.h and libktf.c: This pair of modules
provides an API for communication between
the application layer and other software
components. They offer a standardized
interface for accessing and interacting with
the ARQ mechanisms.

libktf internal.h: This header file includes
various data structures required for the
internal operations of the ARQ mechanisms.
It defines structures for packets, sequence
numbers, timers, and other essential
components.

libktf X.h and libktf X.c: These modules
are specific to each ARQ mechanism (where
X represents the specific mechanism, such
as Stop and Go). They contain the functions
for transmitting and receiving packets
according to the rules of each ARQ protocol.

For example, for the Stop and Go
mechanism, the modules are named
libktf stopgo.h and libktf stopgo.c,

containing functions tailored to the Stop and
Go protocol's operations.

4.1.2 Detailed module functions

udp.h and udp.c: Implement the creation,
binding, sending, and receiving of UDP
packets. They ensure that packets are
transmitted and received over a network
connection, providing basic network
communication services.

libktf util.h and libktf util.c: Offer utility
functions such as:

o Checksum Calculation: Verifies the
integrity of transmitted data.

o Sequence Number Incrementation:
Manages the ordering of packets.

reliable data delivery.

e libktf.h and libktf.c: Provide high-level API
functions that facilitate interaction between
the application and ARQ modules,
abstracting the details of the ARQ
mechanisms from the application code.

e libktf internal.h: Defines the internal data
structures used throughout the ARQ
modules, ensuring consistent and efficient
data management.

o libktf X.h and libktf X.c: Implement the
specific ARQ protocol logic:

o Transmission Functions: Handle
packet creation, sending, and managing
sequence numbers based on the ARQ
protocol rules.

o Reception Functions: Manage
incoming packets, handle
acknowledgements, and process

retransmissions as needed according to
the specific ARQ mechanism.

4.2 Tests and Results

To validate the efficiency and impact of the
implemented ARQ mechanisms on throughput and
transmission time, tests were conducted in a
controlled environment at LAAS-CNRS, where
network disruptions were simulated. The results of
these tests are presented as graphs and curves,
which illustrate the performance metrics of each
mechanism under varying network conditions.
These visualizations provide insights into how well
each ARQ protocol handles disruptions and their
effects on overall network performance.

Number of bytes received ir

Implementation without any loss recovery mechanism

Figure 10 .The efficiency of an implementation without
any ARQ mechanisms

7518

Journal of Theoretical and Applied Information Technology
30" September 2025. Vol.103. No.18

S

RN

© Little Lion Scientific

" A mmmm—
S/

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

Number of bytes received in relation to the loss rate

After the implementation of the loss recovery mechanisms

Loss rate ' 20 40 60

Loss rate

Figure 11 .The efficiency of an implementation with an
ARQ mechanisms

Based on the graphs above figure 10 and figure
11,we note that the number of received bytes
without any ARQ mechanisms decreases as long as
the loss rate increase despite the existence of the
UDP Transport Protocol ,on the other hand,the
number of bytes keeps the original value after using
the loss recovery mechanisms regardless of the loss
rate applied.Indeed,The presence of a mechanism
for recovery losses in a communication channel
,contributes to the reliability of data transfers.
Moreover,and through the graphs below figure
12,figure 13 and figure 14,we can observe that as
long as the loss rate increases ,the debit decreases
and the delay increases after testing all ARQ
mechanisms implemented .

Impact of Stop and Wait on the transmission rate and delay

S BEEEEE
cvERBUSRES

o% 20%
w— Transmission delay 217 418

ao%
20

— Rate

Bug

1
e Rate = Transmission delay

Figure 12 .Impact of Stop and Wait on the transmission

rate and delay
Impact of the Selective Repeat on the transmission rate and delay
2500 as
40
2000 3s
30
1500 25
1000 | a
s
500 | 10
s
° o% 20% 40% 60% 1 °
o Rate 2099 1108 264 104
= Transmission delay 1,95 3,69 15,51 39,38

e Rate e Transmission delay

Figure 13 .Impact of GBN on the transmission rate and
delay

Impact of Go Back N on the transmission rate and delay

Rate

i

= Transmission delay

ox 20% 0%

1910 156 149

214 26 27
AL

Figure 14 .Impact of Selective Repeat on the transmission
rate and delay

The paragraph explains the comparison between

three Automatic Repeat reQuest (ARQ)
mechanisms based on their throughput
performance.
e Selective Repeat (SR)
o Achieves the highest throughput

among the three mechanisms due to its
ability to retransmit only the lost
packets.

o Ideal for applications that cannot
tolerate delays and require high
reliability in data transmission.

o SR is more efficient but also more
complex to implement than the other
mechanisms. It offers a more selective
and precise approach to packet loss
recovery, minimizing wasted
bandwidth.

e Stop-and-Wait (SW):

o Occupies the second rank in terms of
throughput performance.

o Simpler in its implementation
compared to SR, making it suitable for
applications that require reliable
communication but can tolerate
moderate performance.

o SW waits for an acknowledgement
after each packet, which slows down
the process but reduces the complexity
compared to SR.

® Go-Back-N (GBN):

o Comes in last regarding throughput due
to its less efficient handling of errors.
When a packet is lost or corrupted,
GBN retransmits the lost packet along

7519

Journal of Theoretical and Applied Information Technology ~
30 September 2025. Vol.103. No.18 N

© Little Lion Scientific

" A mmmm—
S/

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

with all subsequent packets, even if
they were correctly received.

o Suitable for applications where delays
are tolerable and reliability is still a
priority.

o GBN sacrifices efficiency to ensure
reliable data transmission, making it
more appropriate for systems where
occasional retransmissions are
acceptable.

5. DISCUSSION

The section emphasizes the importance of loss
recovery protocols in computer networks for
reliable data transfer, a fundamental aspect of
Quality of Service (QoS). Experimental results
from a two-virtual-machine local network testbed
illustrate the performance of various loss recovery
mechanisms—including Stop-and-Go, Stop-and-
Wait, Go-Back-N (GBN), and Selective Repeat
(SR)—across a range of operating scenarios.These
tests offer insights into how these mechanisms
affect reliability within a basic client/server setup,
with relevance extending beyond traditional
client/server applications to include radio-based
systems. The Internet of Things (IoT) is expected to
transform inter-object communication by 2025 , yet
it faces significant challenges—one of the most
critical being scalability. In this context, scalability
refers to a device’s capacity to adapt to
environmental changes while continuing to meet
user requirements [16]—. Our findings validate our
initial goal of improving scalability and Quality of
Service (QoS) in IoT networks through the
integration of loss recovery mechanisms from the
ARQ family into the IoTScal solution. By
evaluating key metrics such as Round-Trip Time
(RTT) and success rate under varying traffic loads,
we demonstrate that Transport Layer recovery
techniques can deliver significant performance
gains. This work offers a novel contribution, as
most existing IoT scalability strategies focus on
aspects like naming or security, often overlooking
the potential of loss recovery to manage traffic

surges while maintaining QoS. The proposed
approach is designed to maximize the number of
requests the oneM2M platform can process while
maintaining key QoS metrics such as RTT and
resource availability. It incorporates an autonomous
computing framework based on the MAPE-K loop
to reduce human intervention, operating at the
middleware layer of the ETSI M2M standard. By
combining scalability-focused and QoS-focused
mechanisms, the ToTScal-H [7] strategy efficiently

manages diverse traffic types—including E-Health,
industrial, and transportation—ensuring compliance
with SLAs. This is achieved through the seamless
integration of middleware components, autonomous
management, and cloud-enabled load balancing,
which together sustain platform performance and
middleware efficiency.

To ensure all requests are handled effectively
without loss or rejection, the implementation of the
simple ARQ mechanisms will enhance scalability
and optimize delay and throughput, giving rise to a
new IoTScal solution called IoTScal-LR. This
solution will integrate reactive loss recovery
mechanisms—Stop and Wait, Go Back N, and
Selective Repeat—into the Middle-ware layer of the
IoT architecture defined by the ETSI standard.
These mechanisms, which are derived from TCP
protocol functionalities, will be adapted to comply
with the ETSI architecture standards and rules.
Each mechanism is tailored to meet the specific
QoS requirements of different types of traffic:
Selective Repeat for E-Health, Go Back N for
Transportation, and Stop and Wait for Industrial
applications.This work also builds upon and
extends existing research on IoT scalability
solutions, including NDN [4], DINAS [5],
SDNSNA [6], and the IoTScal-H approach [7].
While these studies address important aspects such
as naming, service discovery, and request handling,
they do not directly integrate Transport Layer loss
recovery mechanisms into scalability-oriented
frameworks. The proposed IoTScal-LR model
addresses this gap by incorporating ARQ-based
mechanisms, thereby establishing a valuable
connection to previous work while contributing a
novel perspective.

Strengths: The approach demonstrates
measurable improvements in RTT and success rate,
offers a novel scalability enhancement focused on
the Transport Layer, applies adaptive ARQ
mapping to traffic categories, and achieves
middleware-level integration without requiring
changes to lower layers.

Limitations: The evaluation is restricted to
simulations and small-scale testbeds, without
examining energy consumption or security

implications, and retransmission overhead may
become significant under extreme traffic loads.

Opportunities: The middleware positioning
allows integration without disrupting lower protocol
layers, and the adaptive ARQ selection is rare in
IoT middleware research. Moreover, combining
cloud-based load balancing with loss recovery

7520

Journal of Theoretical and Applied Information Technology ~
30" September 2025. Vol.103. No.18]

© Little Lion Scientific

" A mmmm—
S/

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

presents a promising hybrid strategy for addressing
both scalability and QoS challenges.

Figure 16 . The new architecture loTScal-LR solution

6. CONCLUSION

In this paper ,we have discussed about Transport
layer and its role to guarantee an end-to-end
transport service between different
applications.Also,we have presented the protocol
mechanisms and functions integrated within the
Transport layer such as congestion control,transport
reliability etc ...Moreover,a presentation of loss
recovery mechanisms was addressed and especially
those related to the ARQ simples family which
named reactive mechanisms.These mechanisms
included the Stop and Go,Stop and Wait ,Go Back
N and Selective Repeat. Each mechanism can be
used for a specific type of applications in order to
insure the transfer reliability and consequently
satisfying a part of the QoS.But with the appearance
of the new paradigms such as IoT ,this future
technology offers new applications and services
linking the physical and virtual worlds,which leads
to increase the number of problems and challenges
that represent a major obstacle for implementation
and adoption of the IoT in our daily life. Among the
most important challenges,we found the
scalability.To overcome this issue ,a proposed
approach named IoTScal approach aims to satisfy a

large number of requests into IoT systems without
impacting QoS.Furthermore ,the reliability of
transfer which represents one of the criteria of the
QoS and through the addition of the loss recovery
mechanisms treated in this paper, will make it
possible to improve even more the QoS within the
IoT networks.By integrating these mechanisms, the
proposed IoTScal-LR solution aims to further
improve QoS by ensuring reliable data transfer
while maintaining scalability. This contribution is
particularly relevant in the current IoT landscape,
where the rapid growth of connected devices
intensifies network load and heightens the risk of
data loss. The findings provide a foundation for
designing middleware-level solutions capable of
balancing high request throughput with reliability in
diverse IoT domains such as E-Health, Industry,
and TransportationAs this work presents a proposal,
the declared purpose is addressed through the
design of the IoTScal-LR approach, which
integrates ARQ-based loss recovery mechanisms to
enhance scalability and QoS. While the concept is
fully defined and aligned with the stated objectives,
the complete validation will be carried out in future
work through implementation and experimental
evaluation.In summary, this study contributes: (1) a
Transport Layer—oriented approach to IoT
scalability, (2) adaptive ARQ mapping to domain-
specific traffic types, and (3) a middleware-level
strategy that integrates seamlessly into ETSI ToT
architectures

REFERENCES:

[1] Madakam, R. Ramaswamy, and S. Tripathi,
“Internet of things (IoT): A literature review,” J.
Comput. Commun., vol. 03, no. 05, pp. 164—
173, 2015

[2] Pawan Kumar , Satvir Singh , Lavish
Kansal,”A Comprehensive Review on Internet
of Things (IoT)”,ISBN: 978-93-91355-11-1,pp
222-227.

31 L. Farhan, R. Kharel, O. Kaiwartya, M.
Quiroz-Castellanos, A. Alissa, and
M.Abdulsalam, “A concise review on internet
of things (IoT) -problems, challenges and

opportunities,” in 2018 11th International
Symposium on Communication Systems,
Networks & Digital Signal Processing
(CSNDSP), 2018.

[4] S. Han and H. Woo, “NDN-based Pub / Sub
System for Scalable IoT Cloud,” 2016 IEEE
International Conference on Cloud Computing

7521

Journal of Theoretical and Applied Information Technology ~

30 September 2025. Vol.103. No.18 ~J
© Little Lion Scientific AT
ISSN: 1992-8645 www.jatit.org E-ISSN: 1817-3195

Technology and Science (CloudCom), pp.
488491, Dec 2016.

[5] M. Amoretti, O. Alphand, G. Ferrari, F.
Rousseau, and A. Duda, “DINAS: A
lightweight and efficient distributed naming
service for all-IP wireless sensor
networks,” IEEE Internet Things J., vol. 4, no.
3, pp- 670-684, 2017.

[6] Lee, K., Kang, H., Jeong, J. P., Kim, H., &
Park, J.-S. (2016). Secure DNS name auto
configuration for IPv6 internet-of-things
devices. 2016 International Conference on
Information and Communication Technology
Convergence
(ICTC). doi:10.1109/ictc.2016.7763534

[71 A. Zyane, M. N. Bahiri, and A. Ghammaz,
“loTScal-H : Hybrid monitoring solution based
on cloud computing for autonomic
middleware-level scalability = management
within [oT systems and different SLA traffic
requirements,” Int. J. Commun. Syst., vol. 33,
no. 14, 2020

(8] J. F. Kurose and K. W. Ross, Computer
Networking : A Top-down Approach. Boston,
Pearson, 2017. p224

(91 J. F. Kurose and K. W. Ross, Computer
Networking : A Top-down Approach. Boston,
Pearson, 2017. p240

(0] J. F. Kurose and K. W. Ross, Computer
Networking : A Top-down Approach. Boston,
Pearson, 2017. p272

(111 J. F. Kurose and K. W. Ross, Computer
Networking : A Top-down Approach. Boston,
Pearson, 2017. p292

[12] Lorincz, Josip, et al. “A Comprehensive
Overview of TCP Congestion Control in 5G
Networks: Research Challenges and Future
Perspectives.” Sensors, vol. 21, no. 13, 1 Jan.
2021, p. 4510, www.mdpi.com/1424-
8220/21/13/4510/htm, 10.3390/s21134510.
Accessed 25 Aug. 2021.

(131 J. F. Kurose and K. W. Ross, Computer
Networking : A Top-down Approach. Boston,
Pearson, 2017. p 244-252.

(141 J. F. Kurose and K. W. Ross, Computer
Networking : A Top-down Approach. Boston,
Pearson, 2017. p256-265.

[15] Manna, P., & Das, R. (2021). Scalability in
Internet of Things: Techniques, Challenges and
Solutions. International Journal for Research in
Engineering Application & Management
(UREAM), 07(Issue-01), 2454-9150.
https://doi.org/10.35291/2454- 9150.2021.0175.

e
7522

