
 
 Journal of Theoretical and Applied Information Technology 

30th September 2025. Vol.103. No.18 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7507 

 

ADAPTATION OF LOSS RECOVERY MECHANISMS FOR 
IMPROVING SCALABILITY AND QUALITY OF SERVICES 

IN IOT NETWORKS 
 

ABOURRICHE SAMIRA1, ZYANE ABDELLAH2, GHAMMAZ ABDELILLAH3 

 

1,2 LAPSSII Laboratory, EST SAFI, Cadi Ayyad University, Safi, Morocco. 

3L.S.E.E.T, FST-G Marrakech, Cadi Ayyad University,Marrakech, Morocco. 

E-mail:  1s.abourriche.ced@uca.ac.ma, 2a.zyane@uca.ac.ma,3 a.ghammaz@uca.ma  

 
 

ABSTRACT 
 

Over the past decade, the Internet has undergone significant transformations in various sectors such as 
healthcare, transportation, and the environment. These developments are built upon the TCP/IP model 
protocols, a four-layer architecture where the transport layer plays a crucial role in enabling Internet 
communication and managing Quality of Service (QoS). This evolution spans from the original ARPANET 
design to the emergence of Web 3.0, including Web 1.0 and Web 2.0. It has enabled the development of 
new communication paradigms such as the Internet of Things (IoT), which seeks to connect physical 
objects and devices across diverse domains within a unified infrastructure, supporting real-time monitoring 
and control [1].As a result, IoT has become a leading technology in multiple sectors, with connected 
devices projected to increase from 30.7 trillion in 2020 to 75.4 trillion by 2025 [2]. This massive number of 
connected things introduces numerous challenges, particularly in terms of QoS and scalability, which 
present obstacles for IoT and, more specifically, Machine-to-Machine (M2M) networks.The main objective 
of this paper is to provide a comprehensive contribution toward implementing mechanisms for autonomous 
scalability management and Quality of Service (QoS). The approach integrates Transport Layer loss 
recovery protocols from the TCP/IP model within the middleware layer of IoT networks.. The outcome of 
this work proposes a new architecture for the existing IoTScal approach, incorporating additional 
components to simulate loss recovery mechanisms. This enhancement boosts the success rate of e-Health 
traffic from 95% to 99.99%, delivering a clear and significant improvement over the existing reference 
approach. 

Keywords: Quality Of Service,Internet Of Things,Scalability,M2M Networks,Loss Recovery Mechanisms 
 
1. INTRODUCTION  
 

Since its creation in the 1960s, the Internet has 
relied on a standard and universal model that 
defines a set of communication protocols for 
network interaction.This model is TCP/IP where 
TCP and IP play an important roles.In this model, 
the Transport Layer plays a vital role in Internet 
communications. It guarantees end-to-end 
communication between applications and provides 
essential services like flow control, congestion 
control, and reliable transfer through loss recovery 
mechanisms in order to satisfy functional and non-
functional requirements. Internet known over time a 
huge progress,evolving beyond human connections 
to include objects,giving birth to the IoT.Coined by 
Kevin Ashton in 1999 Co-founder of MIT’s 
Automatic Identification Center-[1],IoT connects 

anything, anywhere, any time, enhancing daily life 
with minimal human intervention.Moreover, IoT is 
a collection of objects equipped with a number of 
sensors and actuators that allows to collect and 
transfer information about the surroundings via 
Internet in order to understand and control it 
[2],leading to applications in areas like smart cities, 
industries, and E Health. The connected devices of 
the IoT, overall, and Machine-to-Machine 
communications, specifically, provide significant 
opportunities but also present challenges due to the 
large number of users and their connected devices 
[3]. This requires the system to adapt to various 
requests and the vast amount of information 
exchanged among all involved parts (users, 
applications...), while ensuring a maintained 
acceptable level of QoS.The number of works that 
suggest a solution to the problem of scalability in 



 
 Journal of Theoretical and Applied Information Technology 

30th September 2025. Vol.103. No.18 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7508 

 

IoT networks is limited.Among the most famous 
approaches dealing the scalability issue 
are:NDN(Name Data Networking) that allows to 
enhance the scale of IoT-Cloud 
[4],DINAS(DIstributed NAming Service) that 
represents a novel approach to naming and service 
discovery in resource limited wireless sensor 
networks [5] ,SDNSNA(Secure DNS name auto-
configuration) which was designed to automatically 
assign domain names for IPv6-based IoT 
applications within the DNS system [6]. In contrast 
, the different proposed methods aim to tackle the 
scalability challenge by focusing on how to name, 
protect, and authenticate the variety of devices in an 
IoT system. Still, none of these methods seem to 
offer a solution that can effectively handle all 
incoming requests from identified users or devices 
without impacting specific quality measurements, 
such as Round-Trip Time (RTT).To solve the 
problem mentioned previously ,the proposed 
approach at the work [7] seeks to satisfy the 
maximum number of incoming requests as well as 
to respect the QoS metrics.Inside this solution 
named IoTScal-H ,a part of the traffic are rejected 
:5% for E-health ,50% for industrial and 80% for 
transportation.Our contribution is centred on the 
integration of loss recovery mechanisms derived 
from the simple Automatic Repeat reQuest (ARQ) 
family into this approach.By incorporating these 
ARQ mechanisms,our solution can identify and 
retransmit lost data in order to guarantee the 
reliability of the overall IoT system.Our work 
focuses on improving scalability and QoS in IoT 
networks by the integration of these mechanisms at 
the Transport Layer ,assuming this layer as  the core 
communication framewrok.While our approach is 
designed to improve scalability in specific IoT 
domains—such as e-health, industrial systems, and 
transportation—it also makes a fundamental 
assumption: the reliability of the underlying 
physical and link layers is not the focus of this 
study. Instead, we concentrate on the Transport 
Layer’s ability to mitigate data loss and preserve 
QoS indicators such as Round-Trip Time (RTT). 
The scope of our work is limited to simulation-
based evaluation and does not cover large-scale 
real-world deployments.The structure of this 
document is as follows: the second section will 
provide a detailed overview of the Transport Layer, 
emphasizing its importance for proper data routing 
and the loss recovery mechanisms, particularly 
those from the ARQ family. The third section will 
present the tests and results related to the impact of 

these mechanisms on QoS. The fourth section will 
discuss our upcoming contribution, which aims to 
enhance the IoTScal-H approach by integrating loss 
recovery mechanisms to improve scalability and 
QoS. Finally, the sixth section will conclude the 
paper. 

2. TRANSPORT LAYER,GENERALITIES
 AND PROTOCOL MECHANISMS.  

2.1 General Description of The Transport 
Layer 

Situated between the network and application 
layers ,the transport layer is a vital part of internet 
communications, acting as a bridge between lower 
TCP/IP layers and upper layers. It provides end-to-
end transport services between applications, 
offering two types: non-connection-oriented and 
unreliable and reliable and connection-oriented. The 
layer also provides a logical communication 
channel between applications on different hosts 
using transport protocols like TCP(Transmission 
Control Protocol) and UDP(User Datagram 
Protocol). It enhances reliability, confidentiality, 
and data integrity, providing uninsured network 
layer functionalities. 

 UDP protocol [8] :is one of the transport 
protocol.It’s unreliable and non connection- 
oriented protocol with 
multiplexing/demultiplexing service for 
transport data between application and 
networks layers ,ensuring also a fast delivery 
service.That’s why many applications like 
DNS use it.In addition,many applications are 
better suited to UDP for the following 
reasons : Firstly,UDP isn’t based to a 
congestion control mechanism and 
consequently,the data transmission doesn’t 
take a lot of time .Furthermore,the real time 
applications which often require minimal 
debit,doesn’t wish to delay segment 
transmission excessively and can tolerate 
data loss.Secondly ,UDP doesn’t allow to do 
a three way handshake between sender and 
receiver.Third reason ,UDP gives no idea 
about the connection status between systems 
and finally ,UDP has a segment of a 
minimum size equal 8 bytes at the header 
level shown in Figure 1.Among applications 
using UDP,we find;NFS,SNMP,RIP,DNS as 
well as some recent applications like 
«Internet phone» and «streaming 
multimedia». 



 
 Journal of Theoretical and Applied Information Technology 

30th September 2025. Vol.103. No.18 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7509 

 

 

Figure 1.UDP segment structure 

 TCP protocol [9] :is a reliable transport 
protocol,connection-oriented and it relies to 
many mechanisms (Errors 
detection,cumulative 
acknowledgements,sequence number and 
Timer).Moreover ,TCP runs only in the end 
systems and provides a connection in 
bidirectional mode(full-duplex) whose data 
can flow in both directions ,respecting a 
minimal segment size (MSS) ,knowing that 
the receiver and the sender has a buffer to 
manage the flow control.TCP is connection 
oriented means that before an application 
process begins to send data to the other,the 
both must do a three way handshake .TCP 
implements a reliable data transfer service 
under unreliable IP service.It’s based on the 
following mechanisms :cumulative 
acknowledgements,segment 
pipeline,retransmissions triggered by timer 
expiration or by receipt of a duplicate 
acquittal.TCP provides also a flow control 
service to the applications for prevent the 
possibility of the sender overflowing the 
receiver buffer without forgetting congestion 
control.The below picture Figure 2 shows the 
TCP segment structure. 

Figure 2.TCP segment structure 

2.2 Protocol Mechanisms and Functions 
 Connection Establishment Mechanism [10]: 

Also known as the signaling mechanism, 
this is a three-phase process used by TCP 
before data transmission. It operates in 
client/server mode, where the client initiates 

the connection and the server acknowledges 
it, establishing communication. 

 Data Segmentation and Sequencing: TCP 
involves segmenting and sequencing data 
during transmission. The sender cuts data 
from its send buffer into segments, each 
with a maximum size defined by the MSS, 
and assigns sequence numbers to ensure 
reliability. These segments are encapsulated 
in datagrams at the network layer and stored 
in the receiver’s buffer. 

 Flow Control [11]: TCP provides flow 
control, preventing the sender from 
overwhelming the receiver's buffer. It 
ensures speed matching, adjusting the 
sending rate to the receiver's capacity by 
limiting transmission based on available 
buffer space. 

 Congestion Control [12]: TCP uses the 
AIMD algorithm to control congestion by 
increasing bandwidth gradually and 
reducing it when congestion occurs. This 
mechanism adjusts the sender’s transmission 
rate by increasing bandwidth when the 
network is clear and reducing it when packet 
loss or congestion is detected. 

 Transfer Reliability [13]: Reliable data 
transfer is supported by protocols at the 
Data-link, Transport, or Application layers. 
These protocols create a reliable channel, 
ensuring data transmission without errors or 
loss. TCP achieves this through a reliable 
data transfer protocol (RDT) and a system of 
acknowledgements and sequence numbers, 
allowing the sender and receiver to confirm 
successful data delivery. 

 

Figure 3.Reliable Data Transfer 

 

 

 



 
 Journal of Theoretical and Applied Information Technology 

30th September 2025. Vol.103. No.18 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7510 

 

3. PRESENTATION OF LOSS RECOVERY 
MECHANISMS 
 

A reliable data protocol (rdt) is crucial for IT 
networks, ensuring data delivery to recipients. 
Designing a dependable transfer protocol involves 
using complex protocols, resulting in a faultless and 
reliable transfer protocol, unlike unreliable ones. 

 Rdt 1.0 [13]: is a protocol that ensures 
reliable and orderly data transfer without 
error bits or packet loss. The sender sends 
data in the underlying channel, while the 
receiver reads it at the end. No feedback is 
required from the receiver side. 

 Rdt 2.0 and its secondaires [13]:into this 
protocol ,the channel is considered orderly 
and unreliable ,i.e ,it can damage bits of the 
packet without any loss of the packet when 
it propagates.The errors are detected through 
error control.If this control is correct ,the 
receiver explicitly indicates the correct 
receipt of the packet by sending a positif 
ACK,otherwise,the receiver explicitly 
indicates the incorrect reception of the 
packet through a negative ACK (NACK) 
and the sender will retransmit the wrong 
packet.The derivatives of this protocol are : 
rdt 2.1 which allows to add alternating 
sequence number (0 or 1) as well as rdt 2.2 
which has the same rdt2.1 functionalities but 
it uses only ACKs. 

 Rdt 3.0 [13]:In this protocol, the channel can 
lose packets (data or ACKs). Even with 
included mechanisms like checksums, 
sequence numbers, positive ACKs, and 
retransmissions, these may not be enough. 
To recover lost packets, a tool called a timer 
needs to be integrated. 

3.1 Classification 
To ensure transfer reliability, there are two main 

classes of mechanisms: 

 Reactive Mechanisms (ARQ Simple): Also 
known as Automatic Repeat reQuest (ARQ), 
these mechanisms ensure orderly packet 
transmission without loss or error through 
retransmissions. Types include Stop and Go, 
Stop and Wait, Go-Back-N, and Selective 
Repeat. 

 Proactive Mechanisms (ARQ Hybrid): ARQ 
Hybrid mechanisms add redundancy packets 
to allow receivers to recover lost packets 

without requiring retransmissions. They 
include HARQ type I, HARQ type II, and 
HARQ type III. 

3.2 Reactive Mechanisms (ARQ Simple) 
The ARQ protocol, developed by Van Duüren in 

1943, is a loss/error recovery algorithm designed 
for reliable data transmission. Commissioned in the 
Netherlands in 1947, it uses positive and negative 
acknowledgements along with a timer to ensure 
efficient transmission. The performance of ARQ 
depends on the reliability of the round-trip channel 
and the Round-Trip Time (RTT) between sender 
and receiver, making it a widely used solution in IT 
networks. Key elements of ARQ include CRC, 
positive and negative acknowledgements, a timer, 
and sequence numbers. Figure 4 illustrates the basic 
elements of the ARQ protocol. 

 

Figure 4.Basics elements of an ARQ protocol 

There are a various types of simple ARQ 
mechanisms, these include: 

 Stop and Go: The most basic ARQ form, 
where a packet is sent and the sender waits 
for either a positive acknowledgement 
(ACK) or a negative acknowledgement 
(NACK) from the receiver, who checks 
packet integrity using checksum 
calculations. 

 Stop and Wait: In this mechanism, the 
transmitter sends a packet and waits for an 
acknowledgement before sending the next 
one. This can limit hardware capabilities and 
bandwidth. To allow multiple packets to be 
transmitted without waiting for each 
acknowledgement, the sequence number 
range must be expanded, and buffers added. 

To allow the transmitter to send multiple packets 
in-flight without waiting for each acknowledgement 
and to optimize bandwidth usage, the sequence 
number range must be expanded, and buffers must 
be added at both the sender and receiver. These 
adjustments depend on how the transfer protocol 
handles lost and corrupted packets. The simple 
ARQ family includes two key pipeline protocols: 



 
 Journal of Theoretical and Applied Information Technology 

30th September 2025. Vol.103. No.18 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7511 

 

 Go-Back-N (GBN): The sender can transmit 
multiple packets, but the total number must 
not exceed a specified maximum N. The 
receiver acknowledges all packets up to N 
and generates duplicate acknowledgements 
for missing packets, only acknowledging the 
expected sequence numbers. 

 Selective Repeat (SR): This protocol 
minimizes unnecessary retransmissions by 
only requesting retransmission of lost or 
corrupted packets.The receiver 
acknowledges and buffers correctly received 
packets, improving efficiency by ensuring 
that only lost or corrupted packets are 
retransmitted. 

3.3 Proactive Mechanisms (ARQ Hybrid) 
 HARQ type I:known as Chase Combining 

(CC), is a fundamental form of HARQ, 
combining ARQ with FEC encoding, 
requiring small receiver memory and 
suitable for low-noise channels. 

 HARQ type II:Incremental Redundancy (IR) 
is a HARQ that improves decoding chances 
and outperforms Chase Combining, 
particularly for fast-fading channels, if 
initial transmission errors persist. 

 HARQ type III:  is an extension of HARQ 
II, encoding each code word with 
independent information and parity bits, 
requiring larger receiver memory than CC 
for decodable individual or combined 
transmissions. 

3.4 Principles of Simples ARQ Mechanisms  
In the previous section ,an overview of reactive 

mechanisms (Basic ARQ) was made.Indeed ,the 
Basic ARQ family, consisting of four mechanisms: 
Stop and Go, Stop and Wait, Go Back N, and 
Selective Repeat, ensures orderly service 
transmission without packet loss or error by 
detecting errors and retransmissions, each described 
in pseudo code for easy understanding. 

3.4.1   Stop and go mechanism 
The simplest form of the simple ARQ family 

operates as follows: 

 Principle: A packet is sent only after 
receiving an acknowledgement (ACK) for 
the previous one. 

 Assumptions: No errors occur on 
acknowledgements, and no packets are lost. 

 Description 

o Sender (A) 

 Sends a packet to the receiver and 
waits for either an ACK or a 
NACK. 

 Sends the next packet only after 
receiving an ACK. 

o Receiver (B) 

 Upon receiving the packet, the 
receiver checks its integrity by 
verifying the packet's correctness, 
usually through a checksum or 
similar error-detection 
mechanism.. If the packet is error-
free: 

 B sends an ACK; otherwise, 

 B sends a NACK. 

 Errors processed: Corrupted data. 

 Stop and Go Algorithm 

The two algorithms below illustrate the detailed 
pseudo code of the ARQ Stop and Go protocol.The 
first algorithm depicted in Table 1  represents the 
sender's process, detailing how it sends a packet and 
waits for an acknowledgement (ACK) or negative 
acknowledgement (NACK). The Table 2 outlines 
the receiver's process, demonstrating how it checks 
the integrity of each packet and responds 
accordingly by sending either an ACK or a NACK. 
These algorithms ensure reliable data transmission 
by handling errors and retransmissions in an orderly 
manner. 

Table 1: Stop and Go sending procedure. 

 
 
 
 
 

Stop and Go sending procedure 

Packet Type : 
int type 
int sum 
Message payload  

Emission (Message data) 
Packet pdata, pack 
pdata.payload ← data 
pdata.sum ← calculate_sum (pdata) 
repeat 

send_packet(pdata) 
wait_packet (pack) 

until pack.type = ACK 



 
 Journal of Theoretical and Applied Information Technology 

30th September 2025. Vol.103. No.18 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7512 

 

Table 2: Stop and Go receiving procedure. 

 
3.4.2   Stop and wait mechanism 

This mechanism is an improvement over the 
Stop and Go protocol, featuring the following 
characteristics: 

 Principle: It combines the 'Stop and Go' 
technique, requiring the sender to retransmit 
a packet if the desired acknowledgement 
(ACK) is not received within a specified 
time-out. 

 Assumptions: The system assumes no 
multiplexing, user data segmentation, and 
follows a modulo 2 approach for sequence 
number calculation, ensuring no errors or 
losses on acknowledgements. 

 Description 

o Sender (A):A field is added to the 
packet to contain a sequence number (0 
or 1). If there is data to send, the sender 
creates a packet with a specific 
sequence number and transmits it. The 
sender then waits for an 
acknowledgement for a specified time: 

 If an ACK with the correct 
sequence number is received 
before the time-out expires, the 
sender sends the next packet with 
the following sequence number. 

 If no ACK is received, or if the 
wrong ACK is received, the 
sender retransmits the same 
packet. 

o Receiver (B):The receiver also 
maintains an expected sequence 

number for incoming packets. Upon 
receiving a packet, the receiver 
checks its integrity: 

 If the packet is valid and its 
sequence number matches the 
expected one, the receiver extracts 
the data and sends an ACK with 
that sequence number. 

 If the sequence number 
doesn't match or the packet is 
corrupted, the receiver rejects the 
packet and either sends an ACK 
for the last correctly received 
packet or does not send an ACK 
at all, making the sender believe 
the packet was lost 

 Advantages 

o Simplicity in transmission and 
reception procedures. 

o Low memory cost since only one 
packet needs to be stored at both the 
sender and receiver. 

 Disadvantages 

o The sender stays inactive until it 
receives an acknowledgement, which 
may hinder performance. 

 Errors Processed:Corrupted Data and lost 
Data 

 Stop and Wait Algorithm 

The Stop and Wait algorithm will be 
demonstrated through pseudo-code , with one 
representing the transmitting side detailed in Table 
3 and the other  illustrating the receiving station 
shown in Table 4 

Stop and Go receiving procedure 
Packet Type : 

int type 
int sum 
Message payload  

Reception (Message data) 
Packet pdata, pack 
Boolean exit ← FALSE 
repeat 

wait_paquet(pdata)  
if check_sum(pdata) = TRUE then 

data ← pdata.payload 
pack.type ← ACK 
exit ← TRUE 

else 
pack.type ← NACK 
send_packet(pack) 

until exit = TRUE 



 
 Journal of Theoretical and Applied Information Technology 

30th September 2025. Vol.103. No.18 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7513 

 

Table 3:  Stop and Wait sending procedure. 

Table 4:  Stop and Wait receiving procedure. 

 

3.4.3 Go back n mechanism 
Go Back N is a sliding window protocol, 

commonly used for error and loss control in both 
the Link and Transport Layers. This ARQ 
mechanism is characterized by the following: 

 Principle:The transmitter can send multiple 
packets within a window without waiting for 
an acknowledgement (ACK) for each 
individual packet, unlike Stop and Wait. 

 Assumptions 

o The sequence number 
calculation is based on the number of 
packets in the window. 

o No errors or losses occur on 
acknowledgements. 

 Remarks 

The sender manages a window that consists 
of four parts (illustrated in Figure. 5): 

o [0-base-1]: Packets that have 
already been transmitted and 
acknowledged. 

o [base, nextseqnum-1]: Packets 
that have been transmitted but not yet 
acknowledged. 

o [nextseqnum, base+N-1]: 
These are the packets that the sender is 
permitted to transmit immediately 
without waiting for an 
acknowledgement from the receiver. 

o numseq > base+N: Untransmitted and 
unacknowledged packets within the 
window. 

o Base: The sequence number of the 
oldest packet that has been sent but has 
not yet received an acknowledgement. 

o Nextseqnum: The smallest unused 
sequence number. 

Figure 5. Go Back N sender’s window[14] 

 Description 

o Sender (A): The GBN sender handles 
three types of events: 

 Invocation from the top: 

 If there is data to send, A 
first checks if the window is 
full (i.e., there are N 
unacknowledged packets). 

Stop and Wait sending procedure 
Packet Type : 

int type  
int sum 
Message payload 

Emission (Message data) 
Packet pdata, 
pack int numSeq ← 0  
Boolean exit ← FALSE 
pdata.numPack ← numSeq  
pdata.payload ← data 
pdata.sum ← calculate_sum(pdata) 
repeat  

send_packet(pdata)  
wait(time) 
if receive_packet(pack) = FALSE then 

 Continue  
else 

// Is this a reliable ACK? 
if pack.numPack = numSeq then 

exit ← TRUE 
numSeq ← increment(numSeq) 

else 
exit ← FALSE 

until exit = TRUE 

Stop and Wait receiving procedure 

Packet 
Type :  

int type 
int sum 
Message payload 

Reception (Message data) 
Packet pdata,pack 
int expected_numSeq ← 0 
Boolean exit← FALSE  
repeat 

receive_packet(pdata) 
if check_sum(pdata) = FALSE or pdata.numPack =/= 
expected_numSeq 
then 

Continue 
// New packet or copy ?  
data ← pdata.payload  
exit ← TRUE 
pack.numPack ← expected_numSeq Send_packet(pack) 
expected_numSeq ← increment(expected_numSeq) 

until exit = TRUE 



 
 Journal of Theoretical and Applied Information Technology 

30th September 2025. Vol.103. No.18 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7514 

 

 If the window is not full, A 
creates a packet, sends it, 
starts the timer, and updates 
its variables. 

 If the window is full, A 
refuses new data, indicating 
the window is full 

 Receipt of an ACK: 

 An ACK for a packet with 
sequence number N is 
considered cumulative, 
meaning that all packets 
with sequence numbers less 
than or equal to N have been 
received correctly. 

 If base = nextseqnum, A 
stops the timer. 

 Otherwise, A starts the 
timer. 

 Timer expiration: 

 If a time-out occurs, the 
sender (A) retransmits all 
packets that have been sent 
but have not yet been 
acknowledged. 

o Receiver (B): The GBN receiver 
operates as follows: 

 If a packet with sequence number 
N is received in order and without 
errors, B sends an ACK for the 
packet and delivers the packet 
data to the top layer. 

 If the packet is out of order or 
corrupted, B rejects all 
subsequent packets and 
retransmits an ACK for the last 
correctly received packet. 

 Errors Processed: Corrupted and lost data. 

 Advantages 

o GBN reduces the waiting time between 
transmissions seen in Stop and Wait by 
allowing continuous transmission 
within a window (anticipation 
window). 

o It improves transmission efficiency and 
optimizes link usage. 

 Disadvantages 

o GBN can lead to unnecessary 
retransmissions for out-of-sequence 
packets, increasing processing and 
bandwidth usage. 

 Go Back N algorithm 

The Go Back N algorithm will be illustrated 
through pseudo-code showing in Table 5 and 6, 
with one version depicting the sender's operations 
and the other showing the receiver's processes. 

Table 5:  Go Back N sending procedure. 

 
 
 
 
 
 
 
 

Go Back N sending procedure 
Packet Type : 

 int type 
 int sum 
Message payload 

Emission (Message data) 
Packet pack 
Packet[MAX] tab_packet //Using a Packet type array to store packets 
to send 
int base ← 0 //The sequence number of the oldest unacknowledged 
packet 
int nextseqnum ← 0 //the smallest sequence not in use 
int numSeq ← 0 
int N ← 2^m-1 //The size of the window 
Boolean exit ← FALSE  
int i ← 0 
repeat nextseqnum <= base + N then  

tab_packet[numSeq].payload ← data 
 tab_packet[numSeq].numPack ← numSeq 
tab_packet[numSeq].sum ←
 calculate_sum(tab_paquet[numSeq]) 
send_packet(tab_paquet[nextseqnum]) 
nextseqnum ← nextseqnum + 1 
 numSeq ← increment(numSeq) 

end repeat 
wait(time) 
if received_packet(pack) = TRUE then 

if pack.numPack >= base and pack.numPack <= base + N then 
base ← increment(pack.numPack) 
if base = nextseqnum then  

exit ← TRUE numSeq ← 0 
else 

continue 
else 

i← base 
repeat  i=/= nextseqnum 

send_packet(tab_paquet[i]) i← increment(i) 
end repeat 

exit ← FALSE 
until exit = TRUE 

 



 
 Journal of Theoretical and Applied Information Technology 

30th September 2025. Vol.103. No.18 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7515 

 

Table 6:  Go Back N receiving procedure 

 
3.4.4 Selective repeat mechanism 

This mechanism represents a specific 
implementation of the ARQ protocol and utilizes a 
sliding window at both the sender and receiver. Its 
features are as follows: 

 Principle: The Selective Repeat (SR) 
protocol optimizes retransmissions by 
sending only the lost or corrupted packets to 
the receiver. The receiver acknowledges and 
buffers all received packets, passing the data 
to the application layer. 

 Assumptions 

o The sequence number calculation 
depends on the window size, ensuring 
that the sender and receiver correctly 
manage and track packets within the 
defined window range. 

o No errors or losses in 
acknowledgements. 

 Remarks: Both sender and receiver operate 
with a window of the same size, as 
illustrated in the accompanying diagram 
showing the window views at both ends. 

 Description: 

o Sender (A) : The SR sender (A) 
addresses three types of events: 

 Data received from above: The 
sender checks if the data's 
sequence number is within the 
window. If so, the packet is sent. 
Otherwise, data is rejected, 
indicating a full window. 

 Timer expiration: Each packet has 
its own timer. If a packet's timer 
expires, only that packet is 
retransmitted. 

 Receiving an ACK: On receiving 
an ACK, the sender checks if it 
falls within the window. If it does, 
the sender marks the associated 
packet as acknowledged and 
adjusts the window base if 
needed. 

o Receiver: The SR receiver (B) 
responds to three types of events: 

 Reception of a packet: If the 
packet's sequence number is 
within the expected range, the 
data is delivered to the application 
layer, and the window is 
advanced.Out-of-order packets 
are buffered, and a selective 
acknowledgement (ACK) is sent 
to indicate which packets have 
been correctly received. 

 Acknowledgement of previously 
received packets: An ACK is sent 
for packets within the previous 
range to ensure all data is 
correctly processed. 

 Ignoring non-relevant packets: 
Packets outside the expected 
sequence are ignored. 

 Errors Processed: Corrupted and lost data. 

 Advantages and Disadvantages: The 
Selective Repeat protocol is more efficient 
than other ARQ mechanisms by reducing 
unnecessary retransmissions. However, it is 
more complex to implement 

 Selective Repeat algorithm 

The pseudo-code outlines the operations of the 
Selective Repeat (SR) protocol, providing a clear 
representation of how the receiver and sender 

Go Back N receiving procedure 

Packet Type :  
int type  
int sum 
Message payload 

Reception(Message data) 
Packet pdata ,pack 
int numseq_attendu ← 0  
Boolean ← FALSE 

repeat 
while expected_numSeq <= 2^m-1 //The same value of M used 
at the sender 
receive_packet(pdata) 
if check_sum(pdata) = TRUE then 

if (pdata.numPack = expected_numseq) then 
data ← pdata.payload  
pack.numPack ← expected_numSeq 
expected_numSeq ← 
increment(expected_numSeq) 
send_packet(pack) //This ACK will be 
transmitted in two cases : If packet contains 
errors or it’s hors sequence 

end repeat 
exit ← TRUE  
Expected_numSeq← 0 
until exit = TRUE 



 
 Journal of Theoretical and Applied Information Technology 

30th September 2025. Vol.103. No.18 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7516 

 

handle data transfer and error recovery. This 
detailed explanation is broken into two sections, 
each showing their respective roles in Table 7 and  
Table 8. 

Table 7:  Selective Repeat receiving procedure 

 

 

Table 8:  Selective Repeat receiving procedure 

 

Selective Repeat receiving procedure 
Type Packet: 

Integer numPack 
Integer sum 
Message payload 

Reception (Message data) 
Packet pack, pdata 
Packet[MAX] packet_array 
Integer rcv_base ← 0 
Integer N ← 2^m - 1 
Integer i ← 0 
Boolean exit ← FALSE 

Repeat 
while rcv_base <= N do 
receive_packet(pdata) 
        if check_sum(pdata) = TRUE then 
            if pdata.numPack >= rcv_base and pdata.numPack <= rcv_base 
+ N then 

if pdata.numPack = rcv_base then 
pack.numPack ← rcv_base 

          send_packet(pack) 
          data ← pdata.payload 

rcv_base ← rcv_base + 1 
                    for j = 0 to i do 
                        if packet_array[j].numPack = rcv_base then 
                            rcv_base ← packet_array[j].numPack + 1 
                            data ← packet_array[j].payload 
                        else 
                            break // Exit the loop 
                        end if 
                    end for 
                else 
                    packet_array[i] ← pdata 
                    i ← i + 1 
                    pack.numPack ← packet_array[i].numPack 
                    send_packet(pack) 
                end if 
            else 
                if pdata.numPack >= rcv_base - N and pdata.numPack <= 
rcv_base - 1 then 
                    pack.numPack ← pdata.numPack 
                    send_packet(pack) 
                else 
                    continue 
                end if 
            end if 
        end if 
    end while 
    exit ← TRUE 
    rcv_base ← 0 
until exit = TRUE 
 

Selective Repeat sending procedure 
Type Packet: 

Integer numPack 
Integer sum 
Message payload 

Emission (Message data) 
Packet pack 
Packet[MAX] packet_array 
Integer base ← 0 
Integer nextseqnum ← 0 
Integer numSeq ← 0 
Integer i ← 0 
Integer m ← 0 
Integer N ← 2^m - 1 
Packet[N] received_packets_array 
Boolean exit ← FALSE 
while nextseqnum <= base + N do 
    packet_array[nextseqnum].payload ← data 
    packet_array[nextseqnum].numPack ← numSeq 
    packet_array[nextseqnum].sum ← 
calculate_sum(packet_array[nextseqnum]) 
    send_packet(packet_array[nextseqnum]) 
    nextseqnum ← nextseqnum + 1 
    numSeq ← increment(numSeq) // Increment based on modulo N 
end while 
//Label1 
repeat 
    wait(time) 
    if receive_packet(pack) = TRUE then 
        if pack.numPack >= base and pack.numPack <= base + N then 
            if pack.numPack = base then 
                if base = N then 
                    exit ← TRUE 
                    numSeq ← 0 
                else 
                    base ← pack.numPack + 1 
                end if 
                for j = 0 to i do 
                    if received_packets_array[j].numPack = base then 
                        if packet_array[j].numPack = N then 
                            exit ← TRUE 
                            numSeq ← 0 
                        else 
                            base ← received_packets_array[j].numPack + 1 
                        end if 
                    else 
                        go to Label_1 
                    end if 
                end for 
            else 
                received_packets_array[i] ← pack 
                i ← i + 1 
            end if 
        else 
            i ← base 
            send_packet(packet_array[i]) 
            exit ← FALSE 
        end if 
    end if 
until exit = TRUE 
 



 
 Journal of Theoretical and Applied Information Technology 

30th September 2025. Vol.103. No.18 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7517 

 

 
3.4.5 Illustrations of loss  recovery mechanisms 

The figures below figure 6,figure 7,figure 8 and 
figure 9 explains how different loss recovery 
mechanisms handle packet loss and ensure reliable 
data transmission. Stop-and-Wait ARQ waits for an 
acknowledgement before sending the next packet, 
ensuring reliability but reducing efficiency. Go-
Back-N ARQ improves throughput by allowing 
multiple packets to be sent without waiting for 
acknowledgements, but if a packet is lost, all 
subsequent packets are retransmitted. Selective 
Repeat ARQ retransmits only the lost packet, which 
is more efficient but requires handling out-of-order 
packets, making it more complex. Each mechanism 
balances reliability, complexity, and efficiency in 
data transmission. 

 

Figure 6.Principle of Stop and Go mechanism 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.Principle of Stop and Wait mechanism 

 

Figure 8.Principle of GBN mechanism 

 

Figure 9.Principle of Selective Repeat mechanism 

4. IMPLEMENTATION OF LOSS 
RECOVERY MECHANISMS,TESTS AND 
RESULTS 
4.1 Implementation of Simple ARQ Loss 
Recovery Mechanisms 

The implementation of simple ARQ loss 
recovery mechanisms is structured as a modular 
software system, designed to encapsulate the sender 
and receiver behaviours within discrete units. This 
modular approach aligns with principles of modular 
programming, which organizes code into 
manageable, logical units, facilitating code reuse, 
maintenance, and enhancement. The overall design 
is monolithic, meaning it is developed as a single 
cohesive unit but consists of several interconnected 
modules. 

4.1.1 The core modules in the implementation 

 udp.h and udp.c: These modules define and 
implement the functions necessary to 



 
 Journal of Theoretical and Applied Information Technology 

30th September 2025. Vol.103. No.18 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7518 

 

emulate a UDP socket. They handle the low-
level details of socket communication, 
providing the foundational layer for packet 
transmission and reception. 

 libktf_util.h and libktf_util.c: These utility 
modules offer additional functionalities such 
as checksum calculation, sequence number 
incrementation, and timer management. 
They support the core ARQ mechanisms by 
ensuring packet integrity, proper 
sequencing, and timeout handling. 

 libktf.h and libktf.c: This pair of modules 
provides an API for communication between 
the application layer and other software 
components. They offer a standardized 
interface for accessing and interacting with 
the ARQ mechanisms. 

 libktf_internal.h: This header file includes 
various data structures required for the 
internal operations of the ARQ mechanisms. 
It defines structures for packets, sequence 
numbers, timers, and other essential 
components. 

 libktf_X.h and libktf_X.c: These modules 
are specific to each ARQ mechanism (where 
X represents the specific mechanism, such 
as Stop and Go). They contain the functions 
for transmitting and receiving packets 
according to the rules of each ARQ protocol. 
For example, for the Stop and Go 
mechanism, the modules are named 
libktf_stopgo.h and libktf_stopgo.c, 
containing functions tailored to the Stop and 
Go protocol's operations. 

4.1.2 Detailed module functions 

 udp.h and udp.c: Implement the creation, 
binding, sending, and receiving of UDP 
packets. They ensure that packets are 
transmitted and received over a network 
connection, providing basic network 
communication services. 

 libktf_util.h and libktf_util.c: Offer utility 
functions such as: 

o Checksum Calculation: Verifies the 
integrity of transmitted data. 

o Sequence Number Incrementation: 
Manages the ordering of packets. 

o Timer Management: Handles 
retransmission time-outs to ensure 
reliable data delivery. 

 libktf.h and libktf.c: Provide high-level API 
functions that facilitate interaction between 
the application and ARQ modules, 
abstracting the details of the ARQ 
mechanisms from the application code. 

 libktf_internal.h: Defines the internal data 
structures used throughout the ARQ 
modules, ensuring consistent and efficient 
data management. 

 libktf_X.h and libktf_X.c: Implement the 
specific ARQ protocol logic: 

o Transmission Functions: Handle 
packet creation, sending, and managing 
sequence numbers based on the ARQ 
protocol rules. 

o Reception Functions: Manage 
incoming packets, handle 
acknowledgements, and process 
retransmissions as needed according to 
the specific ARQ mechanism. 

4.2 Tests and Results 
To validate the efficiency and impact of the 

implemented ARQ mechanisms on throughput and 
transmission time, tests were conducted in a 
controlled environment at LAAS-CNRS, where 
network disruptions were simulated. The results of 
these tests are presented as graphs and curves, 
which illustrate the performance metrics of each 
mechanism under varying network conditions. 
These visualizations provide insights into how well 
each ARQ protocol handles disruptions and their 
effects on overall network performance. 

 

Figure 10 .The efficiency of an implementation without 
any ARQ mechanisms 



 
 Journal of Theoretical and Applied Information Technology 

30th September 2025. Vol.103. No.18 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7519 

 

 

Figure 11 .The efficiency of an implementation with an 
ARQ mechanisms 

Based on the graphs above figure 10 and figure 
11,we note that the number of received bytes 
without any ARQ mechanisms decreases as long as 
the loss rate increase despite the existence of the 
UDP Transport Protocol ,on the other hand,the 
number of bytes keeps the original value after using 
the loss recovery mechanisms regardless of the loss 
rate applied.Indeed,The presence of a mechanism 
for recovery losses in a communication channel 
,contributes to the reliability of data transfers. 
Moreover,and through the graphs below figure 
12,figure 13 and figure 14,we can observe that as 
long as the loss rate increases ,the debit decreases 
and the delay increases after testing all ARQ 
mechanisms implemented . 

 

Figure 12 .Impact of Stop and Wait on the transmission 
rate and delay 

Figure 13 .Impact of GBN on the transmission rate and 
delay 

 

 

 

Figure 14 .Impact of Selective Repeat on the transmission 
rate and delay 

The paragraph explains the comparison between 
three Automatic Repeat reQuest (ARQ) 
mechanisms based on their throughput 
performance. 

 Selective Repeat (SR) 

o Achieves the highest throughput 
among the three mechanisms due to its 
ability to retransmit only the lost 
packets. 

o Ideal for applications that cannot 
tolerate delays and require high 
reliability in data transmission. 

o SR is more efficient but also more 
complex to implement than the other 
mechanisms. It offers a more selective 
and precise approach to packet loss 
recovery, minimizing wasted 
bandwidth. 

 Stop-and-Wait (SW): 

o Occupies the second rank in terms of 
throughput performance. 

o Simpler in its implementation 
compared to SR, making it suitable for 
applications that require reliable 
communication but can tolerate 
moderate performance. 

o SW waits for an acknowledgement 
after each packet, which slows down 
the process but reduces the complexity 
compared to SR. 

  Go-Back-N (GBN): 

o Comes in last regarding throughput due 
to its less efficient handling of errors. 
When a packet is lost or corrupted, 
GBN retransmits the lost packet along 



 
 Journal of Theoretical and Applied Information Technology 

30th September 2025. Vol.103. No.18 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7520 

 

with all subsequent packets, even if 
they were correctly received. 

o Suitable for applications where delays 
are tolerable and reliability is still a 
priority. 

o GBN sacrifices efficiency to ensure 
reliable data transmission, making it 
more appropriate for systems where 
occasional retransmissions are 
acceptable. 

5. DISCUSSION 
The section emphasizes the importance of loss 

recovery protocols in computer networks for 
reliable data transfer, a fundamental aspect of 
Quality of Service (QoS). Experimental results 
from a two-virtual-machine local network testbed 
illustrate the performance of various loss recovery 
mechanisms—including Stop-and-Go, Stop-and-
Wait, Go-Back-N (GBN), and Selective Repeat 
(SR)—across a range of operating scenarios.These 
tests offer insights into how these mechanisms 
affect reliability within a basic client/server setup, 
with relevance extending beyond traditional 
client/server applications to include radio-based 
systems. The Internet of Things (IoT) is expected to 
transform inter-object communication by 2025 , yet 
it faces significant challenges—one of the most 
critical being scalability. In this context, scalability 
refers to a device’s capacity to adapt to 
environmental changes while continuing to meet 

user requirements [16]—.Our findings validate our 
initial goal of improving scalability and Quality of 
Service (QoS) in IoT networks through the 
integration of loss recovery mechanisms from the 
ARQ family into the IoTScal solution. By 
evaluating key metrics such as Round-Trip Time 
(RTT) and success rate under varying traffic loads, 
we demonstrate that Transport Layer recovery 
techniques can deliver significant performance 
gains. This work offers a novel contribution, as 
most existing IoT scalability strategies focus on 
aspects like naming or security, often overlooking 
the potential of loss recovery to manage traffic 

surges while maintaining QoS.The proposed 
approach is designed to maximize the number of 
requests the oneM2M platform can process while 
maintaining key QoS metrics such as RTT and 
resource availability. It incorporates an autonomous 
computing framework based on the MAPE-K loop 
to reduce human intervention, operating at the 
middleware layer of the ETSI M2M standard. By 
combining scalability-focused and QoS-focused 
mechanisms, the IoTScal-H [7] strategy efficiently 

manages diverse traffic types—including E-Health, 
industrial, and transportation—ensuring compliance 
with SLAs. This is achieved through the seamless 
integration of middleware components, autonomous 
management, and cloud-enabled load balancing, 
which together sustain platform performance and 
middleware efficiency.  

To ensure all requests are handled effectively 
without loss or rejection, the implementation of the 
simple ARQ mechanisms will enhance scalability 
and optimize delay and throughput, giving rise to a 
new IoTScal solution called IoTScal-LR. This 
solution will integrate reactive loss recovery 
mechanisms—Stop and Wait, Go Back N, and 
Selective Repeat—into the Middle-ware layer of the 
IoT architecture defined by the ETSI standard. 
These mechanisms, which are derived from TCP 
protocol functionalities, will be adapted to comply 
with the ETSI architecture standards and rules. 
Each mechanism is tailored to meet the specific 
QoS requirements of different types of traffic: 
Selective Repeat for E-Health, Go Back N for 
Transportation, and Stop and Wait for Industrial 
applications.This work also builds upon and 
extends existing research on IoT scalability 
solutions, including NDN [4], DINAS [5], 
SDNSNA [6], and the IoTScal-H approach [7]. 
While these studies address important aspects such 
as naming, service discovery, and request handling, 
they do not directly integrate Transport Layer loss 
recovery mechanisms into scalability-oriented 
frameworks. The proposed IoTScal-LR model 
addresses this gap by incorporating ARQ-based 
mechanisms, thereby establishing a valuable 
connection to previous work while contributing a 
novel perspective. 

Strengths: The approach demonstrates 
measurable improvements in RTT and success rate, 
offers a novel scalability enhancement focused on 
the Transport Layer, applies adaptive ARQ 
mapping to traffic categories, and achieves 
middleware-level integration without requiring 
changes to lower layers. 

Limitations: The evaluation is restricted to 
simulations and small-scale testbeds, without 
examining energy consumption or security 
implications, and retransmission overhead may 
become significant under extreme traffic loads. 

Opportunities: The middleware positioning 
allows integration without disrupting lower protocol 
layers, and the adaptive ARQ selection is rare in 
IoT middleware research. Moreover, combining 
cloud-based load balancing with loss recovery 



 
 Journal of Theoretical and Applied Information Technology 

30th September 2025. Vol.103. No.18 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7521 

 

presents a promising hybrid strategy for addressing 
both scalability and QoS challenges. 

 

Figure 15 . The architecture of the IoTScal-H solution[7] 

 

 

Figure 16 . The new architecture IoTScal-LR solution 

6. CONCLUSION 

In this paper ,we have discussed about Transport 
layer and its role to guarantee an end-to-end 
transport service between different 
applications.Also,we have presented the protocol 
mechanisms and functions integrated within the 
Transport layer such as congestion control,transport 
reliability etc ...Moreover,a presentation of loss 
recovery mechanisms was addressed and especially 
those related to the ARQ simples family which 
named reactive mechanisms.These mechanisms 
included the Stop and Go,Stop and Wait ,Go Back 
N and Selective Repeat. Each mechanism can be 
used for a specific type of applications in order to 
insure the transfer reliability and consequently 
satisfying a part of the QoS.But with the appearance 
of the new paradigms such as IoT ,this future 
technology offers new applications and services 
linking the physical and virtual worlds,which leads 
to increase the number of problems and challenges 
that represent a major obstacle for implementation 
and adoption of the IoT in our daily life.Among the 
most important challenges,we found the 
scalability.To overcome this issue ,a proposed 
approach named IoTScal approach aims to satisfy a 

large number of requests into IoT systems without 
impacting QoS.Furthermore ,the reliability of 
transfer which represents one of the criteria of the 
QoS and through the addition of the loss recovery 
mechanisms treated in this paper, will make it 
possible to improve even more the QoS within the 
IoT networks.By integrating these mechanisms, the 
proposed IoTScal-LR solution aims to further 
improve QoS by ensuring reliable data transfer 
while maintaining scalability. This contribution is 
particularly relevant in the current IoT landscape, 
where the rapid growth of connected devices 
intensifies network load and heightens the risk of 
data loss. The findings provide a foundation for 
designing middleware-level solutions capable of 
balancing high request throughput with reliability in 
diverse IoT domains such as E-Health, Industry, 
and TransportationAs this work presents a proposal, 
the declared purpose is addressed through the 
design of the IoTScal-LR approach, which 
integrates ARQ-based loss recovery mechanisms to 
enhance scalability and QoS. While the concept is 
fully defined and aligned with the stated objectives, 
the complete validation will be carried out in future 
work through implementation and experimental 
evaluation.In summary, this study contributes: (1) a 
Transport Layer–oriented approach to IoT 
scalability, (2) adaptive ARQ mapping to domain-
specific traffic types, and (3) a middleware-level 
strategy that integrates seamlessly into ETSI IoT 
architectures 

 

REFERENCES:  

[1] Madakam, R. Ramaswamy, and S. Tripathi, 
“Internet of things (IoT): A literature review,” J. 
Comput. Commun., vol. 03, no. 05, pp. 164–
173, 2015 

[2] Pawan Kumar , Satvir Singh , Lavish 
Kansal,”A Comprehensive Review on Internet 
of Things (IoT)”,ISBN: 978-93-91355-11-1,pp 
222-227. 

[3]  L. Farhan, R. Kharel, O. Kaiwartya, M. 
Quiroz-Castellanos, A. Alissa, and 
M.Abdulsalam, “A concise review on internet 
of things (IoT) -problems, challenges and 
opportunities,” in 2018 11th International 
Symposium on Communication Systems, 
Networks & Digital Signal Processing 
(CSNDSP), 2018. 

[4] S. Han and H. Woo, “NDN-based Pub / Sub 
System for Scalable IoT Cloud,” 2016 IEEE 
International Conference on Cloud Computing 



 
 Journal of Theoretical and Applied Information Technology 

30th September 2025. Vol.103. No.18 
©   Little Lion Scientific  

 
ISSN: 1992-8645                                                                    www.jatit.org                                                     E-ISSN: 1817-3195 

 
7522 

 

Technology and Science (CloudCom), pp. 
488–491, Dec 2016. 

[5] M. Amoretti, O. Alphand, G. Ferrari, F. 
Rousseau, and A. Duda, “DINAS: A 
lightweight and efficient distributed naming 
service for all-IP wireless sensor 
networks,” IEEE Internet Things J., vol. 4, no. 
3, pp. 670–684, 2017. 

[6] Lee, K., Kang, H., Jeong, J. P., Kim, H., & 
Park, J.-S. (2016). Secure DNS name auto 
configuration for IPv6 internet-of-things 
devices. 2016 International Conference on 
Information and Communication Technology 
Convergence 
(ICTC). doi:10.1109/ictc.2016.7763534  

[7] A. Zyane, M. N. Bahiri, and A. Ghammaz, 
“IoTScal‐H : Hybrid monitoring solution based 
on cloud computing for autonomic 
middleware‐level scalability management 
within IoT systems and different SLA traffic 
requirements,” Int. J. Commun. Syst., vol. 33, 
no. 14, 2020 

[8] J. F. Kurose and K. W. Ross, Computer 
Networking : A Top-down Approach. Boston, 
Pearson, 2017. p224 

[9] J. F. Kurose and K. W. Ross, Computer 
Networking : A Top-down Approach. Boston, 
Pearson, 2017. p240 

[10] J. F. Kurose and K. W. Ross, Computer 
Networking : A Top-down Approach. Boston, 
Pearson, 2017. p272 

[11] J. F. Kurose and K. W. Ross, Computer 
Networking : A Top-down Approach. Boston, 
Pearson, 2017. p292 

[12] Lorincz, Josip, et al. “A Comprehensive 
Overview of TCP Congestion Control in 5G 
Networks: Research Challenges and Future 
Perspectives.” Sensors, vol. 21, no. 13, 1 Jan. 
2021, p. 4510, www.mdpi.com/1424-
8220/21/13/4510/htm, 10.3390/s21134510. 
Accessed 25 Aug. 2021. 

[13] J. F. Kurose and K. W. Ross, Computer 
Networking : A Top-down Approach. Boston, 
Pearson, 2017. p 244-252. 

[14] J. F. Kurose and K. W. Ross, Computer 
Networking : A Top-down Approach. Boston, 
Pearson, 2017. p256-265. 

[15] Manna, P., & Das, R. (2021). Scalability in 
Internet of Things: Techniques, Challenges and 
Solutions. International Journal for Research in 
Engineering Application & Management 
(IJREAM), 07(Issue-01), 2454–9150. 
https://doi.org/10.35291/2454- 9150.2021.0175. 

 
 


