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ABSTRACT 
 

Extraction of adverse drug event (ADE) mentions and their attributes and relations within electronic health 
records are crucial for adequate pharmacovigilance studies and drug safety surveillance. Transformer-based 
large language models (LLMs) have recently shown promising results in this research. However, clinical 
LLMs are few and have a limited number of parameters. General LLMs are domain-agnostic models 
developed for varying NLP tasks. However, due to the domain-specific nature of ADE extraction with 
ambiguous, polysemous and infrequent entities, general LLMs lacking prior medical knowledge have been 
observed to perform sub-optimally in handling these complex situations within clinical narrative documents. 
Consequently, researchers further pre-train the general models on domain-related knowledge before 
finetuning them for the downstream clinical tasks. Nevertheless, this approach is associated with several 
risks. The model may overfit when the domain-specific data is small. In addition, catastrophic forgetting may 
occur. To propose a new architecture tailored to extract ADEs called the SNOMED Transformer Model 
(SNOMEDTM) pre-trained from globally standard medical knowledge bases. The process is in two phases: 
A new transformer architecture was designed and pre-trained on the medical terminology-based 
SNOMEDCT and MedDRA. The model is tuned using fine-tuning and soft prompt tuning for multi-task 
ADE concept and relation extraction tasks. This study experimented with two tuning strategies, frozen and 
unfrozen model parameters. The model’s performance was evaluated using the TAC 2017 and n2c2 2018 
clinical challenge datasets. On TAC 2017, the proposed model outperformed the five compared transformer-
based models and the top five systems contributing to the TAC 2017 challenge for fine-tuning. On n2c2 2018, 
the model outperformed GatorTron-base for soft prompting with unfrozen model and JNRF systems. This 
research demonstrates the potential of incorporating prior medical knowledge into LLMs tailored for clinical 
research. 

Keywords: Adverse Drug Event, Fine-tuning, Soft Prompt Tuning, Prior Knowledge, 
Pretraining. 

 
1. INTRODUCTION 

 
An adverse drug event (ADE) is any 

unforeseen effect caused by using drugs during 
patient care. Improving ADE cases identification 
and extraction from clinical narratives improved the 
overall patient medication and documentation. In 
addition, detecting and monitoring drug safety is 
crucial for pharmacovigilance studies conducted in 

pre-marketing and post-marketing. Clinical trials 
with volunteer patients were common during pre-
marketing but often lacked complete information 
due to fewer volunteers and shorter trial durations  
[1]. The traditional approach of the spontaneous 
reporting system (SRS) at the post-marketing stage 
falls short due to the problem of under-reporting by 
the affected patient or the medical practitioners [2], 
[3]. Fortunately, electronic health record systems 
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(EHRs) have been widely used for patient record 
documentation for a decade. Natural language 
processing (NLP) approaches have proven to 
improve the outcome of pharmacovigilance studies 
in recent years by processing these documents [3]. 
Several NLP community challenges have been 
organised to extract ADE and its related information 
from clinical narrative text such as the Medication, 
Indication and Adverse Drug Events (MADE 1.0) 
2018 challenge [4], the Text Analysis Conference 
(TAC) 2017 challenge [5] and the n2c2 2018 
challenge [6]. Due to the dual nature of ADE 
extraction, researchers have handled the task using 
pipeline, joint task, or multi-task learning 
approaches [7]. Concept extraction involves 
identifying and extracting the main entities and their 
attributes mentioned within the dataset. Relation 
extraction involves identifying and extracting 
relation types between extracted main entities and 
their related attributes.  

 
Recent methods for the ADE relation 

extraction task often achieve a low F1-score, 
especially for the challenging ADE-reason and drug-
ADE relations [8] for several reasons, including the 
limited number of pair samples within the training 
dataset, the long distance between relation pair 
entities in the text, and the ambiguous and 
polysemous nature of medical terminology[9]. For 
instance, in the following three examples from the 
n2c2 2018 dataset extract, the “sedation” concept 
was annotated differently as reason, drug, and ADE, 
respectively, as shown below: 

Example 1: “Patient had significant delay in 
recovery of mental status, initially attributed to build 
up of benzodiazepines used for sedation” [B-
Reason] 

Example 2: “His extubation was initially limited 
both by agitation requiring sedation and by 
requirements for high PEEP to maintain 
oxygenation.” [B-Drug] 

Example 3: “Morphine 15 mg Tablet Extended 
Release Sig: One (1) Tablet Extended Release PO 
once a day as needed for pain: hold for sedation, 
RR< 12” [B-ADE] 

The traditional embedding models that do 
not consider word context may generate the same 
representations for the concept, leading to an 
incorrect data representation of the input sequence. 

 
Transformer-based models are pre-trained 

Language Models (PLMs) trained on vast amounts 

of unlabelled data through self-supervised learning. 
General language models such as BERT and its 
variants, Roberta [10], etc., and GPT [11] have been 
fine-tuned for ADE extraction tasks. However, these 
models are domain-agnostic, trained on data far from 
the specific downstream clinical tasks and, as such, 
may lack some commonsense knowledge of the 
structures and patterns of language constructs for 
practical ADE extraction. Recent studies have 
proposed tackling the domain adaptation problem of 
LLMs. The most notable is through further pre-
training of the general models on domain-specific 
data. This process risks overfitting and catastrophic 
forgetting, affecting the generalizability and transfer 
learning capabilities of the model [12], [13].  

 
Extracting ADEs from clinical documents 

using domain-agnostic LLMs has shown sub-
optimal performance due to a lack of specific clinical 
knowledge. Pre-training on domain-specific data 
risks overfitting and catastrophic forgetting. The 
effectiveness of using globally standardized ADE-
related terminologies like SNOMED-CT and 
MedDRA to develop a task-adaptive LLM for 
improved ADE extraction has not been investigated. 

 
Prompt tuning approaches have been 

proposed to bridge the gap between the upstream 
LLMS' pretraining and downstream task-specific 
objectives. Prompting is an LLM adaptation 
technique in which additional tokens control the 
model for downstream tasks. These can be hard 
prompts, where non-trainable tokens control the 
model or soft prompts with learnable embeddings 
added to the input sequence of the downstream task 
to control the model. Different strategies are utilised 
for LLM models, such as keeping the model 
parameters fixed (frozen) or allowing them to be 
updated (unfrozen) during training [14]. 

 
This paper proposes a new transformer-

based architecture trained on globally standard 
medical terminologies and concepts specifically 
used to report ADEs. This enables the model tailored 
for ADE extraction tasks to learn the patterns and 
construction of how terms are represented in 
downstream ADE extraction. The aim is to develop 
a task-adaptive model tailored for ADE extraction 
with prior medical knowledge of ADE concepts 
before tuning the model on ADE tasks. Additionally, 
this research uses the proposed methods [15] of 
multi-prompt soft prompt tuning with attention-
based prompt tokens feature selection to tune the 
proposed architecture. 
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In summary, this paper’s contributions are 
as follows.  

1. This paper proposes a new transformer 
architecture called SNOMEDTM that is pre-trained 
based on masked language modelling objectives on 
SNOMED-CT and MedDRA general medical 
terminology and a synthesised dataset from the 
original knowledge bases as a complement. 
 
2. This paper experimented with the proposed 
model with fine-tuning and soft prompting on the 
TAC 2017 and n2c2 2018 datasets. The proposed 
system outperformed the state-of-the-art models for 
clinical NLP and the top-ranking system for the 
challenges of ADE extraction. 
 

The remaining sections of the paper are 
presented as follows: The following section details 
the review of the current models for clinical NLP 
tasks and, more specifically, ADE extraction. The 
section is followed by the methodology section of 
the paper, which provides details on how the 
proposed model was developed, pre-trained, and 
fine-tuned for multi-task learning problems. The 
details of the multi-prompt-based learning method is 
given. In the next section, this paper presents the 
experiment conducted and the results obtained. The 
subsequent section is the discussion section. The 
paper is concluded with a conclusion section. 
 
2. RELATED WORK 

  
This section provides a detailed overview 

of the literature on transformer-based large language 
models. It begins by elaborating on the limitations of 
general models for clinical NLP. Then, various 
transformation methods proposed to transform 
general models to domain-specific models, 
including further pre-training, knowledge 
distillation, and development of clinical task-
adaptive models, are reviewed.  

 
2.1 Transformer-based Clinical Large Language 

Models 
 

With the current trend of increasing use of 
LLMs based on the transformer architecture, 
biomedical literature and unstructured textual 
documentation are extensively utilised to pre-train 
models tailored for clinical NLP-related tasks. The 
goal is to provide a substitute for the general LLMs, 
which have been shown to perform sub-optimally on 
biomedical-related downstream tasks and improve 
clinical healthcare delivery [16], [17]. Recently, 

there has been a rapid increase in developing multi-
domain datasets, for instance, Dai et al. [18] 
proposed a multi-domain dataset for ADE extraction 
named dataset-CADECv2 by combining different 
data sources from clinical NLP, social media and 
weblogs. The authors experimented with the dataset 
using GPT-4 and Llama-3. Despite the models 
performing well across all the datasets, the models 
still struggle in identifying complex ADE cases and 
fall short in performance compared to domain-
specific models pre-trained from a large collection 
of in-domain data. 

 
Researchers have proposed many 

approaches to developing a clinical large language-
based model to achieve this goal. One of the most 
prominent approaches involves creating a new 
model based on the architecture of a general model 
such as BERT with biomedical literature — for 
instance, Lee et al. [19] created BioBERT from PMC 
full-text articles and PubMed abstracts. Lo et al. [20] 
created SciBERT by initialising its architecture to 
that of BERT and pre-trained on full-text articles 
from semantic scholars. Alsentzer et al. [21] 
developed ClinicalBERT from clinical text and 
discharge summaries to generate clinical 
embeddings, and Liu et al. [22] developed 
RoBERTa, which eliminated BERT's next sentence 
prediction objective and changed the static masking 
of tokens to dynamic.  

 
One widely adopted method for developing 

large language models (LLMs) tailored to clinical 
and biomedical fields involves initially pre-training 
general models on domain-specific data, followed by 
fine-tuning them for specific tasks within the 
domain. For instance Alrowili and Shankar [23] 
proposed BioM-ALBERT by further pre-training 
ALBERT before fine-tuning it on biomedical tasks. 
Similarly, McMaster et al. [24] created  an ADE 
extraction framework using the DeBERTa model. 
which included pre-training on unannotated clinical 
texts and subsequent fine-tuning on labeled 
discharge summaries to classify documents based on 
the presence or absence of ADE. Another study [17] 
introduced a pharmBERT framework, which builds 
upon the original BERT architecture. This 
framework undergoes additional pre-training using 
drug labels obtained from the DailyMade dataset. 
Subsequently, the pre-trained model is fine-tuned to 
three NLP tasks: ADR detection, drug-drug 
interaction extraction, and ADME classification. 

 
Additionally, decoder-based clinical 

language models have been developed, such as those 
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of Luo et al. [25]. They developed BioGPT from 
scratch based on GPT-2-medium architecture from 
PubMed articles. The model was fine-tuned for text 
generation and six other biomedical NLP tasks, 
including end-to-end relation extraction. Wang et al. 
[26] proposed ClinicalGPT by further pretraining on 
medical records and multi-round dialogue. 
Additionally, based on GPT architecture, Zhang et 
al. [27] proposed BiomedGPT based on masked 
language modeling and supervised learning pre-
training objectives. The model was fine-tuned to 
multimodal tasks of vision language and image 
captioning. Furthermore, Yuan et al. [28] proposed 
BioBART based on BART architecture for text-
infilling tasks and fine-tuned biomedical named 
entity recognition. Similarly, based on LlaMA-3 
architecture, Wu et al. [29] proposed PMC-LLaMA 
by further pre-training the base model on biomedical 
academic papers and textbooks. The process begins 
with knowledge injection and instruction, fine-
tuning medical conversation and answering medical 
questions. 

 
However, despite the advantages of further 

pre-training of general models, as it enables the 
model to learn more about the distribution of words 
from the specific domain data, the shift from the 
initial pre-training parameters can affect the model's 
generalizability [13]. Additionally, the model can 
considerably adapt to the domain data, leading to 
overfitting during fine-tuning [30].  

 
To address this problem, researchers have 

proposed a novel regularisation during further pre-
training through self-distillation, where a student and 
teacher model was used. Lee et al. [30] introduced a 
self-distillation model, where a pre-trained model is 
further pre-trained using masked auto-encoding 
objective on domain-specific data to serve as a 
teacher to the student model fine-tuned for 
downstream tasks. In similar vein, Gu et al. [11],  
introduced a distillation model aimed at extracting 
ADEs. This approach utilizes GPT-3.5 as the 
instructive model to generate labelled sentences 
from unannotated data through self-supervised 
learning, which are then used to train the student 
model, PubMedBERT. 

 
Incorporating domain-specific knowledge 

into a general domain model through further pre-
training or self-distillation perturbs the initial 
optimal parameters of the general domain model. 
This can possibly lead to catastrophic forgetting 
[13]. Researchers have developed new models from 
scratch from biomedical and clinical tasks to 

mitigate the challenge. Recently, Yang et al. [31] 
developed a GatorTron model with about 8.9 billion 
words from electronic health records documents 
from UF Health 82 billion, MIMIC III 0.5 billion, 
PubMed 6 billion, and Wikipedia 2.5 billion. The 
GatorTron model is significantly improved over 
other models on most popular biomedical and 
clinical NLP tasks. However, this model was 
exceptionally trained from localised generated data 
from the UF health centre and general knowledge 
from Wikipedia and PubMed publications. 

 
With the increased availability of globally 

standard knowledge bases, such as SNOMED-CT 
and MedDRA terminologies, these important 
thesauri have not been utilised to develop models 
tailored for medically related downstream tasks such 
as ADE named entity recognition and relation 
extraction, even though these two ontologies are the 
product of a carefully selected and comprehensive 
set of terminologies for clinical natural language text 
and electronic health record systems [32]. To address 
this problem, this paper proposed a new transformer 
architecture with about 138 million parameters 
initiated with pre-training on medical terminology 
using self-supervised learning with unlabelled data. 
The model is then fine-tuned for the ADE multi-task 
learning problem on two public datasets. 

 
3. METHODOLOGY 

 
This section details the proposed 

SNOMEDTM model, the pre-training and fine-
tuning datasets, and the detailed architecture of the 
model. The model pre-training, fine-tuning, and soft 
prompt-tuning procedures for ADE extraction are 
elaborated. 

 
3.1 Pre-training Dataset 
3.1.1 SNOMED-CT and MedDRA 

terminologies 
 
The Systematized Nomenclature of 

Medicine Clinical Terms (SNOMED CT) was 
released in 2002 by SNOMED International with 39 
member countries. It combines two medical 
nomenclatures, the SNOMED Reference Term and 
Clinical Terms Version 3. It is one of the globally 
accepted comprehensive multilingual medical 
thesauri with over 350,000 medical concepts and 
over a million relations between terms. The 
knowledge base consists of 3 main components: the 
concepts, concept descriptions and the relationships 
between concepts [2]. This paper processed the 
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concepts and descriptions of the ontology 
component as the text data to pre-train the model. To 
access the thesaurus, the authors subscribed to 
nonprofit educational use of the terminologies upon 
signing a licence agreement from the National 
Library of Medicine (NLM)1. 

The Medical Dictionary for Regulatory 
Activities (MedDRA) is a standard medical 
terminology for drug monitoring and pharmaceutical 
companies developed by the Internal Conference on 
Harmonisation (ICH). It is available and translated 
into various languages for easy access to all nations. 
It comprises bidirectional hierarchical structures of 
five tiers for easy search and exploration using the 
MedDRA browser. At the top are 26 system organ 
classes (SOCs), followed by 332 high-level group 
terms (HLGTs), which is then followed by 1688 
high-level terms (HLTs). The single medical concept 
Preferred Terms (PTs) contains over 24,000 terms. 
Finally, the lowest-level term comprises over 70,000 
pharmaceutical and adverse drug events-related 
terminologies [33]. This study utilised MedDRA 
version 26.0 to extract the terminologies. The 
terminologies were accessed upon subscribing as a 
nonprofit organisation for educational research from 
the MedDRA organisation2. 
 
3.1.2 Synthesized data 

 
PLMs work best with large amounts of 

pretraining data. This gives the model more to learn 

the vocabulary and construct of a given domain 
language. Due to the limited amount of data in the 
SNOMED-CT and MedDRA terminology 
knowledge bases, synthetic data was created to 
augment the pre-training dataset. The model 
consisted of a deep learning architecture based on 
Long Short-Term Memory (LSTM) to generate text, 
which has been proven effective in handling 
sequential data like narrative texts and medical 
concepts. The synthetic data was generated by 
training the LSTM model on a large corpus of 
medical texts from SNOMED-CT and MedDRA 
terms and their descriptions. The trained model is 
then used to synthesise new sentences word by word 
that mimic the style and content of the original data 
as expressed in Equation 1 below: 

 
yt+1 = argmax σ(Whht+Wxxt+b)                       (1) 
 
where yt+1 is the predicted next word at time t, ht is 
the hidden state of the LSTM at time step t, xt is the 
current input embeddings, W is the learned weight, 
and b is the bias. The σ is the softmax function that 
converts prediction to probability. The synthetic data 
was combined with the original data to create a 
larger, more diverse dataset for pretraining the 
model. The procedure for generating the synthetic 
data is outlined in Algorithm 1, presented in Figure 
1. 
 

 

 
1 
https://www.nlm.nih.gov/healthit/snomedct/internat
ional.html 

2 https://www.meddra.org/basics 
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Figure 1: Procedure for generating the synthetic data 
 

The synthetic data was generated by 
training the LSTM model on a large corpus of 
medical texts from SNOMED-CT and MedDRA 
terms and their descriptions, one knowledge base 
at a time. The synthesised data generated and 
utilised to complement the original pre-training 
data constitute 10% of the overall data. During the 
synthesis, different seed values were utilised to 
generate new input sequences of certain word 
lengths. However, during data synthesis, the 

models were observed to be biased in generating 
repeated terms. A method was developed to detect and 
remove consecutive repeating words in the generated 
sequence to assess and mitigate the LSTM-based 
model bias in synthesizing the data. To evaluate the 
effectiveness of the synthesized text, two metrics were 
employed. The word error rate (WER) and BLUE 
score was calculated between a selected reference text 
and generated text. Table 1 below shows sample 
validation examples. 

Table 1: Sample evaluation of the synthesized dataset. 

Reference text (real text) Seed text Generated text Evaluation 
“Compounding refers to 
products that are usually made 
by a pharmacist or physician” 
” 

“Compounding 
refers to”  

“Compounding refers to 
products that are made by a 
pharmacist and drug 
company” 
” 

WER=0.3076 
BLEU=0.5783 

“Neoplasm of esophagus” “Neoplasm of”  “Neoplasm of esophagus” WER=0.0000 
BLEU=1.000 

“Neoplasm of anterior aspect 
of epiglottis” 

“Neoplasm of 
anterior”  

“Neoplasm of anterior 
abdominal esophagus of” 
 

WER=0.5000 
BLEU=0.2060 

Algorithm 1: Procedure for generating synthetic pre-training data. 
1.    Input: T: SNOMED-CT, MedDRA terminologies, Model: LSTMmodel 
2.              seed_text, seq_length, tokenizer 
3.    Output: Synthesized text, trained_model: Trained LSTM model 
4.    text_sequence   PreprocessText(T)                  tokenize the text and input sequences 
5.      x_train, y_train  generated_text   []                        initialize lists 
6.    for seq ∈ text_sequence do: 
7.           for i in range (seq_length, len(s)) do: 
8.                   x_train  seq[i-seq_length:i]                  formulate x features, y target. 
9.                   y_train  seq[i] 
10.            end for 
11.   end for 
12.   trained_model  TrainModel (Model, x_train, y_train)           train the LSTM model shown in Eq.1 
13.    for _ in range(seq_length) do: 
14.              tokenized_seed_text  tokenizer(seed_text) 
15.              word_g  zero-initialize word 
16.              predicted  trained_model(tokenized_seed_text)        predict the following words from seed text 
17.              for word, index from tokenizer.word_index.items()   
18.                          if word == predicted                 
19.                                  word_g  word                  sample the next words from the predictions 
20.                                  seed_text.append (word)  
21.                          end if 
22.                        generated_text  seed_text 
23.             end for 
24.             synthesized_text  generated_text 
25.   end for 
26.   return synthesized_text, trained_model 
27.   end procedure 
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“Chronic cold agglutinin 
disease associated with B-cell 
neoplasm” 

“Chronic cold 
agglutinin”  

“Chromic cold agglutinin 
disease due another virus 
infection”  

WER=0.6450 
BLEU= 0.4464 

“Abuse for the purposes of 
term selection and analysis of 
MedDRA-coded data, abuse is 
the intentional, non- 
therapeutic use by a patient or 
consumer of a product” 

“Abuse for the 
purposes of 
term selection 
and analysis of 
MedDRA-
coded data,”  

“Abuse for the purposes of 
term selection and analysis of 
MedDRA-coded data, abuse is 
the intentional, non- 
therapeutic by use  a patient or 
consumer to of take a drug 
product” 

WER=0.1923 
BLEU= 0.6856 

“medication error refers to the 
when a patient is prescribed, 
dispensed, or administered a 
drug that is documented in the 
drug label to cause an expected 
adverse event with patient’s 
consumed food” 

“medication 
error refers to 
when a patient 
is” 

“medication error refers to the 
situation when a patient is 
prescribed, dispensed, or 
administered a drug that is 
documented in the drug label 
to cause hypersensitivity 
adverse reaction to in the 
patient”  

WER= 0.2424 
BLEU= 0.7298 

Note: A lower value of WER indicates better performance. 

Certain factors such as patient privacy and 
confidentiality, bias and fairness in data, validity, and 
reliability, among others, are essential when 
synthesising clinical data or using real-world clinical 
data for knowledge incorporation into models. 
However, the SNOMED-CT and MedDRA 
terminologies utilized in this research are completely 
anonymised and de-identified by the organisations in 
charge of the thesauri terminologies [2], [33]. The 
knowledge base does not contain any personal 
information of patients. To this end, the synthesised 
augmented data does not contain patients’ personal 
or private information, making this research free of 
privacy concerns. Furthermore, the most observed 
bias during the data synthesis involves repeated 
duplication of medical terms. The problem was 
mitigated by removing consecutive repetition of the 
words. Synthesized data generated are qualitatively 
evaluated using BLEU and WER metrics before 
being incorporated into real-world data and human 
observation. Nonetheless, it is acknowledged that 
the synthesised data that constitutes only 10% of the 
overall pretraining lacks comprehensive 
representativeness of the original real-world data 
samples. However, due to the size limitations and its 
resemblance to actual data, the risks associated with 
the data may not affect the applicability and 
generalizability of the SNOMEDTM model to real-
world ADE extraction. 

 
3.2 SNOMEDTM Architecture 

 
The SNOMEDTM is a transformer-based 

encoder model composed of multi-head self-

attention layers and fully connected layers with layer 
normalisations. The transformer's self-attention 
makes it powerful in providing the contextual 
representation of each token in the input sequence 
[34]. The model's architecture comprises 16 
transformer layers; for each layer, there are 16 
attention heads, 768 hidden units, and a feed-forward 
size of 2024. The SNOMEDTM is made up of 138 
million parameters. The transformer model takes the 
embedding vectors as input. Two embedding vectors 
are generated for each token for this model: the token 
embedding vectors and the token position 
embedding vectors. The token embedding vectors 
are vector representations generated for each token. 
The transformer includes an additional special 
classification token known as [CLS] at the beginning 
of the input sequence and the separator token [SEP] 
to designate the end of a given sequence. This paper 
adopts the transformer embedding layer to define the 
word embedding, as shown in Equation 2. The 
positional encoding was added to the word 
embedding to determine the exact position of each 
word in the input sequence. These enable the self-
attention module of the transformer to emphasise 
each token based on its context for each sequence. 
The position encoding is defined in Equations 3 and 
4 for even and odd positions, respectively. The final 
vector encoding is obtained by concatenating the two 
embedding vectors, as shown in Equation 5. Figure 
2 shows the overall architecture and the pre-training 
settings. 

  
We = E(Vsize . dmodel)         (2) 
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where E is the embedding layer, Vsize is the 
vocabulary size, and dmodel is the dimension of the 
model [34]. 
 
𝑃𝑒(𝑝𝑜𝑠, 2𝑖) = sin (

௣௢௦

ଵ଴଴଴଴
మ೔

೏೘೚೏೐೗ൗ
)        (3) 

𝑃𝑒(𝑝𝑜𝑠, 2𝑖 + 1) = cos (
௣௢௦

ଵ଴଴଴଴
మ೔

೏೘೚೏೐೗ൗ
)       (4) 

Eemb =concat(We , Pe)          (5) 
 
The overall transformation of an input sequence (X) 
by a transformer encoder model can be expressed in 
the following equations [34]:  

 
Q = XWQ, K = XWK , V = XWV        (6) 
 
Q, K and V are the query, key and value matrices 
obtained from the linear transformation of input 
embeddings using multi-head attention (Eq. 7), and 
W is the learned weight. 
 
MultiHead(Q,K,V) = concat(H1, H2….H16)WO   (7) 
 
is the concatenation of linear transformation heads 
(16 for SNOMEDTM) where: 
 
Hi = Attention(QWi

Q, KWi
K, VWi

V)       (8) 

Attention(Qi, Ki, Vi) = SoftMax(
ொ௄

√ௗ௞

்
)V      (9) 

 
where dk is the hidden size (768 for SNOMEDTM).  
The residual connection is then performed, which 
involves adding up the input and the output for a 
given layer. The concatenated output is then 
normalised. The normalisation rescales the output to 
have zero mean and unit variance to stabilise them 
and speed up training as expressed in Equation 10: 
 
LN(xi) = 

௫೔ିఓ

ඥఋమିఌ
• 𝛾 + 𝛽                     (10) 

 
Where μ is the mean, δ is the variance of the input 
(xi), and γ & β are learnable parameters and ε is a 
constant for numerical stability. The output of multi-
head attention is normalized in Equation 11: 
 
Xt = LN(X + MultiHead(Q,K,V))                    (11) 
 
and the two linear transformations with activation by 
feed-forward layer are as in Equation 12: 
 
FFN(x) = GELU(XtW1+b1) W2+b2       (12) 
 
followed by output normalisation in Equation 13: 
 
Xout = LN(Xt+FFN(x))       (13) 

 

 
Figure 2: The architecture consists of an input sentence that is tokenised into word pieces and embeddings generated. 
The model has 16 attention heads, 16 encoder layers and 768 embedding sizes. 
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3.3  SNOMEDTM Pre-training 

The SNOMEDTM was pre-trained from 
scratch using the masked language modelling 
objective proposed in BERT [35]. Masked language 
modelling is a self-supervised learning technique 
where certain parts of the input tokens are randomly 
masked, and the model is trained to predict these 
masked tokens. The 15% of the input tokens were 
randomly masked and used the model to predict the 
masked tokens. The model was trained for 200 
epochs; since the dataset is small, this will give the 
model more chance to capture the syntax and the 
semantics of the terminologies. An early stopping 
condition was applied during the training. The 
training stops if there are three consecutive increases 
in the perplexity of training validation, indicating 
that the model is overfitting or is performing 

suboptimally. The larger the perplexity, the less 
confident the model is in its prediction [36]. The 
model reaches its optimal stage at about 12 hours. 
The observed perplexity does not increase or 
decrease much, with an average of 2.00. The formula 
for calculating perplexity is shown in Equation 14. 

 

Perplexity = exp (−
ଵ

௡
෌ log 𝑃(𝑤௜))

௡

௜ୀ଴
           (14) 

 
where n is the number of words in the test set, and 
P(wi) is the probability of the ith word assigned by the 
model. The overall flowchart of the pretraining is 
shown in Figure 3a below. Figure 3b below shows 
the combined curves for the model pretraining 
accuracy and loss for training and evaluation. 
 

 

Figure 3:. SNOMEDTM Pre-Training And Fine-Tuning Process. (A) SNOMEDTM Pre-Training Flowchart. (B) Pre-
Training Accuracy And Loss Curve. (C) Fine-Tuning Loss Curve For The N2c2 2018 Dataset. 

 
 
3.4  SNOMEDTM Fine-tuning 

The proposed model was fine-tuned on 
multi-task ADE-concept extraction and relation 
extraction as a dual sequence labelling on popular 
datasets: TAC 2017 and n2c2 2018.  

  

During dual sequence labelling, the ADR-
concept mention identification and ADR-concept 
attribute relation identification was done. ADR-
concept identification classifies input sequences as 
positive (with relations) or negative (without 
relations). ADR-concepts attribute relation 
identification identifies attributes and relationships for 
positive concepts. An extended BIO tagging scheme 
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[10] manages discontinuous mentions and sub-
words, with additional tags (DB, DI) for 
discontinuous concept beginning and inside and 
“X” for tokenizer-generated sub-words. 

 
To implement multi-task transfer 

learning, the system adopted the MT-DNN 
framework [37] to simultaneously model the 
output of dual sequence labelling, promoting 
parameter sharing between the two related tasks. 
The framework is made up of three separate layers. 
The input layer receives the input sequences 
generated for each task and normalises them to the 
same length by padding shorter sequences or 

truncating longer sequences. The shared layer utilizes 
the pre-trained model to generate the contextual 
representation of the input sequence. This paper 
employs the proposed model SNOMEDTM 
incorporated with prior medical knowledge from 
standard medical terminology to develop the shared 
representation for the two related subtasks of ADE-
source mention and ADR-source mention attribute 
relation extraction tasks. The output generated is then 
passed to the final classification of fully connected 
layers with SoftMax to obtain the final prediction for 
each token in the sequence. Figure 4 shows the 
overview of the fine-tuning architecture of the system. 

 

 
Figure 4: Fine-Tuning Takes An Input Sequence And Generates A Shared Representation For The Two Tasks By 

SNOMEDTM With A Task-Specific Head For The Final Classification. 
 

3.5 SNOMEDTM Soft Prompt Tuning 
 

To further test the capabilities of the 
SNOMEDTM model, the model was tuned based 
on the proposed multi-task soft prompting with 
prompt feature selection method [15] on the n2c2 
2018 dataset. Multi-task learning involves 
modelling two or more related downstream tasks 
with different task-specific objectives. Utilizing a 
single holistic prompt to control the adaption of the 
LLMs may result in biased treatment of one of the 

tasks involved in the shared modelling. To deal with 
the problem, a multi-prompt-based soft prompting 
method was proposed as shown in Figure 5. Sample 
example input for the two tasks is shown in Figure 6, 
presented in a two-sequence labelling task, one for 
source mention labelling and the other for mention 
attribute and relation labelling. Two prompt templates 
were initialized, one for each task. For instance, the 
task 1 prompt: “Identify drug mentions and label each 
token in the sequence”, and the task 2 prompt: 
“Identify drug attributes and relation, label each token 
in the sequence”. The textual prompts were then 
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transformed into trainable embeddings. Firstly, the 
text was tokenized using a pre-trained tokenizer 
and then the embedding vector of both the input 
and the soft prompt was obtained using a pre-
trained model embedding layer. Based on task 
type, the soft prompt was then prepended as a 
prefix to the input embedding. 

 
However, researchers have argued that 

some prompt tokens hurt the performance of the 
LLM's downstream fine-tuning [38]. This paper 

applied a prompt token feature selection based on 
feature importance calculated using the transformer's 
attention mechanism to select the top important 
prompts to be prepended to the input sequence as 
trainable parameters to tune the model. 
 
The overall procedure for multi-task ADE extraction 
using multi-prompt soft tuning is presented in 
Algorithm 2 in Figure 7. 
 

 

 
Figure 5: Soft Prompt Tuning Procedure. 
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Figure 6: Example Of Task 1 Input And Task 2 Context 

 
Figure 7: Overall Procedure For Soft Prompt Tuning Of SNOMEDTM On ADE Extraction. 

Algorithm 2: ADE extraction procedure with multi-prompt soft tuning  

1. Input: S: Clinical text sentences, Model: Pre-trained model, P: Prompt templates 
2.     Output: M: a set of tuples of mentions, R: Triplets of relations 
3. M ← [], Initialize list for a set of tuples of mentions.  
4. R ← [], Initialize list for a set of triplets of relations. 
5. for s ∈ S do: 
6.         task_id ← s[task_id]              gets the id of the current task 
7.         P1  ← SelectPrompt(P, task_id) 
8.         Ptokenized  ← tokenize(P1) 

9.         p
emb

  ← GetEmbedding(p
tokenized

) 

10.         Iemb  ← GetEmbedding(s) 

11.         sinput  ← SelectTopPromptTokens(Iemb, pemb ) 

12.         s
expanded 

  ← Expand(s[att-mask], s[token-type-id], s[label], len(s
input

))                     expand labels 

13.         task1 ←Model(sexpanded)                feed into the Model 

14.         Msource ← ExtractAllSourceMentions(task1) 

15.         for (m, t) ∈ M
source

 do:  

16.                        m_tuple ← <m, t>            m for mention, t for type of mention 
17.                        M.append(m_tuple)              add source mention to set of mentions 
18.         end for 
19.         Mp_source, C ←GenerateContextFromPositiveSourceMention(Msource, s) 

20.         for (Msp, tsp) ∈ Mp_source & c ∈ C do: 

21.                       task_id ← c[task_id]              get the id of the current task 
22.                       p2  ← SelectPrompt(P, task_id) 
23.                       ptokenized  ← tokenize(p2) 

24.                       pemb  ← GetEmbedding(ptokenized) 

25.                       cemb  ← GetEmbedding(c) 

26.                       cinput  ← SelectTopPromptTokens(cemb, pemb ) 

27.                       cexpanded   ← Expand(c[att-mask], c[token-type-id], c[label], len(Cinput)) 

28.                       task2 ←Model(cexpanded)                    feed c into the Model to generate a sequence 

29.                       Mattribute, Re ←ExtractAttributesMentionAndRelation(task2) 

30.                       for (ma, ta) ∈ Mattribute and r ∈ Re do: 

31.                                 m_tuple ← <ma, ta> 
32.                                 M.append(tuple)                 add source mention to the set of M 
33.                                 r_triplet ← <msp, r, m> 
34.                                 R.append(r_triplet)                 add relation triplet to the set of R 
35.                       endfor 
36.         end for 
37.    end for 
38.    return M, R             Return set of tuples of mentions and triplets of relations 
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4. RESULTS 
 

This section discusses the experiments 
conducted and the results obtained. First, the 
section elaborates on the details of the dataset used 
to fine-tune the model, followed by evaluation 
metrics employed to gauge the model 
performance. Next is the detailed experiment setup 
and the results for the traditional fine-tuning and 
soft prompt tuning of the proposed model on the 
TAC 2017 and n2c2 2018 datasets. The section 
further present experimental results on the ADE 
corpus dataset for both sequence classification and 
relation classification tasks. 

 
4.1 Fine-tuning Datasets 

 
The TAC 2017 [5] dataset consists of 200 

drug labels in XML format. Of these, 101 labels 
are used for training, and 99 are reserved for 
testing. The primary entity in this dataset is the 
ADR entity, which has five attributes: Animal, 
Drug Class, Factor, Negation, and Severity. 
Additionally, the dataset includes three relation 
types: Effect (linking severity to ADR), 
Hypothetical (linking animal, drug class, or factor 
to ADR), and Negated (linking negation or factor 
to ADR). The second dataset is from the n2c2 2018 
Adverse Drug Events extraction challenge [6]. It 
includes annotations for eight attributes: strength, 
form, dosage, frequency, route, duration, cause, 
and ADE, all linked to a drug entity. The model 
was trained and evaluated using the official splits: 
202 records for testing and 303 for training. 
Further experiments were done on the ADE corpus 
dataset [39] to train and evaluate the model. This 
dataset includes 5,063 drugs, 5,776 adverse 
effects, and 6,821 relationships between them, all 
derived from 4,272 unique samples. 

 
4.2 Evaluation Metrics 

 
To measure the performance of 

SNOMEDTM on pre-training masked language 
modelling tasks, this research used the perplexity 
metric, as shown before in Equation 14. Perplexity 
is an evaluative metric that estimates the 
effectiveness of a probability model in making 
predictions for a given sample. It quantifies the 
level of uncertainty inherent in a model's ability to 
predict masked text. The system was evaluated 
using official scripts from the 2017 TAC and n2c2 
2018 NLP challenges, with micro-average 
precision (Equation 15), recall (Equation 16), and 

F1-score (Equation 17) as the primary metrics for fine-
tuning tasks and soft prompt tuning. Additionally, 
TAC 2017 employs an exact matching score, where a 
mention is deemed correct if its boundary and type 
match the gold mention, and a relation is correct if 
both the relation type and related mentions are 
accurate. 

 

micro-precision = 
∑ ்௉

∑ ்௉ ା ி௉
                        (15) 

micro-recall = 
∑ ்௉

∑ ்௉ ା ிே
                        (16) 

micro-F1-score = 2 ∗
௠௜௖௥௢ି௣௥௘௖௜௦ ∗ ௠௜௖௥௢ି௥௘௖௔௟௟

௠௜௖௥௢ି௣௥௘௖௜௦௜௢௡ା௠௜௖௥௢
 (17) 

 
where TP is the number of true positives, FP is the 
number of false positives and FN is the number of 
false negatives regarding prediction of ADE entities 
and relations. 
 
4.3 Experimental Setup  

 
The implementation of the proposed system 

was carried out in two phases: pre-training and fine-
tuning. A maximum sequence length of 512, batch size 
8, the BERT model type, and a learning rate of 3e-5, 
was used. The masked language modelling probability 
to mask the tokens was set to 0.15. The experiment 
was performed on a server with a single GPU Tesla 
V100 CUDA version 11.7 and a 16-core CPU 
computer. 

 
Similarly, during the fine-tuning task, a 

maximum sequence length of 512 and a batch size of 
8 were used. The training was run for 20 epochs for 
the TAC 2017 dataset and 30 epochs for the n2c2 2018 
dataset. A 10% of the training set to validate the model 
and select the best model for inference, utilising the 
test set for the final evaluation. 

 
A major persistent issue in LLM adaptation is 

possible catastrophic forgetting. Catastrophic 
forgetting usually occurs when there is too much 
perturbation in the initial pre-trained parameters of the 
model [13]. Approaches that include regularization 
techniques, early stopping conditions when there is a 
consecutive increase in the model training loss, and a 
minimal learning rate value during model adaptation, 
can be employed to minimise its occurrence. In 
addition, catastrophic forgetting can be mitigated by 
saving model updates at various checkpoints. This 
helps determine the model state that best generalises 
across tasks and allows the model to be recovered and 
reverted to its best state whenever catastrophic 
forgetting occurs. Recently, approaches such as soft 
prompt tuning [40], [41], adapter [42] and LORA [43] 
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techniques have been developed for adapting LLM 
models to downstream tasks where only the 
additional prompts or modules specific to the task 
are updated during training, leaving initial pre-
trained parameters fixed. To address the issue, this 
paper employed an early stopping condition during 
pretraining to stop the model training and save the 
best model parameters when the validation loss 
increased consecutively for some experimented 
number of times. Similarly, at the fine-tuning 
phase, a weight decay of 0.01, a small learning rate 
of 5e-5, and dropout of 0.1, as well as saving the 
model state at intervals of 500 updates to mitigate 
possible overfitting and catastrophic forgetting as 
shown in Figure 3c. Furthermore, the study 
experimented with soft prompt tuning approaches 
(frozen and unfrozen); the result is shown in Table 
4. 
 
4.4  Experimental Results 

This research demonstrates the potential 
of utilising a standard globally accepted medical 
domain knowledge base to incorporate prior 
medical knowledge into the transformer model 
before fine-tuning it on a downstream ADE 
extraction task. The proposed pre-trained model on 
SNOMED-CT and MedDRA terminology was 
used to generate a contextual vector representation 
for the multi-task ADR named entity exaction and 
relation extraction tasks. The shared representation 

is then passed to the individual task-specific classifier 
head through softmax to predict the final token class. 
Table 2 and figure 7 shows the results obtained in the 
TAC 2017 dataset, in comparison with other 
transformer-based models (BERT, BioBERT, 
BlueBERT, RoBERTa and SCIBERT) experimented 
with by [10], and DeepCADRME, proposed by [44]. 
These results indicate the strength of the task-adaptive 
SNOMEDTM model over the compared domain-
agnostic and domain-specific PLM models in 
identifying ADR instances. Similarly, Table 3 shows 
the results obtained in the n2c2 2018 dataset compared 
with the state-of-the-art JNRF system proposed by 
[45]. These demonstrate the superiority of the 
transformer-based model over the foundational model 
based on the traditional Fourier network. 

 
Moreover, Table 4 shows the results of soft 

tuning of the SNOMEDTM model, this study 
compared its performance with the system proposed 
by [14] for both frozen and unfrozen models during 
training. Despite the larger size of GatorTron-based 
compared to SNOMEDTM, the ADE-related 
knowledge incorporated in the SNOMEDTM model 
improves its performance on ADE extraction over 
GatorTron-base for the unfrozen model.  
SNOMEDTM is a transformer-based model; the 
model's pre-trained weights can be used for further 
fine-tuning on downstream clinical NLP for transfer 
learning. 

 
Table 2: TAC 2017 Concept And Relation Extraction Results Compared With Other Transformer-Based Models (Fine-

tuning).  
Type Metric  

(Overall) 
BERT BioBERT  BlueBERT  RoBERTa  SCIBERT  SNOMEDTM  

Concept P  
R  
F1 

86.14  
81.64  
83.83  

86.63  
82.99 
84.77  

86.52  
81.31 
83.83  

85.35 
81.55  
83.41  

87.90 
83.39  
85.59  

88.91 
84.85  
86.83  

Relation P  
R  
F1 

53.33 
47.24 
50.10  

56.18  
48.74  
52.19  

56.68 
48.55 
52.30  

52.51  
45.60  
48.81  

58.05 
49.00  
53.15  

52.36  
52.92  
52.63  

Figure 7 depicts the distribution of overall F1 
scores compared to TAC 2017 for concept and 
relation extraction tasks. The SNOMEDTM 

outperformed all the compared systems for concept 
extraction and is the second-top model for relation 
extraction.
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Figure 7:  The Distribution Of F1 Scores Of The SNOMEDTM Compared To Other Transformer-Based Models On The 
TAC 2017 Concept Extraction Relation Extraction Task. 

 
Table 3: Concept And Relation Extraction Results On N2c2 2018 Dataset Compared With The JNRF System (Fine 

Tuning). 
  

Type Metrics (Overall) JNRF SNOMEDTM 
Concept P 

R 
F1 

92.95  
84.76  
88.67 

93.11 
84.81 
88.77 

Relation P 
R 
F1 

90.97  
72.08  
80.43 

88.29 
80.29 
84.11 

 
Table 4: Comparison Of SNOMEDTM Soft-Prompting On N2c2 2018 Adverse Drug Events Extraction Dataset For 
Concept And End-To-End Relation Extraction With A Clinical Transformer-Based Model, And TAC 2017 Results. 

 
System Dataset Soft Prompt Unfrozen Model          Soft Prompt Frozen Model  

P                 R                 F1              P                 R           F1 

Concept 
GatorTron base n2c2 2018 - - 91.12 - - 86.59 

SNOMEDTM n2c2 2018 93.78 90.62 92.05 96.58 40.76 57.89 

TAC 2017 89.01 84.93 86.92 79.40 65.07 71.53 

Relation 
GatorTron base n2c2 2018 - - 83.33 - - 79.21 
SNOMEDTM n2c2 2018 88.40 81.10 84.59 88.44 19.59 32.08 

TAC 2017 52.73 52.90 52.81 47.61 12.89 20.30 

5. DISCUSSION 
 

This paper reports on the proposed new 
transformer-based model SNOMEDTM, which is 
pre-trained on standard medical terminologies 
from SNOMED-CT and MedDRA thesauri. The 

work fine-tuned the model on multi-task ADE 
extraction tasks on two publicly available datasets and 
compared the proposed system with state-of-the-art 
systems. This section starts by comparing the 
performance of the proposed model with that of other 
systems, then analyses the effect of utilising medical 
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concepts to provide prior medical knowledge to the 
model tailored for a downstream medical task like 
ADE extraction on the model's overall 
performance.  

 
5.1 Performance Benchmarking 

 
This paper compared SNOMEDTM's 

performance with state-of-the-art systems for ADR 
extraction on the TAC 2017 challenge (best run 
only) using the official evaluation script provided 
by the organisers, as shown in Table 5. From the 
table, the BUPT-PRIS fifth-ranked system was 
developed based on a Bi-LSTM-CRF with 
character and word embedding for entity 
annotation and an adversarial-based training 
method for CNN model relation annotation. The 
system achieved an F1-score of 18.29% for 
concept extraction and 0.55% for end-to-end 
relation identification. The fourth-ranked is the 
MC-UC3M system; the authors utilised some 
medical knowledge base as a look-up dictionary to 
extract mentions with SVM for relation 
classification. The system achieved an F1-score of 
60.01% for concept extraction and 10.67% for end-
to-end relation identification. The system, PRNA-
SUNY, ranked third, was developed based on a 
conditional random field (CRF) for concept 
extraction and a rule-based approach based on 
MetaMap for the end-to-end tasks. The IBM-
Research system’s second-ranked system was on 
Bi-LSTM and Attention-Bi-LSTM for extracting 
concepts and relations while handling disjoint 
mentions. The UTH-CCB is the top-ranked system 
at TAC 2017 ADR extraction challenges for 
concept and end-to-end relation identification. The 
system is based on combined rules-based 
techniques to extract mentions, and Bi-LSTM-
CRF was used as two cascade sequence labellers 
for end-to-end ADR relation extraction tasks. The 
system achieved an F1-score of 82.41% for the 
concept extraction task, which is about 64.12% 
different from the fifth-ranked system. Similarly, 
the system obtained 49.00% for the end-to-end 

relation extraction task, a difference of 48.45% 
compared to the fifth-ranked system.  

 
This paper further compared the performance 

of the system with other state-of-the-art systems that 
have shown to outperform all the top-ranking systems 
on the TAC 2017 dataset. These systems are based on 
an improved deep learning architecture-based 
transformer model. The DeepCADRME systems 
proposed an N-level sequence modelling to handle 
complex ADR mentions such as discontinuous, nested, 
and overlapping ones. The system adopted the 
biomedical-based transformer model BioBERT to 
generate the contextual representation used at various 
system levels. The system achieved 85.35% for 
concept extraction, 2.94% higher than the challenge's 
top-ranking system. El-allay et al. [10] proposed the 
MTTLADE system, a multi-task transfer learning-
based dual sequence modelling method based on large 
language models. The system fine-tuned five models: 
SCIBERT, BERT, BioBERT, BluBERT, and RoBERTa 
for ADR concept and end-to-end relation extraction 
tasks. The system achieved 85.59% for concept 
extraction, 0.24% higher than the DeepCADRME 
system. Similarly, the system achieved 53.15% for 
end-to-end relation extraction, which is 4.15% higher 
than the top-ranking system in the challenge. The 
study further compares the performance of 
SNOMEDTM with the NeuroADR method proposed 
by [46], the result is shown in Table 5. 

 
The proposed system in this study, which 

utilises a pre-trained model based on globally accepted 
medical terminologies to generate a shared 
representation of the input sequence, demonstrated its 
superiority with an F1 score of 86.83%, 1.24% higher 
than the MTTLADE system for concept extraction. It 
also achieves an F1 score of 52.36%, 3.36% higher 
than the top-performing systems for the TAC 2017 
challenge and 0.79% less than the MTTLADE for the 
relation extraction task. The consistent improvement 
shown by the model across the TAC 2017 dataset 
indicated the effectiveness of the medical knowledge 
to the model. 
 
 
 

Table 5: Comparison Of SNOMEDTM Fine-Tuning On TAC 2017 With Other Systems For ADR Concept And End-To-
End Relation Extraction Tasks. 

 
System Concept Relation 

P R F1 P R F1 
SNOMEDTM (ours) 88.91 84.85 86.83 52.36  52.36  52.36  
NeuroADR [46] 82.45 80.63 81.53 42.05 35.64 38.58 
DeepCADRME [44] 85.45 85.24 85.35 - - - 
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UTH-CCB [47] 82.54 82.42 82.48 50.24 47.82 49.00 
IBM-Research [48] 80.90 75.30 78.00 48.13 32.54 38.83 
PRNA-SUNY [49] 77.71  63.90  70.13  50.48  22.36  30.99 
MC-UC3M [50] 54.79  66.33  60.01 10.41  10.95  10.67 
BUPT-PRIS [51] 40.47  11.81  18.29 0.97  0.38  0.55 

This paper further experimented with 
SNOMEDTM on the ADE-corpus dataset [39], 
and benchmarked with two state-of-the-art 
methods, the result is presented in Table 6. For 
SMAN [52], this span-based method built a multi-
model attention network to capture the interactions 
between spans and to model information like 
tokens and labels. It simultaneously extracted 
context and span position information. TpT-ADE 
[53] is a two-phase approach that fine-tunes the 
BERT model for ADE extraction. Firstly, the 
system identified and normalized the concepts to a 
standard UML knowledge base then the second 
phase utilizes BERT to process the text, and extract 
mentions then classify relations between them. 

Table 6: Comparison of SNOMEDTM against SMAN 
and TpT-ADE on ADE-corpus dataset. 

Method NER RE 
P R F1 P R F1 

SMAN  - - 90.
95 

- - 82.
25 

TpT-
ADE  

89.
24 

93.
2 

91.
17 

81.
91 

85.
83 

83.
82 

SNOME
DTM 

93.
68 

93.
63 

93.
68 

82.
37 

83.
32 

82.
84 

 

5.2  Ablation Study 
 

To further identify the contribution of 
different components of the proposed architecture, this 
study conducted two ablation studies. In the first 
instance this paper pretrained the SNOMEDTM 
complete architecture on only SNOMED-CT 
terminologies. This is because the terminology is 
larger (amounting to 65% of the total pretraining data) 
than the MedDRA and most of the MedDRA 
terminologies has corresponding mapping 
terminologies within the SNOMED-CT. SNOMED 
CT is the most extensive biomedical ontology, 
covering a diverse array of biomedical and clinical 
concepts, such as signs, symptoms, diseases, 
procedures, and social contexts [54]. In the second 
experiment, this paper created a base model called 
SNOMEDTM-base, this model consists of 12 encoder 
layers and 12 self-attention layers. The base model 
was also pretrained on the complete pretraining data. 
The experimental results shown in Table 7 on TAC 
2017 and n2c2 2018 for concept and relation 
extraction tasks, shows a drastic drop in performance 
for the two models compared to SNOMEDTM. 
Nonetheless, the model on SNOMED-CT does 
outperform the SNOMEDTM-base model revealing 
the impact of the medical terminology to the overall 
performance of the model for ADE extraction tasks. 

Table 7: Ablation experiment for different components of the SNOMEDTM architecture. 

Model Dataset Concept Relation 
P R F1 P R F1 

SNOMEDTM-
SNOMED-CT-
only 

n2c2 2018 87.84 82.18 84.92 76.20 69.21 72.54 
TAC 2017 80.57 75.14 77.76 43.85 31.78 36.85 

SNOMEDTM-
base 

n2c2 2018 89.36 69.85 78.41 74.84 58.04 65.38 
TAC 2017 67.26 63.82 65.49 34.20 29.85 31.88 

SNOMEDTM n2c2 2018 93.11 84.81 88.77 88.29 80.29 84.11 
TAC 2017 88.91 84.85 86.83 52.36 52.92 52.63 

 

5.2 Effect of Prior Medical Knowledge on the 
Model's Performance 
 

The SNOMEDTM model is comprised of 
16 self-attention heads and 16 encoder layers. 
Contextual representation generated by the model 

makes the proposed system more powerful in 
identifying complex situations within the dataset 
despite the limited pre-training data compared to large 
general models with trillions of training samples. The 
proposed model competed with large models and 
produced comparable results for the two tasks. This 
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capability shown by the model could be attributed 
to the influence of medical concepts utilised to pre-
train the model despite the smaller data size. 
Compared to other clinical-based large language 
models, most of the models are trained from 
locally generated domain data, but for 
SNOMEDTM, it uses globally standard medical 
terminology and specific terminology related to 
ADEs, which gave the model the ability to 
recognise tokens related to ADEs. 

 
It is acknowledged that clinical LLMs are 

limited; however, this research direction is recently 
gaining momentum. Researchers are developing 
more domain-specific models, for instance, 
BioGPT [25] from PubMed abstracts,  [28], and 
task-specific models like PharmBERT [17] from 
drug labels and GatorTron [31] from University of 
Florida health data, an LLM for clinical NLP.  

 
Nonetheless, SNOMEDTM pre-training 

data is from globally accepted medical 
terminology related to drug safety and adverse 
drug event cases. This innovative use of ADE-
related terminologies to develop the SNOMEDTM 
model tailored for ADE case extraction 
demonstrated the potential for mitigating the 
sparsity of clinical LLMs. The improved 
performance shown by the model on diverse and 
multiple clinical datasets of TAC 2017 (drug 
labels) and n2c2 2018 (discharge summaries) and 
on various tasks of named entity recognition and 
relation extraction over the baselines and 
benchmark models indicated its robustness and 
applicability to various clinical tasks. This paper 
plans to incorporate more clinical data sources to 
pre-train the model in future work. Additionally, 
this paper plans to transform the SNOMEDTM 
model into a multi-lingual and multi-modal model 
to address a broader range of clinical NLP tasks 
from multiple languages.  

 
This study focuses on improving ADE 

extraction from clinical textual documentation 
using LLM-based techniques. The research holds 
promise for supporting natural language 
processing and practical healthcare applications. 
The proposed task-adaptive SNOMEDTM model 
was pre-trained based on globally standardised 
ADE-related thesauri. Utilising SNOMED-CT and 
MedDRA knowledge bases to develop clinical-
based LLM language exemplified an innovative 
strategy for fully utilising this knowledge to 
develop a state-of-the-art foundational model for 
improving clinical outcomes. SNOMEDTM has 

shown its potential to advance clinical NLP 
significantly. Accurate extraction of ADE cases from 
unstructured clinical text is critical for improving 
patient care, enhancing clinical documentation and 
supporting drug safety surveillance. As a trained 
transformer-based model, SNOMEDTM can be fine-
tuned on various clinical NLP tasks and different 
tuning strategies in transfer learning settings, as 
demonstrated in this research. Thus, it can contribute 
to overall healthcare benefiting both patients and 
practitioners. 
 

The proposed model can serve as a 
foundation in addition to its immediate practical 
applications. It can be further scaled up using 
additional data sources or transformed into a 
multilingual or multimodal model for handling various 
clinical applications, thereby improving its 
generalizability in clinical domain-specific tasks.  
 
6. CONCLUSION AND FUTURE WORK 

 
This paper introduced a novel transformer 

architecture tailored for biomedical information 
extraction. The model comprises 138 million 
parameters pre-trained with around 15 million tokens. 
The pre-training was on standard global medical 
terminologies, the SNOMED-CT and MedDRA, to 
incorporate prior domain-related medical knowledge 
into the architecture. The pre-trained model is then 
fine-tuned to the multi-task adverse drug event 
extraction of mentions and relation extraction 
problems on two publicly available datasets provided 
by the TAC 2017 and n2c2 2018 challenges. The 
experimental results show that the proposed model 
showed promising results; despite the small number of 
pre-training datasets and model parameters compared 
to larger models like GatorTron, the proposed model 
outperformed many state-of-the-art models like BERT 
and GatorTron-base on ADE extraction. In future 
research, this paper intends to extend model capability 
by utilising more medical-related data from electronic 
health record systems, synthesising data, and 
exploring other pre-training objectives. SNOMED-CT 
and MedDRA terminologies are available in various 
languages and international standards. Pre-training the 
model on multilingual or multimodal objectives and 
on multiple data formats will improve its 
generalizability and applicability for various ADE 
extraction tasks in multiple languages. Additionally, 
this paper plans to employ a human-in-the-loop 
learning approach with domain experts to fine-tune the 
model. 
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It is important to acknowledge the 
potential limitations of the proposed techniques 
and areas where this research can be improved. 
The SNOMEDTM model was pre-trained on less 
data than other clinical LLMS like GatorTron. This 
limited data can affect the model's generalisation 
and acceptance for clinical NLP tasks. Moreover, 
LSTM-based model biases in data synthesis may 
influence the synthesised dataset and lack clinical 
representativeness. Additionally, the ethical 
implications of using synthesised data have not 
been adequately addressed. However, the research 
aimed to investigate the impact of two globally 
standard ADE-related terminologies in improving 
ADE extraction. The use of other data sources for 
data augmentation will be considered in future 
research. 

 
Knowledge bases such as Side Effect 

Resource (SIDER) exist that collect, normalize, 
and encode ADE-related terminologies [33]. Other 
agencies, such as DrugMAP [55], DrugBank, and 
VARIDT (Variability of Drug Transporter 
Database) [56], provide valuable information 
about drugs, drug research, and safety monitoring. 
In future research this paper plans to obtain more 
terminologies from these knowledge bases to 
expand the pretraining data to integrate more 
knowledge to SNOMEDTM. 
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