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ABSTRACT

Extraction of adverse drug event (ADE) mentions and their attributes and relations within electronic health
records are crucial for adequate pharmacovigilance studies and drug safety surveillance. Transformer-based
large language models (LLMs) have recently shown promising results in this research. However, clinical
LLMs are few and have a limited number of parameters. General LLMs are domain-agnostic models
developed for varying NLP tasks. However, due to the domain-specific nature of ADE extraction with
ambiguous, polysemous and infrequent entities, general LLMs lacking prior medical knowledge have been
observed to perform sub-optimally in handling these complex situations within clinical narrative documents.
Consequently, researchers further pre-train the general models on domain-related knowledge before
finetuning them for the downstream clinical tasks. Nevertheless, this approach is associated with several
risks. The model may overfit when the domain-specific data is small. In addition, catastrophic forgetting may
occur. To propose a new architecture tailored to extract ADEs called the SNOMED Transformer Model
(SNOMEDTM) pre-trained from globally standard medical knowledge bases. The process is in two phases:
A new transformer architecture was designed and pre-trained on the medical terminology-based
SNOMEDCT and MedDRA. The model is tuned using fine-tuning and soft prompt tuning for multi-task
ADE concept and relation extraction tasks. This study experimented with two tuning strategies, frozen and
unfrozen model parameters. The model’s performance was evaluated using the TAC 2017 and n2c2 2018
clinical challenge datasets. On TAC 2017, the proposed model outperformed the five compared transformer-
based models and the top five systems contributing to the TAC 2017 challenge for fine-tuning. On n2c2 2018,
the model outperformed GatorTron-base for soft prompting with unfrozen model and JNRF systems. This
research demonstrates the potential of incorporating prior medical knowledge into LLMs tailored for clinical
research.

Keywords: Adverse Drug Event, Prior

Pretraining.

Fine-tuning, Soft Prompt Tuning, Knowledge,

1. INTRODUCTION pre-marketing and post-marketing. Clinical trials

with volunteer patients were common during pre-

An adverse drug event (ADE) is any
unforeseen effect caused by using drugs during
patient care. Improving ADE cases identification
and extraction from clinical narratives improved the
overall patient medication and documentation. In
addition, detecting and monitoring drug safety is
crucial for pharmacovigilance studies conducted in

marketing but often lacked complete information
due to fewer volunteers and shorter trial durations
[1]. The traditional approach of the spontaneous
reporting system (SRS) at the post-marketing stage
falls short due to the problem of under-reporting by
the affected patient or the medical practitioners [2],
[3]. Fortunately, electronic health record systems
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(EHRs) have been widely used for patient record
documentation for a decade. Natural language
processing (NLP) approaches have proven to
improve the outcome of pharmacovigilance studies
in recent years by processing these documents [3].
Several NLP community challenges have been
organised to extract ADE and its related information
from clinical narrative text such as the Medication,
Indication and Adverse Drug Events (MADE 1.0)
2018 challenge [4], the Text Analysis Conference
(TAC) 2017 challenge [5] and the n2c2 2018
challenge [6]. Due to the dual nature of ADE
extraction, researchers have handled the task using
pipeline, joint task, or multi-task learning
approaches [7]. Concept extraction involves
identifying and extracting the main entities and their
attributes mentioned within the dataset. Relation
extraction involves identifying and extracting
relation types between extracted main entities and
their related attributes.

Recent methods for the ADE relation
extraction task often achieve a low Fl-score,
especially for the challenging ADE-reason and drug-
ADE relations [8] for several reasons, including the
limited number of pair samples within the training
dataset, the long distance between relation pair
entities in the text, and the ambiguous and
polysemous nature of medical terminology[9]. For
instance, in the following three examples from the
n2c2 2018 dataset extract, the “sedation” concept
was annotated differently as reason, drug, and ADE,
respectively, as shown below:

Example 1: “Patient had significant delay in
recovery of mental status, initially attributed to build
up of benzodiazepines used for sedation” [B-
Reason]

Example 2: “His extubation was initially limited
both by agitation requiring sedation and by
requirements for high PEEP to maintain
oxygenation.” [B-Drug]

Example 3: “Morphine 15 mg Tablet Extended
Release Sig: One (1) Tablet Extended Release PO
once a day as needed for pain: hold for sedation,
RR< 12” [B-ADE]

The traditional embedding models that do
not consider word context may generate the same
representations for the concept, leading to an
incorrect data representation of the input sequence.

Transformer-based models are pre-trained
Language Models (PLMs) trained on vast amounts

of unlabelled data through self-supervised learning.
General language models such as BERT and its
variants, Roberta [10], etc., and GPT [11] have been
fine-tuned for ADE extraction tasks. However, these
models are domain-agnostic, trained on data far from
the specific downstream clinical tasks and, as such,
may lack some commonsense knowledge of the
structures and patterns of language constructs for
practical ADE extraction. Recent studies have
proposed tackling the domain adaptation problem of
LLMs. The most notable is through further pre-
training of the general models on domain-specific
data. This process risks overfitting and catastrophic
forgetting, affecting the generalizability and transfer
learning capabilities of the model [12], [13].

Extracting ADEs from clinical documents
using domain-agnostic LLMs has shown sub-
optimal performance due to a lack of specific clinical
knowledge. Pre-training on domain-specific data
risks overfitting and catastrophic forgetting. The
effectiveness of using globally standardized ADE-
related terminologies like SNOMED-CT and
MedDRA to develop a task-adaptive LLM for
improved ADE extraction has not been investigated.

Prompt tuning approaches have been
proposed to bridge the gap between the upstream
LLMS' pretraining and downstream task-specific
objectives. Prompting is an LLM adaptation
technique in which additional tokens control the
model for downstream tasks. These can be hard
prompts, where non-trainable tokens control the
model or soft prompts with learnable embeddings
added to the input sequence of the downstream task
to control the model. Different strategies are utilised
for LLM models, such as keeping the model
parameters fixed (frozen) or allowing them to be
updated (unfrozen) during training [14].

This paper proposes a new transformer-
based architecture trained on globally standard
medical terminologies and concepts specifically
used to report ADEs. This enables the model tailored
for ADE extraction tasks to learn the patterns and
construction of how terms are represented in
downstream ADE extraction. The aim is to develop
a task-adaptive model tailored for ADE extraction
with prior medical knowledge of ADE concepts
before tuning the model on ADE tasks. Additionally,
this research uses the proposed methods [15] of
multi-prompt soft prompt tuning with attention-
based prompt tokens feature selection to tune the
proposed architecture.
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In summary, this paper’s contributions are
as follows.

1. This paper proposes a new transformer
architecture called SNOMEDTM that is pre-trained
based on masked language modelling objectives on
SNOMED-CT and MedDRA general medical
terminology and a synthesised dataset from the
original knowledge bases as a complement.

2. This paper experimented with the proposed
model with fine-tuning and soft prompting on the
TAC 2017 and n2c2 2018 datasets. The proposed
system outperformed the state-of-the-art models for
clinical NLP and the top-ranking system for the
challenges of ADE extraction.

The remaining sections of the paper are
presented as follows: The following section details
the review of the current models for clinical NLP
tasks and, more specifically, ADE extraction. The
section is followed by the methodology section of
the paper, which provides details on how the
proposed model was developed, pre-trained, and
fine-tuned for multi-task learning problems. The
details of the multi-prompt-based learning method is
given. In the next section, this paper presents the
experiment conducted and the results obtained. The
subsequent section is the discussion section. The
paper is concluded with a conclusion section.

2. RELATED WORK

This section provides a detailed overview
of the literature on transformer-based large language
models. It begins by elaborating on the limitations of
general models for clinical NLP. Then, various
transformation methods proposed to transform
general models to domain-specific models,
including  further  pre-training,  knowledge
distillation, and development of clinical task-
adaptive models, are reviewed.

2.1 Transformer-based Clinical Large Language
Models

With the current trend of increasing use of
LLMs based on the transformer architecture,
biomedical literature and unstructured textual
documentation are extensively utilised to pre-train
models tailored for clinical NLP-related tasks. The
goal is to provide a substitute for the general LLMs,
which have been shown to perform sub-optimally on
biomedical-related downstream tasks and improve
clinical healthcare delivery [16], [17]. Recently,

there has been a rapid increase in developing multi-
domain datasets, for instance, Dai et al. [18]
proposed a multi-domain dataset for ADE extraction
named dataset-CADECv2 by combining different
data sources from clinical NLP, social media and
weblogs. The authors experimented with the dataset
using GPT-4 and Llama-3. Despite the models
performing well across all the datasets, the models
still struggle in identifying complex ADE cases and
fall short in performance compared to domain-
specific models pre-trained from a large collection
of in-domain data.

Researchers  have  proposed many
approaches to developing a clinical large language-
based model to achieve this goal. One of the most
prominent approaches involves creating a new
model based on the architecture of a general model
such as BERT with biomedical literature — for
instance, Lee et al. [19] created BioBERT from PMC
full-text articles and PubMed abstracts. Lo et al. [20]
created SciBERT by initialising its architecture to
that of BERT and pre-trained on full-text articles
from semantic scholars. Alsentzer et al. [21]
developed ClinicalBERT from clinical text and
discharge  summaries to generate clinical
embeddings, and Liu et al. [22] developed
RoBERTa, which eliminated BERT's next sentence
prediction objective and changed the static masking
of tokens to dynamic.

One widely adopted method for developing
large language models (LLMs) tailored to clinical
and biomedical fields involves initially pre-training
general models on domain-specific data, followed by
fine-tuning them for specific tasks within the
domain. For instance Alrowili and Shankar [23]
proposed BioM-ALBERT by further pre-training
ALBERT before fine-tuning it on biomedical tasks.
Similarly, McMaster et al. [24] created an ADE
extraction framework using the DeBERTa model.
which included pre-training on unannotated clinical
texts and subsequent fine-tuning on labeled
discharge summaries to classify documents based on
the presence or absence of ADE. Another study [17]
introduced a pharmBERT framework, which builds
upon the original BERT architecture. This
framework undergoes additional pre-training using
drug labels obtained from the DailyMade dataset.
Subsequently, the pre-trained model is fine-tuned to
three NLP tasks: ADR detection, drug-drug
interaction extraction, and ADME classification.

Additionally,  decoder-based  clinical
language models have been developed, such as those
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of Luo et al. [25]. They developed BioGPT from
scratch based on GPT-2-medium architecture from
PubMed articles. The model was fine-tuned for text
generation and six other biomedical NLP tasks,
including end-to-end relation extraction. Wang et al.
[26] proposed Clinical GPT by further pretraining on
medical records and multi-round dialogue.
Additionally, based on GPT architecture, Zhang et
al. [27] proposed BiomedGPT based on masked
language modeling and supervised learning pre-
training objectives. The model was fine-tuned to
multimodal tasks of vision language and image
captioning. Furthermore, Yuan et al. [28] proposed
BioBART based on BART architecture for text-
infilling tasks and fine-tuned biomedical named
entity recognition. Similarly, based on LlaMA-3
architecture, Wu et al. [29] proposed PMC-LLaMA
by further pre-training the base model on biomedical
academic papers and textbooks. The process begins
with knowledge injection and instruction, fine-
tuning medical conversation and answering medical
questions.

However, despite the advantages of further
pre-training of general models, as it enables the
model to learn more about the distribution of words
from the specific domain data, the shift from the
initial pre-training parameters can affect the model's
generalizability [13]. Additionally, the model can
considerably adapt to the domain data, leading to
overfitting during fine-tuning [30].

To address this problem, researchers have
proposed a novel regularisation during further pre-
training through self-distillation, where a student and
teacher model was used. Lee et al. [30] introduced a
self-distillation model, where a pre-trained model is
further pre-trained using masked auto-encoding
objective on domain-specific data to serve as a
teacher to the student model fine-tuned for
downstream tasks. In similar vein, Gu et al. [11],
introduced a distillation model aimed at extracting
ADEs. This approach utilizes GPT-3.5 as the
instructive model to generate labelled sentences
from unannotated data through self-supervised
learning, which are then used to train the student
model, PubMedBERT.

Incorporating domain-specific knowledge
into a general domain model through further pre-
training or self-distillation perturbs the initial
optimal parameters of the general domain model.
This can possibly lead to catastrophic forgetting
[13]. Researchers have developed new models from
scratch from biomedical and clinical tasks to

mitigate the challenge. Recently, Yang et al. [31]
developed a GatorTron model with about 8.9 billion
words from electronic health records documents
from UF Health 82 billion, MIMIC III 0.5 billion,
PubMed 6 billion, and Wikipedia 2.5 billion. The
GatorTron model is significantly improved over
other models on most popular biomedical and
clinical NLP tasks. However, this model was
exceptionally trained from localised generated data
from the UF health centre and general knowledge
from Wikipedia and PubMed publications.

With the increased availability of globally
standard knowledge bases, such as SNOMED-CT
and MedDRA terminologies, these important
thesauri have not been utilised to develop models
tailored for medically related downstream tasks such
as ADE named entity recognition and relation
extraction, even though these two ontologies are the
product of a carefully selected and comprehensive
set of terminologies for clinical natural language text
and electronic health record systems [32]. To address
this problem, this paper proposed a new transformer
architecture with about 138 million parameters
initiated with pre-training on medical terminology
using self-supervised learning with unlabelled data.
The model is then fine-tuned for the ADE multi-task
learning problem on two public datasets.

3. METHODOLOGY

This section details the proposed
SNOMEDTM model, the pre-training and fine-
tuning datasets, and the detailed architecture of the
model. The model pre-training, fine-tuning, and soft
prompt-tuning procedures for ADE extraction are
elaborated.

3.1 Pre-training Dataset
3.1.1 SNOMED-CT and MedDRA
terminologies

The Systematized Nomenclature of
Medicine Clinical Terms (SNOMED CT) was
released in 2002 by SNOMED International with 39
member countries. It combines two medical
nomenclatures, the SNOMED Reference Term and
Clinical Terms Version 3. It is one of the globally
accepted comprehensive multilingual medical
thesauri with over 350,000 medical concepts and
over a million relations between terms. The
knowledge base consists of 3 main components: the
concepts, concept descriptions and the relationships
between concepts [2]. This paper processed the
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concepts and descriptions of the ontology
component as the text data to pre-train the model. To
access the thesaurus, the authors subscribed to
nonprofit educational use of the terminologies upon
signing a licence agreement from the National
Library of Medicine (NLM)'.

The Medical Dictionary for Regulatory
Activities (MedDRA) 1is a standard medical
terminology for drug monitoring and pharmaceutical
companies developed by the Internal Conference on
Harmonisation (ICH). It is available and translated
into various languages for easy access to all nations.
It comprises bidirectional hierarchical structures of
five tiers for easy search and exploration using the
MedDRA browser. At the top are 26 system organ
classes (SOCs), followed by 332 high-level group
terms (HLGTs), which is then followed by 1688
high-level terms (HLTs). The single medical concept
Preferred Terms (PTs) contains over 24,000 terms.
Finally, the lowest-level term comprises over 70,000
pharmaceutical and adverse drug events-related
terminologies [33]. This study utilised MedDRA
version 26.0 to extract the terminologies. The
terminologies were accessed upon subscribing as a
nonprofit organisation for educational research from
the MedDRA organisation?.

3.1.2  Synthesized data

PLMs work best with large amounts of
pretraining data. This gives the model more to learn

1

https://www.nlm.nih.gov/healthit/snomedct/internat
ional.html

the vocabulary and construct of a given domain
language. Due to the limited amount of data in the
SNOMED-CT and MedDRA  terminology
knowledge bases, synthetic data was created to
augment the pre-training dataset. The model
consisted of a deep learning architecture based on
Long Short-Term Memory (LSTM) to generate text,
which has been proven effective in handling
sequential data like narrative texts and medical
concepts. The synthetic data was generated by
training the LSTM model on a large corpus of
medical texts from SNOMED-CT and MedDRA
terms and their descriptions. The trained model is
then used to synthesise new sentences word by word
that mimic the style and content of the original data
as expressed in Equation 1 below:

yer1 = argmax o(Wph+W,x(+b) (1)

where yi+1 is the predicted next word at time t, h; is
the hidden state of the LSTM at time step t, x; is the
current input embeddings, W is the learned weight,
and b is the bias. The o is the softmax function that
converts prediction to probability. The synthetic data
was combined with the original data to create a
larger, more diverse dataset for pretraining the
model. The procedure for generating the synthetic
data is outlined in Algorithm 1, presented in Figure
1.

2 https://www.meddra.org/basics
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Algorithm 1: Procedure for generating synthetic pre

-training data.

1. Input: 7: SNOMED-CT, MedDRA terminologies, Model: LSTMmodel

2. seed_text, seq_length, tokenizer

3. Output: Synthesized text, trained_model: Trained LSTM model

4. text sequence € PreprocessText(T) = tokenize the text and input sequences

5. X train,y train generated text < [] p initialize lists

6. for seq € text_sequence do:

7. for iin range (seq_length, len(s)) do:

8. x_train € seq[i-seq_length:i] p formulate x features, y target.

9. y_train € seq[i]

10. end for

11. end for

12. trained model < TrainModel (Model, x_train, y train) = train the LSTM model shown in Eq.1
13.  for _inrange(seq_length) do:

14. tokenized seed text € tokenizer(seed_text)

15. word_g € zero-initialize word

16. predicted € trained_model(tokenized seed_text) p—predict the following words from seed text
17. Jor word, index from tokenizer.word_index.items()

18. if word == predicted

19. word g € word B sample the next words from the predictions
20. seed_text.append (word)

21. end if

22. generated_text €< seed_text

23. end for

24. synthesized_text < generated_text

25. end for

26. return synthesized_text, trained_model

27. end procedure

Figure 1: Procedure for generating the synthetic data

The synthetic data was generated by
training the LSTM model on a large corpus of
medical texts from SNOMED-CT and MedDRA
terms and their descriptions, one knowledge base
at a time. The synthesised data generated and
utilised to complement the original pre-training
data constitute 10% of the overall data. During the
synthesis, different seed values were utilised to
generate new input sequences of certain word
lengths. However, during data synthesis, the

models were observed to be biased in generating
repeated terms. A method was developed to detect and
remove consecutive repeating words in the generated
sequence to assess and mitigate the LSTM-based
model bias in synthesizing the data. To evaluate the
effectiveness of the synthesized text, two metrics were
employed. The word error rate (WER) and BLUE
score was calculated between a selected reference text
and generated text. Table 1 below shows sample
validation examples.

Table 1: Sample evaluation of the synthesized dataset.

Reference text (real text) Seed text

Generated text Evaluation

“Compounding  refers to “Compounding
products that are usually made refers to”
by a pharmacist or physician”

2

“Neoplasm of esophagus” “Neoplasm of”

“Neoplasm of anterior aspect ‘“Neoplasm of
of epiglottis” anterior”

“Compounding refers to WER=0.3076
products that are made by a BLEU=0.5783
pharmacist and drug

company”

“Neoplasm of esophagus” WER=0.0000
BLEU=1.000

“Neoplasm of anterior WER=0.5000

abdominal esophagus of” BLEU=0.2060
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“Chronic  cold agglutinin “Chronic cold “Chromic cold agglutinin WER=0.6450

disease associated with B-cell agglutinin” disease due another virus BLEU=0.4464

neoplasm” infection”

“Abuse for the purposes of “Abuse for the “Abuse for the purposes of WER=0.1923

term selection and analysis of purposes of term selection and analysis of BLEU=0.6856

MedDRA-coded data, abuse is term selection MedDRA-coded data, abuse is

the intentional, non- and analysis of the intentional, non-

therapeutic use by a patient or MedDRA- therapeutic by use a patient or

consumer of a product” coded data,” consumer to of take a drug

product”
“medication error refers to the “medication “medication error refers to the WER=0.2424
when a patient is prescribed, error refers to situation when a patient is BLEU=0.7298

dispensed, or administered a when a patient
drug that is documented in the is”

drug label to cause an expected

prescribed, dispensed, or
administered a drug that is
documented in the drug label

adverse event with patient’s to cause hypersensitivity
consumed food” adverse reaction to in the
patient”

Note: A lower value of WER indicates better performance.

Certain factors such as patient privacy and
confidentiality, bias and fairness in data, validity, and
reliability, among others, are essential when
synthesising clinical data or using real-world clinical
data for knowledge incorporation into models.
However, the SNOMED-CT and MedDRA
terminologies utilized in this research are completely
anonymised and de-identified by the organisations in
charge of the thesauri terminologies [2], [33]. The
knowledge base does not contain any personal
information of patients. To this end, the synthesised
augmented data does not contain patients’ personal
or private information, making this research free of
privacy concerns. Furthermore, the most observed
bias during the data synthesis involves repeated
duplication of medical terms. The problem was
mitigated by removing consecutive repetition of the
words. Synthesized data generated are qualitatively
evaluated using BLEU and WER metrics before
being incorporated into real-world data and human
observation. Nonetheless, it is acknowledged that
the synthesised data that constitutes only 10% of the
overall pretraining lacks comprehensive
representativeness of the original real-world data
samples. However, due to the size limitations and its
resemblance to actual data, the risks associated with
the data may not affect the applicability and
generalizability of the SNOMEDTM model to real-
world ADE extraction.

3.2 SNOMEDTM Architecture

The SNOMEDTM is a transformer-based
encoder model composed of multi-head self-

attention layers and fully connected layers with layer
normalisations. The transformer's self-attention
makes it powerful in providing the contextual
representation of each token in the input sequence
[34]. The model's architecture comprises 16
transformer layers; for each layer, there are 16
attention heads, 768 hidden units, and a feed-forward
size of 2024. The SNOMEDTM is made up of 138
million parameters. The transformer model takes the
embedding vectors as input. Two embedding vectors
are generated for each token for this model: the token
embedding vectors and the token position
embedding vectors. The token embedding vectors
are vector representations generated for each token.
The transformer includes an additional special
classification token known as [CLS] at the beginning
of the input sequence and the separator token [SEP]
to designate the end of a given sequence. This paper
adopts the transformer embedding layer to define the
word embedding, as shown in Equation 2. The
positional encoding was added to the word
embedding to determine the exact position of each
word in the input sequence. These enable the self-
attention module of the transformer to emphasise
each token based on its context for each sequence.
The position encoding is defined in Equations 3 and
4 for even and odd positions, respectively. The final
vector encoding is obtained by concatenating the two
embedding vectors, as shown in Equation 5. Figure
2 shows the overall architecture and the pre-training
settings.

We = E(Vsize . dmodel) (2)
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where E is the embedding layer, Vg, is the
vocabulary size, and dmodel 1S the dimension of the
model [34].

oS

Pe(pos, 2i) = sin (— 3)
0000 /dmodel
Pe(pos,2i + 1) = cos (+ 4)
10000 /dmodel
Eeny =concat(We , Pe) 5)

The overall transformation of an input sequence (X)
by a transformer encoder model can be expressed in
the following equations [34]:
0=XWq, K=XWk, V=XWy ©6)
Q, K and V are the query, key and value matrices
obtained from the linear transformation of input
embeddings using multi-head attention (Eq. 7), and
W is the learned weight.
MultiHead(Q,K,V) = concat(H;, Ha....Hi6) Wo (7)

is the concatenation of linear transformation heads
(16 for SNOMEDTM) where:

H; = Attention(QWQ, KWK, VW)
T
Attention(0;, K;, Vi) = SoftMax(?/—Z W
k

®)
)

where d is the hidden size (768 for SNOMEDTM).
The residual connection is then performed, which
involves adding up the input and the output for a
given layer. The concatenated output is then
normalised. The normalisation rescales the output to
have zero mean and unit variance to stabilise them
and speed up training as expressed in Equation 10:

LN(xi) =

°V+ﬁ (10)

Where p is the mean, 6 is the variance of the input
(xi), and vy & P are learnable parameters and € is a
constant for numerical stability. The output of multi-
head attention is normalized in Equation 11:
= LN(X + MultiHead(Q,K,V)) (11)
and the two linear transformations with activation by
feed-forward layer are as in Equation 12:

FFN(x) = GELU(XtW+b;) Watb, (12)

followed by output normalisation in Equation 13:

Xou = LN(Xt+FFN(x)) (13)

Pre-trained
Configuration W

Pre-trained model
weight

Model
Configuration

Transformer

encoding Blocks

| RS

) |
e Vo
-

Word embeddmg Tei Te2 Te3 Tt-z-l Te5 Tes| Te7

e
Pe8|Pe9 F’em F’en Pe12 Pe13Ee1§ Pets|| Pets Igeq Petg ?1;' Pezo e21tezgl

\
Tes Teg Te10 nTeﬂ Te1z|Te13|eu{Te15I Te16

e1 Tetg [[Tet9) TeZU e21[Te22

iR e TT

1+4%441

Word Tokemzatlon CLS’umbe of " "WYNI’*P odegjwith eta"wstam:i fo I]Mc | #Hi Of I neo” #ipl H# 4| #m | that heasur% FEP’
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number of lymph nodes with

(floating point number removal, word piece tokenisation & removal of special characters and symbols)
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that >2.

—>
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Figure 2: The architecture consists of an input sentence that is tokenised into word pieces and embeddings generated.
The model has 16 attention heads, 16 encoder layers and 768 embedding sizes.
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33 SNOMEDTM Pre-training

The SNOMEDTM was pre-trained from
scratch using the masked language modelling
objective proposed in BERT [35]. Masked language
modelling is a self-supervised learning technique
where certain parts of the input tokens are randomly
masked, and the model is trained to predict these
masked tokens. The 15% of the input tokens were
randomly masked and used the model to predict the
masked tokens. The model was trained for 200
epochs; since the dataset is small, this will give the
model more chance to capture the syntax and the
semantics of the terminologies. An early stopping
condition was applied during the training. The
training stops if there are three consecutive increases
in the perplexity of training validation, indicating
that the model is overfitting or is performing

suboptimally. The larger the perplexity, the less
confident the model is in its prediction [36]. The
model reaches its optimal stage at about 12 hours.
The observed perplexity does not increase or
decrease much, with an average of 2.00. The formula
for calculating perplexity is shown in Equation 14.

. 1 n

Perplexity = exp (—; ZizologP(Wi)) (14)
where n is the number of words in the test set, and
P(w;) is the probability of the i word assigned by the
model. The overall flowchart of the pretraining is
shown in Figure 3a below. Figure 3b below shows
the combined curves for the model pretraining
accuracy and loss for training and evaluation.

Pretraining Loss and Accuracy

Q.oad SNOMED-CT & MedDRA Ten'ninologiesj

Tokenize Terminologies to Tokens

(Masked 15% of the tokens in the Sequencej

Model Forward Pass (SNOMEDTM)

60

Value

— Training Loss

— Evaluation Loss

— Training Accuracy
Evaluation Accuracy

) 100

Rerations

125 150

SNOMEDTM Training & Test Loss Curve with Task Updates for N2C2 2018 DATA!

Calculate Loss Using Cross Entropy
Backpropagation & Update Weights

if N Epochs Completed Or Early Stopping?

[res

Save Model Weight & configuration

.

\

g

-3 333 i
B S e S e . S e e S, S T S S

Epoch oo Epant o Epechr  Epecnd Epocind
2000 ) o 000

Updates.

Epoih s Epoch b——Epach Epoch8r—
Yoo %2000 14500 16000

Figure 3:. SNOMEDTM Pre-Training And Fine-Tuning Process. (4) SNOMEDTM Pre-Training Flowchart. (B) Pre-

Training Accuracy And Loss Curve. (C) Fine-

34 SNOMEDTM Fine-tuning

The proposed model was fine-tuned on
multi-task ADE-concept extraction and relation
extraction as a dual sequence labelling on popular
datasets: TAC 2017 and n2c2 2018.

Tuning Loss Curve For The N2c2 2018 Dataset.

During dual sequence labelling, the ADR-
concept mention identification and ADR-concept
attribute relation identification was done. ADR-
concept identification classifies input sequences as
positive (with relations) or negative (without
relations). ~ ADR-concepts attribute  relation
identification identifies attributes and relationships for
positive concepts. An extended BIO tagging scheme
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[10] manages discontinuous mentions and sub-
words, with additional tags (DB, DI) for
discontinuous concept beginning and inside and
“X” for tokenizer-generated sub-words.

To implement multi-task transfer
learning, the system adopted the MT-DNN
framework [37] to simultaneously model the
output of dual sequence labelling, promoting
parameter sharing between the two related tasks.
The framework is made up of three separate layers.
The input layer receives the input sequences
generated for each task and normalises them to the
same length by padding shorter sequences or

truncating longer sequences. The shared layer utilizes
the pre-trained model to generate the contextual
representation of the input sequence. This paper
employs the proposed model SNOMEDTM
incorporated with prior medical knowledge from
standard medical terminology to develop the shared
representation for the two related subtasks of ADE-
source mention and ADR-source mention attribute
relation extraction tasks. The output generated is then
passed to the final classification of fully connected
layers with SoftMax to obtain the final prediction for
each token in the sequence. Figure 4 shows the
overview of the fine-tuning architecture of the system.

| B-ADRI-ADR I-ADRI-ADR I-ADRO O

0XOXOXOXOXB-FACTOR-HO |

i

i

[ ADR-Mention prediction head ]

SoftMax

N

Task Specific Heads ——f

[ ADR-att-relation prediction head ]

SoftMax MT-DNN Framework
(Multi-task Transfer
Learning)

Pre-trained SNOMEDTM

LLL L L L LN

VAL LSSV

e Jls & )& &

ﬁ--@ydm

) ﬁ‘ﬁ@

W)rsening @ narrtﬂ[ angle | glaucoma |(_may ] occur )

(o [ adrl i [## adr] [ #-acr ) [_:l Frad lh[ f-adr_| may] oceur |

Dual sequence labelling

i

Worsening of narrow angle glaucoma may occur

Input sequence

Figure 4: Fine-Tuning Takes An Input Sequence And Generates A Shared Representation For The Two Tasks By
SNOMEDTM With A Task-Specific Head For The Final Classification.

3.5 SNOMEDTM Soft Prompt Tuning

To further test the capabilities of the
SNOMEDTM model, the model was tuned based
on the proposed multi-task soft prompting with
prompt feature selection method [15] on the n2c2
2018 dataset. Multi-task learning involves
modelling two or more related downstream tasks
with different task-specific objectives. Utilizing a
single holistic prompt to control the adaption of the
LLMs may result in biased treatment of one of the

e
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tasks involved in the shared modelling. To deal with
the problem, a multi-prompt-based soft prompting
method was proposed as shown in Figure 5. Sample
example input for the two tasks is shown in Figure 6,
presented in a two-sequence labelling task, one for
source mention labelling and the other for mention
attribute and relation labelling. Two prompt templates
were initialized, one for each task. For instance, the
task 1 prompt: “Identify drug mentions and label each
token in the sequence”, and the task 2 prompt:
“Identify drug attributes and relation, label each token
in the sequence”. The textual prompts were then
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transformed into trainable embeddings. Firstly, the
text was tokenized using a pre-trained tokenizer
and then the embedding vector of both the input
and the soft prompt was obtained using a pre-
trained model embedding layer. Based on task
type, the soft prompt was then prepended as a
prefix to the input embedding.

However, researchers have argued that
some prompt tokens hurt the performance of the
LLM's downstream fine-tuning [38]. This paper

applied a prompt token feature selection based on
feature importance calculated using the transformer's
attention mechanism to select the top important
prompts to be prepended to the input sequence as
trainable parameters to tune the model.

The overall procedure for multi-task ADE extraction
using multi-prompt soft tuning is presented in
Algorithm 2 in Figure 7.

00B-drugXX0 0B-route 0XX0
i f
Task 1 classifier Task-specific layer Task 2 classifier

[

Transformer Model (Frozen/unfrozen)

Shared representation layer

MI-DNN Framework
Attention-based prompt feature selection
DR Produek PP Pty E.Ey.....E,
; 0 Getindices
& f of ‘i
: ; M i
: i — M —  importance o )
3 o 3 pompt — S E.Ey.....E,
I\ o X features Top-k prompt
':"r'c/l;;:f:,‘nn‘l”hurdpmmplm 1x pas & 25" Input Embedding
plY {
Pe‘I’PeZ’ -------- Pen E1gE2°°°°°°|En Pe1,Pe2,........Pen EszeunaEn
ﬁ H 1 ﬁ‘ Tokenization

,
J

,
0=
\

- ]

Identify drug mention and label each
token

Intravenous gadolinium administration

EOE-0E)

Identify drug attributes and their relation N
Intravenous B-drug administration

drug to and label each token

Task 1 Prompt text Task | input

Task 2 Prompt text Task 2 Input

Input layer

Figure 5: Soft Prompt Tuning Procedure.
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Figure 6: Example Of Task 1 Input And Task 2 Context

Algorithm 2: ADE extraction procedure with multi-prompt soft tuning

1. Input: S: Clinical text sentences, Model: Pre-trained model, P: Prompt templates
2. Output: M: a set of tuples of mentions, R: Triplets of relations

3. M « [], Initialize list for a set of tuples of mentions.

4. R «[], Initialize list for a set of triplets of relations.

5. fors€Sdo:

6. task_id « s[task id] B gets the id of the current task

7. P; « SelectPrompt(P, task_id)

8. P enized < tokenize(P)

9. Doy — GetEmbedding(p, . . )

10. L, < GetEmbedding(s)

11. Sppu < SelectTopPromptTokens(1_, p,..)

12. Sexpanded < Expand(s[att-mask], s[token-type-id], s[label], len(smpm)) = cxpand labels

13. taskl —Model(s,, ,,.1..) B feed into the Model
14. M_ < ExtractAllSourceMentions(task1)

source

15. for (m, t) EM do:

source

16. m_tuple «— <m, t> B= m for mention, t for type of mention

17. M.append(m_tuple) ~ B=add source mention to set of mentions
18. end for

19. Mrmm, C «—GenerateContextFromPositiveSourceMention(M_ . s)

20. for Mt JEM | &c€Cdo:

21. task_id < c[task_id] ~ B= get the id of the current task

22. p2 <« SelectPrompt(P, task_id)

23. Diorenized — tokenize(pa)

24, Py — GetEmbedding(p,, . )

25. ¢,y — GetEmbedding(c)

26. Coop < SelectTopPromptTokens(c,,, p,,,)

27. Coxpanded Expand(c[att-mask], c[token-type-id], c[label], len(Cinpm))
28. task2 <—M0del(cexpa“ ded) B feed c into the Model to generate a sequence
20. Atribuer R€ —ExtractAttributesMentionAndRelation(task2)

30. for (ma,ta) €M, . andr € Re do:

31. m_tuple « <ma, ta>

32. M.append(tuple) B add source mention to the set of M
33. r_triplet < <msp, 1, m>

34, R.append(r_triplet) B add relation triplet to the set of R
35. endfor

36. end for

37. endfor

38. return M, R B Return set of tuples of mentions and triplets of relations

Figure 7: Overall Procedure For Soft Prompt Tuning Of SNOMEDTM On ADE Extraction.
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4. RESULTS

This section discusses the experiments
conducted and the results obtained. First, the
section elaborates on the details of the dataset used
to fine-tune the model, followed by evaluation
metrics employed to gauge the model
performance. Next is the detailed experiment setup
and the results for the traditional fine-tuning and
soft prompt tuning of the proposed model on the
TAC 2017 and n2c2 2018 datasets. The section
further present experimental results on the ADE
corpus dataset for both sequence classification and
relation classification tasks.

4.1 Fine-tuning Datasets

The TAC 2017 [5] dataset consists of 200
drug labels in XML format. Of these, 101 labels
are used for training, and 99 are reserved for
testing. The primary entity in this dataset is the
ADR entity, which has five attributes: Animal,
Drug Class, Factor, Negation, and Severity.
Additionally, the dataset includes three relation
types: Effect (linking severity to ADR),
Hypothetical (linking animal, drug class, or factor
to ADR), and Negated (linking negation or factor
to ADR). The second dataset is from the n2¢2 2018
Adverse Drug Events extraction challenge [6]. It
includes annotations for eight attributes: strength,
form, dosage, frequency, route, duration, cause,
and ADE, all linked to a drug entity. The model
was trained and evaluated using the official splits:
202 records for testing and 303 for training.
Further experiments were done on the ADE corpus
dataset [39] to train and evaluate the model. This
dataset includes 5,063 drugs, 5,776 adverse
effects, and 6,821 relationships between them, all
derived from 4,272 unique samples.

4.2 Evaluation Metrics

To measure the performance of
SNOMEDTM on pre-training masked language
modelling tasks, this research used the perplexity
metric, as shown before in Equation 14. Perplexity
is an evaluative metric that estimates the
effectiveness of a probability model in making
predictions for a given sample. It quantifies the
level of uncertainty inherent in a model's ability to
predict masked text. The system was evaluated
using official scripts from the 2017 TAC and n2c2
2018 NLP challenges, with micro-average
precision (Equation 15), recall (Equation 16), and

e
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F1-score (Equation 17) as the primary metrics for fine-
tuning tasks and soft prompt tuning. Additionally,
TAC 2017 employs an exact matching score, where a
mention is deemed correct if its boundary and type
match the gold mention, and a relation is correct if
both the relation type and related mentions are
accurate.

TP

micro-precision = 15
p S TP + FP (13)
. TP
micro-recall = =——=—— (16)
S TP +FN
. micro—precis *micro—recall
micro-F1-score = 2 * L (17)

micro—precision+micro

where TP is the number of true positives, FP is the
number of false positives and FN is the number of
false negatives regarding prediction of ADE entities
and relations.

4.3 Experimental Setup

The implementation of the proposed system
was carried out in two phases: pre-training and fine-
tuning. A maximum sequence length of 512, batch size
8, the BERT model type, and a learning rate of 3e-5,
was used. The masked language modelling probability
to mask the tokens was set to 0.15. The experiment
was performed on a server with a single GPU Tesla
V100 CUDA version 11.7 and a 16-core CPU
computer.

Similarly, during the fine-tuning task, a
maximum sequence length of 512 and a batch size of
8 were used. The training was run for 20 epochs for
the TAC 2017 dataset and 30 epochs for the n2¢2 2018
dataset. A 10% of the training set to validate the model
and select the best model for inference, utilising the
test set for the final evaluation.

A major persistent issue in LLM adaptation is
possible  catastrophic  forgetting.  Catastrophic
forgetting usually occurs when there is too much
perturbation in the initial pre-trained parameters of the
model [13]. Approaches that include regularization
techniques, early stopping conditions when there is a
consecutive increase in the model training loss, and a
minimal learning rate value during model adaptation,
can be employed to minimise its occurrence. In
addition, catastrophic forgetting can be mitigated by
saving model updates at various checkpoints. This
helps determine the model state that best generalises
across tasks and allows the model to be recovered and
reverted to its best state whenever catastrophic
forgetting occurs. Recently, approaches such as soft
prompt tuning [40], [41], adapter [42] and LORA [43]




Journal of Theoretical and Applied Information Technology ~
30 September 2025. Vol.103. No.18 N

© Little Lion Scientific

" A mmmm—
S/

ISSN: 1992-8645

www.jatit.org

E-ISSN: 1817-3195

techniques have been developed for adapting LLM
models to downstream tasks where only the
additional prompts or modules specific to the task
are updated during training, leaving initial pre-
trained parameters fixed. To address the issue, this
paper employed an early stopping condition during
pretraining to stop the model training and save the
best model parameters when the validation loss
increased consecutively for some experimented
number of times. Similarly, at the fine-tuning
phase, a weight decay of 0.01, a small learning rate
of 5e-5, and dropout of 0.1, as well as saving the
model state at intervals of 500 updates to mitigate
possible overfitting and catastrophic forgetting as
shown in Figure 3c. Furthermore, the study
experimented with soft prompt tuning approaches
(frozen and unfrozen); the result is shown in Table
4.

4.4 Experimental Results

This research demonstrates the potential
of utilising a standard globally accepted medical
domain knowledge base to incorporate prior
medical knowledge into the transformer model
before fine-tuning it on a downstream ADE
extraction task. The proposed pre-trained model on
SNOMED-CT and MedDRA terminology was
used to generate a contextual vector representation
for the multi-task ADR named entity exaction and
relation extraction tasks. The shared representation

is then passed to the individual task-specific classifier
head through softmax to predict the final token class.
Table 2 and figure 7 shows the results obtained in the
TAC 2017 dataset, in comparison with other
transformer-based models (BERT, BioBERT,
BlueBERT, RoBERTa and SCIBERT) experimented
with by [10], and DeepCADRME, proposed by [44].
These results indicate the strength of the task-adaptive
SNOMEDTM model over the compared domain-
agnostic and domain-specific PLM models in
identifying ADR instances. Similarly, Table 3 shows
the results obtained in the n2¢2 2018 dataset compared
with the state-of-the-art JNRF system proposed by
[45]. These demonstrate the superiority of the
transformer-based model over the foundational model
based on the traditional Fourier network.

Moreover, Table 4 shows the results of soft
tuning of the SNOMEDTM model, this study
compared its performance with the system proposed
by [14] for both frozen and unfrozen models during
training. Despite the larger size of GatorTron-based
compared to SNOMEDTM, the ADE-related
knowledge incorporated in the SNOMEDTM model
improves its performance on ADE extraction over
GatorTron-base  for  the unfrozen  model
SNOMEDTM is a transformer-based model; the
model's pre-trained weights can be used for further
fine-tuning on downstream clinical NLP for transfer
learning.

Table 2: TAC 2017 Concept And Relation Extraction Results Compared With Other Transformer-Based Models (Fine-

tuning).

Type Metric BERT BioBERT | BlueBERT | RoBERTa | SCIBERT | SNOMEDTM

(Overall)
Concept | P 86.14 86.63 86.52 85.35 87.90 88.91

R 81.64 82.99 81.31 81.55 83.39 84.85

F1 83.83 84.77 83.83 83.41 85.59 86.83
Relation | P 53.33 56.18 56.68 52.51 58.05 52.36

R 47.24 48.74 48.55 45.60 49.00 52.92

F1 50.10 52.19 52.30 48.81 53.15 52.63

Figure 7 depicts the distribution of overall F1
scores compared to TAC 2017 for concept and
relation extraction tasks. The SNOMEDTM

outperformed all the compared systems for concept
extraction and is the second-top model for relation
extraction.
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Performlaonce Comparison of Concept and Relation F1 Scores SNOMEDTM against other transformer-based models on TAC 2017 Dataset
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Figure 7: The Distribution Of F1 Scores Of The SNOMEDTM Compared To Other Transformer-Based Models On The
TAC 2017 Concept Extraction Relation Extraction Task.

Table 3: Concept And Relation Extraction Results On N2c2 2018 Dataset Compared With The JNRF System (Fine

Tuning).

Type Metrics (Overall) JNRF SNOMEDTM
Concept P 92.95 93.11

R 84.76 84.81

F1 88.67 88.77
Relation P 90.97 88.29

R 72.08 80.29

F1 80.43 84.11

Table 4: Comparison Of SNOMEDTM Soft-Prompting On N2c2 2018 Adverse Drug Events Extraction Dataset For
Concept And End-To-End Relation Extraction With A Clinical Transformer-Based Model, And TAC 2017 Results.

System Dataset Soft Prompt Unfrozen Model Soft Prompt Frozen Model
P R F1 P R F1
Concept
GatorTron base n2c2 2018 - - 91.12 - - 86.59
SNOMEDTM n2c2 2018 93.78 90.62 92.05 96.58 40.76 57.89
TAC 2017 89.01 84.93 86.92 79.40 65.07 71.53
Relation
GatorTron base n2c2 2018 - - 83.33 - - 79.21
SNOMEDTM n2c2 2018 88.40 81.10 84.59 88.44 19.59 32.08
TAC 2017 52.73 52.90 52.81 47.61 12.89 20.30

5. DISCUSSION

This paper reports on the proposed new
transformer-based model SNOMEDTM, which is
pre-trained on standard medical terminologies
from SNOMED-CT and MedDRA thesauri. The

work fine-tuned the model on multi-task ADE
extraction tasks on two publicly available datasets and

7423

compared the proposed system with state-of-the-art
systems. This section starts by comparing the
performance of the proposed model with that of other
systems, then analyses the effect of utilising medical
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concepts to provide prior medical knowledge to the
model tailored for a downstream medical task like
ADE extraction on the model's overall
performance.

5.1 Performance Benchmarking

This paper compared SNOMEDTM's
performance with state-of-the-art systems for ADR
extraction on the TAC 2017 challenge (best run
only) using the official evaluation script provided
by the organisers, as shown in Table 5. From the
table, the BUPT-PRIS fifth-ranked system was
developed based on a Bi-LSTM-CRF with
character and word embedding for entity
annotation and an adversarial-based training
method for CNN model relation annotation. The
system achieved an Fl-score of 18.29% for
concept extraction and 0.55% for end-to-end
relation identification. The fourth-ranked is the
MC-UC3M system; the authors utilised some
medical knowledge base as a look-up dictionary to
extract mentions with SVM for relation
classification. The system achieved an F1-score of
60.01% for concept extraction and 10.67% for end-
to-end relation identification. The system, PRNA-
SUNY, ranked third, was developed based on a
conditional random field (CRF) for concept
extraction and a rule-based approach based on
MetaMap for the end-to-end tasks. The IBM-
Research system’s second-ranked system was on
Bi-LSTM and Attention-Bi-LSTM for extracting
concepts and relations while handling disjoint
mentions. The UTH-CCB is the top-ranked system
at TAC 2017 ADR extraction challenges for
concept and end-to-end relation identification. The
system is based on combined rules-based
techniques to extract mentions, and Bi-LSTM-
CRF was used as two cascade sequence labellers
for end-to-end ADR relation extraction tasks. The
system achieved an Fl-score of 82.41% for the
concept extraction task, which is about 64.12%
different from the fifth-ranked system. Similarly,
the system obtained 49.00% for the end-to-end

relation extraction task, a difference of 48.45%
compared to the fifth-ranked system.

This paper further compared the performance
of the system with other state-of-the-art systems that
have shown to outperform all the top-ranking systems
on the TAC 2017 dataset. These systems are based on
an improved deep learning architecture-based
transformer model. The DeepCADRME systems
proposed an N-level sequence modelling to handle
complex ADR mentions such as discontinuous, nested,
and overlapping ones. The system adopted the
biomedical-based transformer model BioBERT to
generate the contextual representation used at various
system levels. The system achieved 85.35% for
concept extraction, 2.94% higher than the challenge's
top-ranking system. El-allay et al. [10] proposed the
MTTLADE system, a multi-task transfer learning-
based dual sequence modelling method based on large
language models. The system fine-tuned five models:
SCIBERT, BERT, BioBERT, BIuBERT, and RoBERTa
for ADR concept and end-to-end relation extraction
tasks. The system achieved 85.59% for concept
extraction, 0.24% higher than the DeepCADRME
system. Similarly, the system achieved 53.15% for
end-to-end relation extraction, which is 4.15% higher
than the top-ranking system in the challenge. The
study further compares the performance of
SNOMEDTM with the NeuroADR method proposed
by [46], the result is shown in Table 5.

The proposed system in this study, which
utilises a pre-trained model based on globally accepted
medical terminologies to generate a shared
representation of the input sequence, demonstrated its
superiority with an F1 score of 86.83%, 1.24% higher
than the MTTLADE system for concept extraction. It
also achieves an F1 score of 52.36%, 3.36% higher
than the top-performing systems for the TAC 2017
challenge and 0.79% less than the MTTLADE for the
relation extraction task. The consistent improvement
shown by the model across the TAC 2017 dataset
indicated the effectiveness of the medical knowledge
to the model.

Table 5: Comparison Of SNOMEDTM Fine-Tuning On TAC 2017 With Other Systems For ADR Concept And End-To-
End Relation Extraction Tasks.

System Concept Relation

P R F1 P R F1
SNOMEDTM (ours) 88.91 84.85 86.83 52.36 52.36 52.36
NeuroADR [46] 82.45 80.63 81.53 42.05 35.64 38.58
DeepCADRME [44] 85.45 85.24 85.35 - - -
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UTH-CCB [47] 82.54 82.42 82.48 50.24 47.82 49.00
IBM-Research [48] 80.90 75.30 78.00 48.13 32.54 38.83
PRNA-SUNY [49] 77.71 63.90 70.13 50.48 22.36 30.99
MC-UC3M [50] 54.79 66.33 60.01 10.41 10.95 10.67
BUPT-PRIS [51] 40.47 11.81 18.29 0.97 0.38 0.55

This paper further experimented with
SNOMEDTM on the ADE-corpus dataset [39],
and benchmarked with two state-of-the-art
methods, the result is presented in Table 6. For
SMAN [52], this span-based method built a multi-
model attention network to capture the interactions
between spans and to model information like
tokens and labels. It simultaneously extracted
context and span position information. TpT-ADE
[53] is a two-phase approach that fine-tunes the
BERT model for ADE extraction. Firstly, the
system identified and normalized the concepts to a
standard UML knowledge base then the second
phase utilizes BERT to process the text, and extract
mentions then classify relations between them.

Table 6: Comparison of SNOMEDTM against SMAN
and TpT-ADE on ADE-corpus dataset.

5.2 Ablation Study

To further identify the contribution of
different components of the proposed architecture, this
study conducted two ablation studies. In the first
instance this paper pretrained the SNOMEDTM
complete architecture on only SNOMED-CT
terminologies. This is because the terminology is
larger (amounting to 65% of the total pretraining data)
than the MedDRA and most of the MedDRA
terminologies has corresponding mapping
terminologies within the SNOMED-CT. SNOMED
CT is the most extensive biomedical ontology,
covering a diverse array of biomedical and clinical
concepts, such as signs, symptoms, diseases,
procedures, and social contexts [54]. In the second
experiment, this paper created a base model called
SNOMEDTM-base, this model consists of 12 encoder
layers and 12 self-attention layers. The base model

Method | NER RE : @
P R Fl | P R Fl was also pretrained on the complete pretraining data.
SMAN : N 9. | - N 0. The experimental results shown in Table 7 on TAC
95 25 2017 ~and nﬁcZ h2018 gor t.cogcept. andf relation
extraction tasks, shows a drastic drop in performance
};I]);]:: §Z 23' ?; g} gg g; for the two models compared t(? SI\II)OMEDTM.
SNOME 193 193 193. [32 183 |32 Nonetheless, the model on SNOMED-CT dges
DTM 68 |63 |68 |37 |32 |84 outperform the SNOMEDTM—base model revealing
the impact of the medical terminology to the overall
performance of the model for ADE extraction tasks.
Table 7: Ablation experiment for different components of the SNOMEDTM architecture.
Model Dataset Concept Relation
P R F1 P R F1
SNOMEDTM- n2c2 2018 87.84 82.18 84.92 76.20 | 69.21 | 72.54
SNOMED-CT- TAC 2017 80.57 75.14 77.76 43.85 31.78 | 36.85
only
SNOMEDTM- n2c2 2018 89.36 69.85 78.41 74.84 | 58.04 | 65.38
base TAC 2017 67.26 63.82 65.49 3420 |29.85 | 31.88
SNOMEDTM n2c2 2018 93.11 84.81 88.77 88.29 80.29 | 84.11
TAC 2017 88.91 84.85 86.83 5236 | 52.92 |52.63

5.2 Effect of Prior Medical Knowledge on the
Model's Performance

The SNOMEDTM model is comprised of
16 self-attention heads and 16 encoder layers.
Contextual representation generated by the model

makes the proposed system more powerful in
identifying complex situations within the dataset
despite the limited pre-training data compared to large
general models with trillions of training samples. The
proposed model competed with large models and
produced comparable results for the two tasks. This
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capability shown by the model could be attributed
to the influence of medical concepts utilised to pre-
train the model despite the smaller data size.
Compared to other clinical-based large language
models, most of the models are trained from
locally generated domain data, but for
SNOMEDTM, it uses globally standard medical
terminology and specific terminology related to
ADEs, which gave the model the ability to
recognise tokens related to ADEs.

It is acknowledged that clinical LLMs are
limited; however, this research direction is recently
gaining momentum. Researchers are developing
more domain-specific models, for instance,
BioGPT [25] from PubMed abstracts, [28], and
task-specific models like PharmBERT [17] from
drug labels and GatorTron [31] from University of
Florida health data, an LLM for clinical NLP.

Nonetheless, SNOMEDTM pre-training
data is from globally accepted medical
terminology related to drug safety and adverse
drug event cases. This innovative use of ADE-
related terminologies to develop the SNOMEDTM
model tailored for ADE case extraction
demonstrated the potential for mitigating the
sparsity of clinical LLMs. The improved
performance shown by the model on diverse and
multiple clinical datasets of TAC 2017 (drug
labels) and n2c2 2018 (discharge summaries) and
on various tasks of named entity recognition and
relation extraction over the baselines and
benchmark models indicated its robustness and
applicability to various clinical tasks. This paper
plans to incorporate more clinical data sources to
pre-train the model in future work. Additionally,
this paper plans to transform the SNOMEDTM
model into a multi-lingual and multi-modal model
to address a broader range of clinical NLP tasks
from multiple languages.

This study focuses on improving ADE
extraction from clinical textual documentation
using LLM-based techniques. The research holds
promise for supporting natural language
processing and practical healthcare applications.
The proposed task-adaptive SNOMEDTM model
was pre-trained based on globally standardised
ADE-related thesauri. Utilising SNOMED-CT and
MedDRA knowledge bases to develop clinical-
based LLM language exemplified an innovative
strategy for fully utilising this knowledge to
develop a state-of-the-art foundational model for
improving clinical outcomes. SNOMEDTM has

e
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shown its potential to advance clinical NLP
significantly. Accurate extraction of ADE cases from
unstructured clinical text is critical for improving
patient care, enhancing clinical documentation and
supporting drug safety surveillance. As a trained
transformer-based model, SNOMEDTM can be fine-
tuned on various clinical NLP tasks and different
tuning strategies in transfer learning settings, as
demonstrated in this research. Thus, it can contribute
to overall healthcare benefiting both patients and
practitioners.

The proposed model can serve as a
foundation in addition to its immediate practical
applications. It can be further scaled up using
additional data sources or transformed into a
multilingual or multimodal model for handling various
clinical applications, thereby improving its
generalizability in clinical domain-specific tasks.

6. CONCLUSION AND FUTURE WORK

This paper introduced a novel transformer
architecture tailored for biomedical information
extraction. The model comprises 138 million
parameters pre-trained with around 15 million tokens.
The pre-training was on standard global medical
terminologies, the SNOMED-CT and MedDRA, to
incorporate prior domain-related medical knowledge
into the architecture. The pre-trained model is then
fine-tuned to the multi-task adverse drug event
extraction of mentions and relation extraction
problems on two publicly available datasets provided
by the TAC 2017 and n2c¢2 2018 challenges. The
experimental results show that the proposed model
showed promising results; despite the small number of
pre-training datasets and model parameters compared
to larger models like GatorTron, the proposed model
outperformed many state-of-the-art models like BERT
and GatorTron-base on ADE extraction. In future
research, this paper intends to extend model capability
by utilising more medical-related data from electronic
health record systems, synthesising data, and
exploring other pre-training objectives. SNOMED-CT
and MedDRA terminologies are available in various
languages and international standards. Pre-training the
model on multilingual or multimodal objectives and
on multiple data formats will improve its
generalizability and applicability for various ADE
extraction tasks in multiple languages. Additionally,
this paper plans to employ a human-in-the-loop
learning approach with domain experts to fine-tune the
model.
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It is important to acknowledge the
potential limitations of the proposed techniques
and areas where this research can be improved.
The SNOMEDTM model was pre-trained on less
data than other clinical LLMS like GatorTron. This
limited data can affect the model's generalisation
and acceptance for clinical NLP tasks. Moreover,
LSTM-based model biases in data synthesis may
influence the synthesised dataset and lack clinical
representativeness. Additionally, the ethical
implications of using synthesised data have not
been adequately addressed. However, the research
aimed to investigate the impact of two globally
standard ADE-related terminologies in improving
ADE extraction. The use of other data sources for
data augmentation will be considered in future
research.

Knowledge bases such as Side Effect
Resource (SIDER) exist that collect, normalize,
and encode ADE-related terminologies [33]. Other
agencies, such as DrugMAP [55], DrugBank, and
VARIDT (Variability of Drug  Transporter
Database) [56], provide valuable information
about drugs, drug research, and safety monitoring.
In future research this paper plans to obtain more
terminologies from these knowledge bases to
expand the pretraining data to integrate more
knowledge to SNOMEDTM.
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