
Journal of Theoretical and Applied Information Technology

 © 2005 JATIT. All rights reserved.

www.jatit.org

Towards Universally Acceptable m-Com Protocol
 Yang Mu

School of Information Science and Technology, USTC
{yangchoun@yahoo.com.cn}

Abstract: Online trust is growing in importance. Consumers
and businesses, feeling the pressure of economic downturn and
terrorism, increasingly look to buy from and do business with
the most trusted Web sites. Companies’ perception of customer
trust has steadily evolved from being a construct involving
security and privacy issues to a multidimensional, complex
construct that includes credibility, emotional comfort and
quality. Further, trust online spans the end-to-end aspects of e-
business rather than being just based on the electronic storefront.
The increasing popularity of electronic commerce has
necessitated the development of, robust, reliable, efficient and
secure e-commerce protocols. These protocols should not only
ensure the confidentiality and integrity of information
exchanged, but researchers have identified other desirable
properties, such as, money atomicity, goods atomicity and
validated receipt, that must be satisfied by e-commerce
protocols. In the traditional scenario of physical goods, one can
order the goods and transfer money over the network, but the
goods cannot be delivered over the network. Whereas
Informational goods have the special characteristic that both the
delivery of goods and money can accomplished over the same
network infrastructure. This paper summarizes analyses and
compares five of the most emerging ecommerce protocols for
micro transactions. These protocols are NetBill, Payword,
Micromint, Millicent and MPTP. Analysis of these protocols is
done on the basis of eight crucial parameters which are
Computational Cost, Communication Cost, Storage Cost,
Privacy, Reliability, Repudiation, online/offline scheme and
trust.

Keywords: NetBill, MPTP, Micromint, Payword,
Millicent, e-commerce protocols, privacy, Reliability,
Repudiation, Online/Offline scheme, trust.

 1.INTRODUCTION

Ever since it was realized that a commodity has worth, money
was invented as an abstract way of representing value, and
systems for making payments have been in place. With advances
in human civilizations, new and increasingly abstract
representations of value were introduced. A corresponding
progression of value transfer systems, starting from barter,
through bank notes, payment orders, checks, and later credit
cards, has finally culminated in "electronic" systems. Mapping
between these abstract payments and the transfer of "real value"
is still guaranteed by banks through financial clearing systems.
The financial clearing systems are built on the closed, strictly
controlled networks of financial institutions and hence
considered comparatively more secure than open networks.

Since the world has become a global village and access to any
Remote location is at our finger tips, now it is the right time for

distributed projects for Organizations not necessarily distributed
i.e. organizations whose business is running in generic or
specialized locations all over the world i.e. the era of global
business. Due to this fact there has been a great deal of interest in
facilitating commercial transactions over open computer networks,
such as the Internet. This is the only means on hand by which
large-scale robust transactions can be attended to in a business and
customer friendly heterogeneous milieu. More than a few
electronic payment systems have been proposed and implemented
in the past few years. Currently, many poles-apart, incompatible
Internet payment systems compete with one another. Most shops
accept, at best, only a subset of them.

There is a long history of attempts to construct systems for
transferring information quickly over long distances. But from a
protocol designer and analyzer’s point of view, the mishaps that
can be caused by misinterpreted communications are fascinating.

In this paper we discuss a set of five of the most promisingly
emerging e-commerce protocols namely NetBill, Payword,
Micromint, Millicent and MPTP briefly described in section 2, 3,
4, 5 and 6, and analyzed on the basis of a set of eight crucial
parameters comprising of Computational Cost, Communication
Cost, Storage Cost, Privacy, Reliability, Repudiation,
online/offline scheme.

2. NETBILL

The NetBill transaction model involves three parties: the customer,
the merchant and the NetBill transaction server. Furthermore it
involves three phases: price negotiation, goods delivery, and
payment. For information goods which can be delivered over the
network, the NetBill protocol merges goods delivery and payment
into a single atomic transaction.

In this atomic transaction, the customer and merchant interaction
occurs in first two phases; the NetBill server is involved only in
the payment phase, when the merchant submits a transaction
request. The customer directly contacts the NetBill server only in
case of communication failure or administrative functions request.

A) Transaction Objectives
Following set of objectives in a NetBill transaction.
1) Only authorized customers can charge against a NetBill

account.
2) The customer and merchant must agree on the item to be

purchased and the price to be charged.
 3) A customer can optionally protect his/her identity from

merchants.

5

Journal of Theoretical and Applied Information Technology

 © 2005 JATIT. All rights reserved.

www.jatit.org
4) Customers and merchants are provided with proof of

transaction results from NetBill.
5) There is an offer and acceptance negotiation phase between

customer and merchant.
6) A customer may present credentials identifying his/her as

entitled to special pricing or treatment.
7) A customer receives the information goods she purchases if

and only if she is charged (and thus the merchant is paid)
for the goods.

8) A customer may need approval from a fourth (access control)
party before the NetBill server will allow a transaction.

9) The privacy and integrity of communications is protected
from observation or alteration by external parties.

NetBill accounts can either be a debit model (pre-paid) or credit
model (post-paid). In case of prepaid model, funds would be
transferred to NetBill in advance to cover future purchases. If the
user does not have sufficient funds to cover a particular
transaction, that transaction would be declined.

In the credit model, transactions would be accumulated with
payment to NetBill being triggered by either time (based on a
pre-established billing period) or dollar amount (based on a pre-
established limit). Because granting credit creates a risk of non-
payment, higher transaction fees may be associated with credit,
versus prepaid accounts.

B) A NetBill Scenario
Figure 1 shows NetBill in action. A user, represented by a client
computer, desires to buy from a merchant's server. A NetBill
server maintains accounts for both customers and merchants.
These accounts are linked to conventional financial institutions.
A NetBill transaction transfers the information goods from
merchant to user, and debits the customer's account and credits
the merchant's account for the value of the goods. When
necessary, funds in a customer's NetBill account can be
replenished from a bank or credit card; similarly finances in a
merchant's NetBill account are made available by depositing
them in the merchant's bank account.

6

Figure 1: The Netbill Concept

C) NetBill Design

There are a number of operational challenges in making of an
electronic commerce systems technically and economically
feasible:

I) High transaction volumes at low cost. In this scheme
information is sold for a few pennies a page, and an electronic
commerce system must handle very large transaction volumes at a
marginal cost of a penny or less per transaction.

II) Authentication, privacy and security. In today’s infrastructure
Internet today provides no universally accepted means for
authenticating users, protecting privacy, or providing security.

III) Account management and administration. Customers and
merchants must be able to establish and monitor their accounts.

D) NetBill Architecture
NetBill offers a single protocol that implements charging in a wide
range of service interactions. NetBill provides transaction support
through libraries integrated with different client-server pairs.
These libraries use a single transaction-oriented protocol for
communication between client, server and NetBill; the normal
communications model between client and server is unchanged.
Clients and servers can continue to communicate using protocols
optimized for the application -- for example, video delivery or
database queries -- while the financial-related information is
transmitted over protocols optimized for that purpose. This
approach allows NetBill to work with information delivery
mechanisms ranging from the WWW to FTP and MPEG-2
streams.

The client library -- which is called the checkbook -- and the server
library -- the till -- have a well-defined API allowing easy
assimilation with a range of applications. (Underneath we describe
how these libraries are integrated with Mosaic clients and HTTP
servers.) The libraries incorporate all security and payment
protocols, relieving the client/server application developer from
having to worry about these issues. All network communications
between the checkbook and till are encrypted to protect against
adversaries who eavesdrop or inject messages.

E) The NetBill Transaction Protocol
Before a customer begins a typical NetBill transaction, she will
usually contact a server to locate information or a service of
interest. For example, the customer may request a Table of
Contents of a journal showing available articles available, and a
list price associated with each article. The transaction begins when
the customer requests a formal price quote for a product. This
price may be different than the standard list price because, for
example, the customer may be part of a site license group, and
thus be entitled to a marginal price of zero.

Journal of Theoretical and Applied Information Technology

 © 2005 JATIT. All rights reserved.

www.jatit.org

 Figure 2: Transaction Protocol

The customer's client application then indicates to the checkbook
library that it would like a price quote from a particular merchant
for a specified product. The checkbook library sends an
authenticated request for a quote to the till library which
forwards it to the merchant's application. (Figure 2, Step 1.)

The merchant then must invoke an algorithm to determine a
price for the authenticated user [5]. He returns the digitally
signed price quote through the till, to the checkbook (Step 2),
and on to the customer's application. The customer's application
then must make a purchase decision.

Assume the customer's application accepts the price quote. The
checkbook then sends (Step 3) a digitally signed purchase
request to the merchant's till. The till then requests the
information goods from the merchant's application and sends
them to the customer's checkbook encrypted in a one-time key
(Step 4), and computes a cryptographic checksum (such as MD5
) on the encrypted message. As the checkbook receives the bits,
it writes them to stable storage. When the transfer is complete,
the checkbook computes its own cryptographic checksum on the
encrypted goods and returns to the till a digitally signed message
specifying the product identifier, the accepted price, the
cryptographic checksum, and a timeout stamp: we refer to this
information as the electronic payment order (EPO) (Step 5).
Note that, at this point, the customer can not decrypt the goods;
neither has the customer been charged.

Upon receipt of the EPO, the till checks its checksum against the
one computed by the checkbook. If they do not match, then the
goods can either be retransmitted, or the transaction aborted at
this point. This step provides very high assurance that the
encrypted goods were received without error. If checksums
match, the merchant's application creates a digitally signed
invoice consisting of price quote, checksum, and the decryption
key for the goods. The application sends both the EPO and the
invoice to the NetBill server (Step 6).

The NetBill server verifies that the product identifiers, prices and
checksums are all in agreement. If the customer has the
necessary funds or credit in his/her account, the NetBill server
debits the customer's account and credits the merchant's account,
logs the transaction, and saves a copy of the decryption key. The
NetBill server then returns to the merchant a digitally signed
message containing an approval, or an error code indicating why
the transaction failed (Step 7). The merchant's application
forwards the NetBill server's reply and (if appropriate) the
decryption key to the checkbook (Step 8).

F) Protocol Failure Analysis
The NetBill server is highly reliable and highly available. All
transactions at the NetBill server are atomic: they either finish
completely or not at all. NetBill is never in doubt about the status
of a purchase.

First, consider the protocol from the perspective of the customer's
application. Up to step 5, when the customer application
acknowledges receipt of the information goods, the customer
application knows that no transaction has occurred. That is, the
customer does not have access to the product and the merchant
does not have the customer's money. Once the application sends
the EPO, the customer is committed to the transaction and must be
prepared to accept the purchase. If the customer's application does
not receive a response from the merchant's application, then it is
the responsibility of the customer's application to determine what
happened: the customer's application can poll either the merchant
application or the NetBill server to determine the status of the
purchase request. If the merchant's application did not successfully
forward the EPO to the NetBill server, then the EPO will have
expired and the NetBill server will respond to the customer's
application that the purchase has failed. Of course, the customer
still does not have the one time key, so while the customer still has
his/her money, she also does not have the goods. If, on the other
hand, the transaction succeeded before communication failed, then
the customer's application can find the status of the purchase and,
if appropriate, the decryption key from either the merchant's
application or the NetBill server (which has registered the key). If
both are unreachable, the customer's application must continue to
poll.
Now consider the protocol from the perspective of the merchant's
application. Before it forwards the EPO and invoice to the NetBill
server, the merchant's application knows that the transaction has
not occurred. After it forwards the EPO and invoice, however, the
merchant's application is committed to the transaction and must
obtain the result from the NetBill. If the merchant's application
does not receive a response from the NetBill server, the merchant's
application must poll the NetBill server.

The protocol is much simpler for the NetBill server than for the
other parties. The NetBill server is never in a state in which it
depends on a response from another entity to determine the status
of a transaction. Until the NetBill server receives the EPO and
invoice from the merchant's application, it knows nothing about
the purchase. Once it receives the EPO and invoice it has all the
information necessary to approve or reject the purchase. The
NetBill transaction protocol also exhibits a number of other
desirable features:

I) Support for flexible pricing. By including the steps of offer and
acceptance, an opportunity for the merchant is provided to
calculate a customized quote for an individual customer. In the
process we also generate signed messages that can later
prove that there was a contract at the quoted price.

II) Scalability. The bottleneck in the NetBill model is the NetBill
server which supports many different merchants. Our transaction
protocol minimizes the load on the NetBill server and distributes
the burden over the many customer and merchant machines. Note
that a single interaction with the NetBill server both verifies the
availability of funds and records the transaction. It is not possible
to have less than one interaction with the NetBill server .

III) Protection of user accounts against unscrupulous merchants.
In a conventional credit card transaction, the merchant learns the
customer's credit card number and can submit fraudulent invoices
in the customer's name. In a NetBill transaction, the customer

7

Journal of Theoretical and Applied Information Technology

 © 2005 JATIT. All rights reserved.

www.jatit.org
digitally signs the EPO using a key that is never revealed to the
merchant, thus eliminating this threat.

G) NetBill Account Management
NetBill supports a many-to-many relationship between
customers and accounts. A project account at a corporation can
have many users authorized to charge against it. Conversely, an
individual customer can maintain multiple personal accounts.
Every account has a single user who is the account owner; and
the account owner can grant various forms of access rights on
the account to other users. User account administration is
provided through WWW forms.

Automating account establishment for both customers and
merchants is important for limiting costs. (Account creation is
one of the largest costs associated with traditional credit card and
bank accounts.) To begin the process, a customer retrieves,
perhaps by anonymous FTP, a digitally signed NetBill security
module that will work with the user's WWW browser. Once the
customer checks the validity of the security module, she puts the
module in place. She then fills out a WWW form, including
appropriate credit card or bank account information to fund the
account, and submits it for processing. The security module
encrypts this information to protect it from being observed in
transit. The NetBill server must verify that this credit card or
banking account number is valid and that the user has the right to
access it. There are a variety of techniques for this verification:
for example, customers may telephone an automated attendant
system and provide a PIN associated with the credit card or bank
account to obtain a password.

3. PayWord

PayWord is credit-based protocol. In this scheme the players are
brokers, users, and vendors. Brokers authorize users to make
micropayments to vendors, and redeem the payments collected
by the vendors. While user-vendor relationships are transient,
broker-user and broker-vendor relationships are long-term. The
user establishes an account with a broker, who issues his/her a
digitally-signed PayWord Certificate containing the broker's
name, the user's name and IP-address, the user's public key, the
expiration date, and other information. The certificate has to be
renewed by the broker (e.g. monthly), who will do so if the user's
account is in good standing. This certificate authorizes the user
to make Payword chains, and assures vendors that the user's
PayWords are redeemable by the broker.

The public keys of the broker B, user U, and vendor V are
denoted PKB, PKU, and PKV , respectively; their secret keys are
denoted SKB, SKU, and SKV . A message M with its digital
signature produced by secret key SK is denoted { M } SK. This
signature can be verified using the corresponding public key PK.

When user U clicks on a link to a vendor V 's non-free web page,
his browser determines whether this is the first request to V that
day. For a first request, U computes and signs a “commitment"
to a new user-specific and vendor-specific chain of paywords w1,
w2, . . . , wn. The user creates the payword chain in reverse order
by picking the last payword wn at random, and then computing
 w i = h (w i+1)

for i = n - 1, n - 2, . . . , 0. Here w0 is the root of the payword
chain, and is not a payword itself. The commitment contains the
root w0, but not any payword wi for i > 0. Then U provides this
commitment and his/her certificate to V , who verifies their
signatures. The i-th payment (for i = 1, 2, . . .) from U to V
consists of the pair (wi , i), which the vendor can verify using w
i-1. Each such payment requires no calculations by U, and only a
single hash operation by V .At the end of each day, V reports to B
the last (highest-indexed) payment (w l, l) received from each user
that day, together with each corresponding commitment. B charges
U's account l cents and pays l cents into V 's account.

PayWord is an “offline" scheme: V does not need to interact with
B when U first contacts V, nor does V need to interact with B as
each payment is made. Note that B does not even receive every
PayWord spent, but only the last PayWord spent by each user each
day at each vendor. The public-key operations required by V are
only signature verifications, which are relatively efficient.

A) User-Broker relationship and certificates
User U begins a relationship with broker B by requesting an
account and a PayWord Certificate. She gives B over a secure
authenticated channel, his/her credit-card number, his/her public
key PKU, and his/her delivery address AU. His/her aggregated
PayWord charges will be charged to his/her credit-card account.
His/her delivery address is his/her Internet/email or his/her U.S.
mail address; his/her certificate will only authorize payments by U
for purchases to be delivered to AU.

The user's certificate has an expiration date E. Certificates might
expire monthly. Users who don't pay their bills won't be issued
new certificates. The broker may also give other (possibly user-
specific) information IU in the certificate,such as: a certificate
serial number, credit limits to be applied per vendor, information
on how to contact the broker, broker/vendor terms and conditions,
etc. The user's certificate CU thus has the form:
 CU = { B , U , AU , PKU , E , IU } SKB
The PayWord certificate is a statement by B to any vendor that B
will redeem authentic PayWord produced by U turned in before
the given expiration date

PayWord is not intended to provide user anonymity. Although
certificates could contain user account numbers instead of user
names, the inclusion of AU effectively destroys U's anonymity.
However, some privacy is provided, since there is no record kept
as to which documents were purchased. If U loses his/her secret
key she should report it at once to B. His/her liability should be
limited in such cases, as it is for credit-card loss. However, if she
does so repeatedly the broker may refuse his/her further service.
The broker may also keep a “hot list" of certificates whose users
have reported lost keys, or which are otherwise problematic.

B) User-Vendor relationships and payments
User Vendor relationships are transient. A user may visit a web
site, purchase ten pages, and then move on elsewhere.

C) Commitments
When user U is about to contact a new vendor V, she computes a
fresh PayWord chain w1,. . . , wn with root w0. Here n is chosen at
the user's convenience; it could be ten or ten thousand. She then
computes his/her commitment for that chain:
 M = { V , CU , w0 , D , IM } SKU

8

Journal of Theoretical and Applied Information Technology

 © 2005 JATIT. All rights reserved.

www.jatit.org
Here V identifies the vendor, CU is U's certificate, w0 is the root
of the payword chain, D is the current date, and IM is any
additional information that may be desired (such as the length n
of the payword chain). M is signed by U and given to V.

This commitment authorizes B to pay V for any of the paywords
w1, . . . , wn that V redeems with B before date D (plus a day's
grace). Note that paywords are vendor-specific and user-specific,
they are of no value to another vendor. The vendor V should
cache verified commitments until they expire at the end of the
day. Otherwise, if he redeemed and forgot paywords received
before the expiration date of the commitment, U could cheat V
by replaying earlier commitments and PayWords.

D) Payments
A payment P from U to V consists of a payword and its index, P
= (w i , i). The payment is short, only twenty or thirty bytes long.
The payment is not signed by U, since it is self-authenticating.
The user spends his/her paywords in order: w1 first, then w2,
and so on. If each payword is worth one cent, and each web page
costs one cent, then she discloses wi to V when she orders his/her
i-th web page from V that day. This leads to the PayWord
payment policy for each commitment a vendor V is paid l cents,
where (w l, l) is the corresponding payment received with the
largest index. This means that V needs to store only one payment
from each user, the one with the highest index. Once a user
spends w i , she can not spend w j for j < i. The broker can
confirm the value to be paid for w l by determining how many
applications of h are required to map wl into w0.

PayWord supports variable-size payments in a simple and
natural manner. If U skips paywords, and gives w7 after giving
w2, she is giving V a nickel instead of a penny. When U skips
paywords, during verification V need only apply h a number of
times proportional to the value of the payment made.

A payment does not specify what item it is payment for. The
vendor may cheat U by sending him nothing, or the wrong item,
in return. The user bears the risk of losing the payment, just as if
he had put a penny in the mail. Vendors who so cheat their
customers will be shunned. This risk can be moved to V , if V
specifies payment after the document has been delivered. If U
doesn't pay, V can notify B and/or refuse U further service. For
micropayments, users and vendors might find either approach
workable.

E) Vendor-Broker relationships and redemption
A vendor V need not have a prior relationship with B, but does
need to obtain PKB in an authenticated manner, so that he can
authenticate certificates signed by B. He also needs to establish a
way for B to pay V for paywords redeemed. (Brokers pay
vendors by means outside the PayWord system.)

At the end of each day (or other suitable period), V sends B a
redemption message giving, for each of B's users who have paid
V that day

• The commitment CU received from U.
• The last payment P = (w l , l) received from U.

The broker then needs to

• Verify each commitment received (he only needs to
verify user signatures, since he can recognize his own
certificates), including checking of dates, etc.

• Verify each payment (w l , l) (this requires l hash
function applications). We assume that B normally
honors all valid redemption requests.

F) Efficiency
Following are the PayWord's computational and storage
requirements

• The broker needs to sign each user certificate, verify
each user commitment, and perform one hash function
application per payment. The broker stores copies of
user certificates and maintains accounts for users and
vendors.

• The user needs to verify his certificates, sign each of his
commitments, and perform one hash function
application per PayWord committed to. He needs to
store his secret key SKU, his active commitments, the
corresponding payword chains, and his current position
in each chain.

• The vendor verifies all certificates and commitments
received, and performs one hash function application per payword
received or skipped over. (All his computations are on-line.) The
vendor needs to store all commitments and the last payment
received per commitment each day.

4. MicroMint
MicroMint is designed to provide reasonable security at very low
cost, and is optimized for unrelated low-value payments.
MicroMint uses no public-key operations at all. MicroMint
“coins" are produced by a broker, who sells them to users. Users
give these coins to vendors as payments. Vendors return coins to
the broker in return for payment by other means.

A coin is a bit-string whose validity can be easily checked by
anyone, but which is hard to produce. MicroMint has the property,
that generating many coins is very much cheaper, per coin
generated, than generating few coins. A large initial investment is
required to generate the first coin, but then generating additional
coins can be made progressively cheaper.

The broker will typically issue new coins at the beginning of each
month, the validity of these coins will expire at the end of the
month. Unused coins are returned to the broker at the end of each
month, and new coins can be purchased at the beginning of each
month. Vendors can return the coins they collect to the broker at
their convenience

A) Hash Function Collisions
MicroMint coins are represented by hash function collisions, for
some specified one-way hash function h mapping m-bit strings x
to n-bit strings y. We say that x is a pre-image of y if h(x) = y. A
pair of distinct m-bit strings (x1 , x2) is called a (2-way) collision
if h(x1) = h(x2) = y, for some n-bit string y.

If h acts “randomly," the only way to produce even one acceptable
2-way collision is to hash about 2n/2 x-values and search for
repeated outputs.

9

Journal of Theoretical and Applied Information Technology

 © 2005 JATIT. All rights reserved.

www.jatit.org
Hashing c times as many x-values as are needed to produce the
first collision results in approximately c2 as many collisions, for
1 ≤ c ≤ 2n/2, so producing collisions can be done increasingly
efficiently, per coin generated, once the threshold for finding
collisions has been passed.

B) Coins as k-way collisions
A k-way collision is a set of k distinct x-values x1, x2, . . . , xk
that have the same hash value y. The number of x-values that
must be examined before one expects to see the first k-way
collision is then approximately 2n(k-1)/k. If one examines c times
this many x-values, for 1 ≤ c ≤ 2n/k, one expects to see about ck
k-way collisions. Choosing k > 2 has the dual effect of delaying
the threshold where the first collision is seen, and also
accelerating the rate of collision generation, once the threshold is
passed.

We thus let a k-way collision (x1, . . . , xk) represent a coin. The
validity of this coin can be easily verified by anyone by checking
that the xi's are distinct and that
 h(x1) = h(x2) = . . . = h(xk) = y
for some n-string y.

C) Minting coins

The process of computing h(x) = y is analogous to tossing a ball
(x) at random into one of 2n bins; the bin that ball x ends up in is
the one with index y. A coin is thus a set of k balls that have
been tossed into the same bin. Getting k balls into the same bin
requires tossing a substantial number of balls altogether, since
balls can not be “aimed" at a particular bin. To mint coins, the
broker will create 2n bins, toss approximately k2n balls, and
create one coin from each bin that now contains at least k balls.
With this choice of parameters each ball has a chance of roughly
1/2 of being part of a coin.

Whenever one of the 2n bins has k or more balls in it, k of those
balls can be extracted to form a coin. Note that if a bin has more
than k balls in it, the broker can in principle extract k-subsets in
multiple ways to produce several coins. However, an adversary
who obtains two different coins from the same bin could
combine them to produce multiple new coins. Therefore, it is
recommended that a MicroMint broker should produce at most
one coin from each bin.

D) A detailed scenario
The broker will invest in substantial hardware that gives him a
computational advantage over would-be forgers, and run this
hardware continuously for a month to compute coins valid for
the next month. This hardware is likely to include many special-
purpose chips for computing h efficiently.

E) Selling coins
Towards the end of each month, the broker begins selling coins
to users for the next month. At the beginning of each month, B
reveals the new validity criterion for coins to be used that month.
Such sales can either be on a debit basis or a credit basis, since B
will be able to recognize coins when they are returned to him for
redemption. In a typical purchase, a user might purchase $25.00
worth of coins (2500 coins), and charge the purchase to his credit
card. The broker keeps a record of which coins each user bought.

Unused coins are returned to the broker at the end of each month.

F) Making payments
Each time a user purchases a web page, he gives the vendor a
previously unspent coin (x1, x2, . . . xk). The vendor verifies that it
is indeed a good k-way collision by computing h(xi) for 1 ≤ i ≤ k,
and checking that the values are equal and good. Note that while
the broker's minting process was intentionally slowed down by a
factor of 2t, the vendor's task of verifying a coin remains
extremely efficient, requiring only k hash computations and a few
comparisons.

G) Redemptions
The vendor returns the coins he has collected to the broker at the
end of each day. The broker checks each coin to see if it has been
previously returned, and if not, pays the vendor one cent (minus
his brokerage fee) for each coin. It is proposed that if the broker
receives a specific coin more than once, he does not pay more than
once. Which vendor gets paid can be decided arbitrarily or
randomly by the broker. This may penalize vendors, but eliminates
any financial motivation a vendor might have had to cheat by
redistributing coins he has collected to other vendors.

H) Security Properties
Security mechanisms are primarily designed to discourage large-
scale attacks, such as massive forgery or persistent double-
spending.

I) Forgery
Large-scale forgery can be detected and countered as follows:

1). All forged coins automatically become invalid at the end
 of the month.

2). Forged coins can not be generated until after the broker
announces the new monthly coin validity criterion at the beginning
of the month.

3). The use of hidden predicates (described below) gives a finer
time resolution for rejecting forged coins without affecting the
validity of legal coins already in circulation.

4). The broker can detect the presence of a forger by noting when
he receives coins corresponding to bins that he did not produce
coins from. This works well in our scenario since only about half
of the bins produce coins. To implement this, the broker need only
work with a bit-array having one bit per bin.

5). The broker can at any time declare the current period to be
over, recall all coins for the current period, and issue new coins
using a new validation procedure.

6). The broker can simultaneously generate coins for several
future months in a longer computation; this makes it harder for a
forger to catch up with the broker.

J) Theft of coins
If theft of coins is judged to be a problem during initial
distribution to users or during redemption by vendors, it is easy to

10

Journal of Theoretical and Applied Information Technology

 © 2005 JATIT. All rights reserved.

www.jatit.org
transmit coins in encrypted form during these operations.
User/broker and vendor/broker relationships are relatively stable,
and long-term encryption keys can be arranged between them.
To protect coins as they are being transferred over the Internet
from user to vendor, one can of course use public-key techniques
to provide secure communication. However, we can also make
the coins user specific.

K) Double-spending

Since the MicroMint scheme is not anonymous, the broker can
detect a doubly-spent coin, and can identify which vendors he
received the two instances from. He also knows which user the
coin was issued to. With the vendors' honest cooperation, he can
also identify which users spent each instance of that coin. Based
on all this information, the broker can keep track of how many
doubly-spent coins are asssociated with each user and vendor. A
large-scale cheater (either user or vendor) can be identified by
the large number of duplicate coins associated with his purchases
or redemptions; the broker can then drop a large-scale cheater
from the system.

5.MILLICENT

The key features of Millicent are its use of brokers and of scrip.
Brokers take care of account management, billing, connection
maintenance, and establishing accounts with vendors. Scrip is
digital cash that is only valid for a specific vendor. The vendor
locally validates the scrip to prevent customer fraud, such as
double spending.

In Millicent Brokers serve as accounting intermediaries between
customers and vendors. Customers enter into long-term
relationships with brokers, in much the same way as they would
enter into an agreement with a bank, credit card company, or
Internet service provider. Brokers acquire and sell vendor scrip
as a service to customers and vendors. Broker scrip serves as a
common currency for customers to use when buying vendor
scrip, and for vendors to give as a refund for unspent scrip.

A) Security and Trust

In Millicent, it is imagined that people treat scrip as they
would treat change in their pocket. Since people don't
need a receipt when buying candy from a vending
machine, they don't need a receipt when buying an item
using scrip. If they don't get what they paid for, they
complain and get a refund. It is expected that users have a
few dollars of scrip at a time. It is not expected that they
have hundreds, or even tens, of dollars of scrip. As a
result, scrip is not worth stealing unless you can steal lots
of it; and if you steal lots, you will get caught.

B) Trust model
Millicent assumes asymmetric trust relationships
among the three entities - customers, brokers, and
vendors. Brokers are assumed to be the most

trustworthy, then vendors, and, finally, customers.
The only time customers need to be trusted is when
they complain about service problems.

Three factors make broker fraud unprofitable. First, customer and
vendor software can independently check the scrip and maintain
account balances, so any fraud by the broker can be detected.
Second, customers do not hold much scrip at any one time, so a
broker would have to commit many fraudulent transactions to
make much of a gain and this makes them likelier to be caught.
Finally, the reputation of a broker is important for attracting
customers and a broker would quickly lose its reputation if
customers have troubles with the broker. The repeat business of
active customers is more valuable to a broker than the scrip that it
could steal.

Vendor fraud consists of not providing goods for valid scrip. If
this happens, customers will complain to their broker, and brokers
will drop vendors who cause too many complaints.

As a result, the Millicent protocol is skewed to prevent customer
fraud (forgery and double spending) while providing indirect
detection of broker and vendor fraud.

C) Security
The security of Millicent transactions comes from several aspects.

1) All transactions are protected
2) Every Millicent transaction requires that the customer

knows the secret associated with the scrip. The protocol
never sends the secret in the clear, so there is no risk due
to eavesdropping. No piece of scrip can be reused, so a
replay attack will fail. Each request is signed with the
secret, so there is no way to intercept scrip and use the
scrip to make a different request.

3) Inexpensive transactions limit the value of fraud
4) Inexpensive transactions can rely on inexpensive

security: it's not worth using expensive computer
resources to steal inexpensive scrip. In addition, it would
take many illegal uses of scrip to acquire much money,
and that raises the probability of getting caught.

5) Fraud is detectable and eventually traceable
6) Fraud is detected when the customer doesn't obtain the

desired goods from the vendor, or when the balance
returned to the customer doesn't match the balance due.
If the customer is cheating, then the vendor's only loss is
the cost of detecting the bad scrip and denying service. If
the vendor is cheating, the customer will report a
problem to the broker. notices a When a broker pattern
of complaints from many customers against a vendor, it
can pinpoint the fraud and cut off all dealings with the
vendor. If a broker is cheating, the vendor will notice
bad scrip coming from many customers, all originating
from a single broker. The vendor can then publicize its
complaint in an appropriate venue.

11

Journal of Theoretical and Applied Information Technology

 © 2005 JATIT. All rights reserved.

www.jatit.org
D) Scrip
The main properties of scrip are:

1) It has value at a specific vendor.
2) It can be spent only once.
3) It is tamper resistant and hard to counterfeit.
4) It can be spent only by its rightful owner.
5) It can be efficiently produced and validated.

Following are the basic techniques to achieve these properties
are outlined here:

1) The text of the scrip gives its value and identifies the
vendor.

2) The scrip has a serial number to prevent double
spending.

3) There is a digital signature to prevent tampering and
counterfeiting.

4) The customer signs each use of scrip with a secret that
is associated with the scrip.

5) The signatures can be efficiently created and checked
using a fast one-way hash function (like MD5 or
SHA).

E) Scrip structure

There are three secrets involved in producing, validating, and
spending scrip. The customer is sent one secret, the
customer_secret, to prove ownership of the scrip. The vendor
uses one secret, the master_customer_secret, to derive the
customer_secret from customer information in the scrip. The
third secret, the master_scrip_secret, is used by the vendor to
prevent tampering and counterfeiting.

The secrets are all used in a way that shows knowledge of the
secret without revealing the secret. To attest to a message, the
secret is appended to the message, and the result is hashed to
produce a signature. The message (without the secret) and the
signature prove - due to the one-way nature of the hash function
- knowledge of the secret, because the correct signature can only
be derived if you know the secret.

Scrip has the following fields :

1) Vendor identifies the vendor for the scrip.
2) Value gives the value of the scrip.
3) ID# is the unique identifier of the scrip. Some portion

of it is used to select the master_scrip_secret used for
the certificate.

4) Cust_ID# is used to produce the customer secret. A
portion of Cust_ID# is used to select the
master_customer_secret which is also used in
producing the customer secret.

5) Expires is the expiration time for the scrip.
6) Props are extra data describing customer properties

(age, state of residence, etc.) to the vendor.
7) Certificate is the signature of the scrip.

Scrip is validated in two steps. First, the certificate is recomputed
and checked against the certificate sent with the scrip. If the scrip
has been tampered with, then the two certificates will not match.
Second, there is a unique identifier (ID#) included in the scrip
body and the vendor can check for double spending by seeing if it
has recorded that identifier as already spent. Generating and
validating scrip each require a little text manipulation and one
hash operation. Unless the secret is known, scrip cannot be
counterfeited or altered.

F) Brokers

Brokers maintain the accounts of customers and vendors, and they
handle all real-money transactions. The customer establishes an
account with a broker by using some other method (like a credit
card, or a higher-security electronic commerce system) to purchase
some broker scrip. The customer then uses the broker scrip to buy
vendor scrip.

The vendor and the broker have a long-term business relationship.
The broker sells vendor scrip to customers and pays the vendor.

When a customer wants to make a purchase, the customer contacts
the broker to obtain the necessary vendor scrip. The customer uses
his broker scrip to pay for the vendor scrip using the Millicent
protocol. The broker returns the new vendor scrip along with
change in broker scrip.

There are three ways in which the broker gets the vendor scrip.
The "scrip warehouse" model assumes a casual relationship
between the broker and vendor. The "licensed scrip producer"
model assumes a substantial and long-lasting relationship between
the broker and vendor. The "multiple broker" model assumes a
relationship between brokers, but requires no relationship between
the vendor and broker.

G) Scrip warehouse

1) When the broker is acting as a scrip warehouse, the
broker buys multiple pieces of scrip from a vendor. The broker
stores the scrip and sells the pieces one at a time to customers

2) The broker uses the Millicent protocol to buy the scrip
from the vendor in the same way a customer would. Selling scrip
in large blocks is more efficient for the vendor since the
communication and financial transaction costs are amortized over
all the pieces of scrip.

H) Licensed scrip production

If a broker's customers buy a lot of scrip for a specific vendor, it
may be desirable for a vendor to "license" the broker to produce
vendor scrip. This means that the broker generates scrip that the
vendor can validate and accept. The vendor sells the the broker the
right to generate scrip using a given master_scrip_secret, series of
scrip ID#'s, master_customer_secret, and series of customer
identifiers. The vendor can validate the licensed scrip because the
master_scrip_secret is known from the series of the scrip ID# and
the master_customer_secret is known from the series of the
customer identifier.

12

Journal of Theoretical and Applied Information Technology

 © 2005 JATIT. All rights reserved.

www.jatit.org
A license covers a specific series (unique range of identifiers -
ID#'s) of scrip for a given period of time, and the secrets shared
between the broker and vendor only apply to that series. A
vendor can issue licenses to different brokers by giving out
different series and secrets to each one. Of course, a vendor can
produce its own scrip using its own private series and secrets.

There is less communication because the license is smaller to
transmit than a few pieces of scrip. The vendor does less
computation since it does not have to generate the scrip itself.
The broker does not have to store large blocks of scrip, since it
can generate the scrip on demand. Additionally, it allows the
broker to encode specific user properties into each piece of scrip
it generates.

I) Multiple brokers

In an environment where there are multiple brokers, a customer
of one broker may want to make a purchase from a vendor
associated with another broker. If the vendor only wants to have
an account with its own broker (perhaps to simplify accounting),
the customer will have to go through the vendor's broker to buy
vendor scrip.

The entire transaction will go like this:

1) The customer asks his broker for vendor scrip.
2) The customer's broker tries to set up account with the

vendor.
3) The vendor tells the customer's broker his broker's name.
4) The customer's broker buys broker scrip from the vendor's

broker.
5) The customer's broker returns the vendor's broker's scrip to

the customer.
6) The customer buys vendor scrip from the vendor's broker.
7) The customer uses the vendor scrip at the vendor.

J) Customer, Broker, and Vendor Interactions

The following diagrams (Figures a-e) present the steps for a
complete Millicent session (including the broker buying scrip
from the vendor). The initial step (Figure a) happens only once
per session. The second step (Figure b) happens each time the
customer has no stored scrip for a vendor. Step three (Figure c)
happens only if the broker must contact the vendor to buy the
scrip. It is not needed for licensed scrip production. The fourth
step (Figure d) shows the broker returning the vendor scrip to the
customer. The fifth step (Figure e) shows the customer using the
scrip to make a purchase from the vendor. The last step (Figure
f) shows a typical Millicent transaction. The customer already
has vendor scrip and uses it to make a purchase. There are no
extra messages or interactions with the broker.

Figure a: The client makes a secure connection to the broker
to get some broker scrip.

Figure b: If the client doesn't already have scrip for a
particular vendor, he contacts the broker to buy some using
his broker scrip.

Figure c: If the broker doesn't already have scrip for that
vendor, he buys some from the vendor.

13

Journal of Theoretical and Applied Information Technology

 © 2005 JATIT. All rights reserved.

www.jatit.org

Figure d: The broker returns vendor scrip and change (in
broker scrip) to the client.

Figure e: The customer uses the vendor scrip to make a
purchase from the vendor. The vendor returns change (in
vendor scrip) to the client.

Figure f: The customer continues using the change to make
more purchases.

6. MPTP

MPTP is an asynchronous protocol. Much of the processing
required for the transaction may be done offline. In particular

payment does not require an online communication with the
broker. MPTP is also symmetric, there is no distinction between
customer and vendor accounts except in relation to specific
transactions where the flow of payment is generally in a single
direction. MPTP may be layered on a variety of Internet protocols
including HTTP and SMTP/MIME.

MPTP involves three parties, a customer C who makes the
payment, a vendor V who receives the payment and a broker B
who keeps accounts for the parties concerned. At present only a
single broker model is considered, this means that both customer
and vendor must share the same broker. Note however that the
protocol does not restrict the broker to use of a single server.
Support for Inter-Broker transfers will be required in the long term
to permit the system to be scaled effectively.
A) Policy

MPTP is designed to be policy neutral, permitting a broker to offer
a wide number of policy options. Individual vendors may thus
choose the precise terms on which they offer goods. Customers
may choose the terms they are willing to accept on a vendor by
vendor basis

MPTP permits a considerable degree of flexibility in establishing a
payments policy. A vendor may permit a customer a certain
amount of trade before requiring a firm payment commitment or
require all purchases to be paid for in advance. The first policy
may be applicable where the goods offered cannot be evaluated by
the customer in advance. A Vendor who has established a
reputation with the customer may be in a position to insist on prior
payment.

B) Mechanism

In the MPTP a payment order consists of two parts, a digitally
signed payment authority and a separate payment token which
determines the amount. A chained hash function is used to
authenticate the token. To create the payment authority the
customer first chooses a value wn at random. The customer then
calculates a chain of payment tokens (or paychain) w0, w1, ... wn by
computing

 wi = h (wi+1)

Where h is a cryptographically secure one way has function such
as MD5 or SHA .

The signed payment authority contains w0, the root of the payment
chain and defines a value for each link in the chain. Payments are
made by revealing successive paychain tokens. Once the vendor or
broker has authenticated a payment authority an arbitrary payment
token may be authenticated by performing successive hash
functions and comparing against the root value. It should be noted
however that the broker is only presented with the final payment
order. It is therefore unnecessary for the broker to maintain large
online databases.

MPTP permits use of double payment chains. This allows
implementation of a broker mediated satisfaction guarantee
scheme. The pair of payment chains represent the high and low

14

Journal of Theoretical and Applied Information Technology

 © 2005 JATIT. All rights reserved.

www.jatit.org
watermarks for the payment order. The low watermark chain
represents the amount that the customer has fully committed to
pay. The high watermark chain represents partial commitments.
The vendor exposure is the difference between the counter
values. MPTP also supports use of multiple payment counters
denoting different units of currency. This allows some
optimization of processing time through shortening of the
payment chains.

MPTP provides protection against double spending through
vendor and broker checking of authority identifiers. The size of
required Vendor authority identifier matching tables (th double
spending buffermay be controlled by checking that the authority
timestamp is within bounds. An alternative approach would
incorporate challenge/response sequence into the session
establishment protocol. This could be used to simplify broker
double spending prevention measures if constraints were placed
on the challenge identifiers. The reduction in vendor resource
requirements do not appear to justify an additional round trip
delay however.

The mechanism could be modified to use a collection of payment
tokens as opposed to a chain. Each token would consist of a the
hash of a shared secret which would be revealed to make a
payment. This might provide a solution to possible patent
difficulties concerning the use of the Lamport hash chain
mechanism. It would also permit payments to take place in
parallel.

C) Signature

MPTP permits use of both shared secret and public key based
signature schemes. Schneier describes a wide variety of public
key signatures schemes and one way hash functions suitable for
constructing Message Authentication Codes (MACs). Choice of
algorithm, key length etc. is left to the parties involved. It is
desirable to minimize the latency introduced in the signing of the
initial payment order and also to minimize computational needs
of the vendor and broker.

D) Certificates and establishment of trust.

Certificates bind a public key to an account number under the
public key of the broker. It is assumed that the broker public key
is known to all parties. Each party generates their own public-
private key pair locally. The public key certificate is
communicated to the broker at account establishment.

Account revocation lists are supported to enable credit risks to be
prevented from engaging in further abuse. Separate certificate
revocation lists are not supported since compromise of public
key certificates may be dealt with through the same mechanism.

The following certificate attributes are supported:

I) IP-Address mask, value
 Specifies a set of internet addresses for which the
 certificate is valid. Only payment requests originating
from IP addresses which equal the specified value after
being logically ANDed with the mask. If more than one IP-
Address attribute is specified a single match is sufficient.

II) Not Guaranteed amount
 The broker will not guarantee that payment will be
made for amounts exceeding the specified amount.
III) Guaranteed amount
 The broker guarantees payment up to the specified
amount without separate authorization.

IV) Authorization-Required amount
 Payments above the specified amount require
separate authorization to be guaranteed.

E) CREDIT LIABILITY

If a broker chooses to act as guarantor for a payment a credit
liability risk may be incurred. Note that MPTP supports an option
for the broker to transfer this risk to the vendor by refusing a
guarantee of payment.

In either case a credit liability is incurred. Such liabilities are a
familiar consideration in the financial industry. A similar risk is
accepted in parts of the publishing industry where newspapers
are sold from unattended vending machines which cannot control
the number of copies taken by each customer. In certain countries
no precautions are taken to prevent a copy being taken without any
payment at all.

F) Credit Abuse

The problem of credit abuse is linked to but distinct from that of
credit liability risks. For example an account might be created in a
false name and its authentication information widely published
with the intention of permitting general access to charged material
for free.

Credit abuse might be discovered through broker tracing of
payment patterns to detect sudden increases in payment activity
and then terminated through the revocation list mechanism. The
case of widespread use of a single connection may be controlled
through checking of the certificate IP-Address attribute if
specified. If no IP address attribute is specified a vendor might
employ code to detect accesses from multiple IP addresses within
a suspiciously short interval.

G) Counterfeiting

MPTP payment orders are vendor specific and digitally signed.
Provided the signature scheme is secure it is not possible for a
party to construct a payment order without having access to the
secret information corresponding to the key.

H) Unauthorized Withdrawal

Unauthorized withdrawal is not possible without detection by the
account holder who may require an audit trail from the broker for
each transaction. Note that this requires the broker to maintain a
substantial quantity of online logging information.

I) PURCHASE ORDER MODIFICATION

15

Journal of Theoretical and Applied Information Technology

 © 2005 JATIT. All rights reserved.

www.jatit.org
In a purchase order modification attack an external party
modifies a purchase request in order to cause different goods to
be delivered. This risk is not directly addressed in the MPTP
scheme although the satisfaction guaranteed policy might be
used to protect the customer. Without authentication of the
purchase order there is no method of avoiding this attack. The
costof this authentication might be reduced by establishing a
shared key between vendor and customer during the session
establishment protocol. Such shared keys might have a lifetime
spanning several payment orders.

J) Double Spending

Payment orders are specific to a particular vendor and carry a
unique authority identifier. A broker is required to detect an
attempt to deposit the same payment order more than once and
act accordingly. In some cases this may mean increasing the
amount of payment authorized.

K) Failure to Credit Payment

Currently MPTP does not address this risk. A Broker may
deliberately deduct a payment amount from the account of one
party without making a corresponding credit to another party.
One approach to this problem is to make information concerning
bad debts available for scrutiny. A broker might be required to
issue a frequent list of bad debts signed under the broker's public
key. Such debts might be rendered unlikable through a use of a
one way hash function on the authority identifier. The proportion
of bad debts might be concealed through addition of padding. In
this way both customer and vendor could ensure that the broker
acted in good faith.

L) Denial of Service

Denial of service is a significant risk, unfortunately it is one that
the underlying infrastructure of the Internet does not protect
against. Consequently any application protocol level protection
against a denial of service attack can at best provide limited
protection against this risk. Use of Shamir's signature screening
algorithm substantially reduces the risk of a denial of service
attack against a vendor or broker through construction of bogus
payment orders.

M) Repudiation

MPTP payment orders are non-repudiable in the sense that the
customer cannot deny having made a payment authorization.
This is distinct from the option for a vendor or broker to permit a
customer the right to refuse payment after receiving the goods.

N) Failure to deliver

Failure to deliver may occur for many reasons including vendor
fraud. The Internet is an unreliable transport medium and a
customer may in good faith offer to buy an article and a vendor
in good faith may intend to supply but delivery fail nevertheless.
The HTTP protocol in particular does not currently provide for
customer acknowledgment of receipt. One solution to the failure
to deliver risk is to permit the customer to refuse payment
through the “satisfaction guaranteed" policy.

O) FRAMING
The vendor has the opportunity to frame a customer, albeit at a
direct monetary loss to himself. In this scenario a vendor receives
a valid payment chain from a customer but chooses not to deliver
the authorization paychain token, instead delivering only the
promissory paychain token. The vendor is thus able to frame the
customer, albeit at the cost of the payment.

P) Payment Flow
I) Session Establishment by Customer

The customer performs the following steps to create an Authority:
1). Calculates paychains, stores head, may additionally
store all or part of paychain.
2.) Creates unique authority identifier. Alternatively the paychain
root might be used for this purpose.
3). Fills remaining slots in Authority structure.
4). The authority is sent to the vendor.

II) Session Establishment by Vendor

On receipt of an Authority the vendor performs the following
steps:
1). The date of the authority is checked to ensure that it is within
the vendor determined permitted timeframe.

2.) The authority identifier is checked against those in the double
spending check buffer.
3). The authority identifier is added to the double spending check
buffer.
4). If public key signatures are used the signature of the customer
certificate validated.
5). If public key signatures are used: The signature of the authority
is validated.
6). If the account certificate does not offer the required payment
guarantees or symmetric signatures are used: A validation request
is performed.
7). The Authority is appended to the online file.

III) Session Establishment with Validation Request by Vendor

If the vendor determines that an account enquiry is required an
account enquiry is created:

1). The account enquiry packet is created
2). The account enquiry is authenticated using a MAC and a

shared secret established between vendor and broker.
3). The account enquiry is sent to the broker.

IV) Session Establishment with Validation Request by Broker

1). A Validation Request is received.
2). The validation request is authenticated.
3). The account information corresponding to the
customer id is retrieved.

4). A decision is made to accept or reject the authorization.

5). The Validation Response is sent to the Vendor .

16

Journal of Theoretical and Applied Information Technology

 © 2005 JATIT. All rights reserved.

www.jatit.org
V) Session Establishment with Validation Request by Vendor
On receipt of an account enquiry response a vendor:

1). Checks to see that the response is genuine.
2). Checks to see that the account is authenticated and the
required payments guarantees provided.

The Customer may then send a sequence of PayWords which are
processed as follows:

VI) Payment Transfer by Customer

The Customer prepares a Charge message as follows:
1). The Authority information corresponding to the vendor id is
retrieved.
2). The Payword(s) corresponding to the desired payment
amount is determined.
3). The Charge message is sent to the vendor.

VII) Payment Transfer by Vendor

The Vendor processes the Charge message as follows:

1). The vendor receives the charge message.
2). The session record is retrieved using the authority-id.
3). The PayWord is validated using the paychain root.
4). The PayWord information and increment are updated in the
session record.

7. Parameters

A) Computational Cost

For computational cost, a rough guide is that hash functions are
about 100 times faster than RSA signature verification, and
about 10,000 times faster than RSA signature generation, on a
typical workstation, one can sign two messages per second,
verify 200 signatures per second, and compute 20,000 hash
function values per second.

PayWord's computational requirements are that the broker needs
to sign each user certificate, verify each user commitment, and
perform one hash function application per payment, however all
these computations are offline. The user needs to verify his
certificates, sign each of his commitments, and perform one hash
function application per PayWord committed to. The vendor
verifies all certificates and commitments received, and perform
one hash function application per PayWord received.

In Micromint the broker has to mint coins, for this purpose the
broker will create 2n bins, toss approximately k2n balls, and
create one coin from each bin that now contains at least k balls.
With this choice of parameters each ball has a chance of roughly
1/2 of being part of a coin. The vendor's task of verifying a coin
remains extremely efficient, requiring only k hash computations
and a few comparisons.

In NetBill each transaction requires seven symmetric
encryption/decryption operations and three Hashing operations.

In Millicent the scrip is digitally signed by the broker to prevent
tampering and counterfeiting. The customer signs each use of
scrip with a secret that is associated with the scrip. The Vendor

can efficiently check the script using a fast one-way hash function
like MD5 or SHA.

In MPTP the customer bears the most substantial processing costs.
Establishment requires the creation of a pay-chain and digital
signature. The vendor must process two signature verifications per
establishment of a payment session and one hash operation per
PayWord transferred. The broker must perform one signature
verification per collection, plus one hash calculation per PayWord
transferred. All broker calculations may be performed offline.

B) Communication Cost

Emerging applications in electronic commerce of today involve
very low-cost transactions, which execute in the context of
ongoing, extended client-server relationships. For example,
consider a web-site (server) which uses repeated authenticated
personalized stock quotes to each of its subscribers (clients). The
value of a single transaction (e.g., de-livery of a web-page with a
customized set of quotes) does not warrant the cost of executing a
handshake and key distribution protocol.
Using the following noteworthy techni-cal aspects we have
performed the comparison.

 Client-side shared key computation
 Client-side shared key management
 Server-side shared key management
 Modular structure

Most prominent factors identified that affect the computation cost
are Secrecy, Consistency, Efficiency, Modular Security and
Impersonation resistance.

In Payword scheme vendor has to communicate to broker once a
day for the payment of money in return of PayWords which he
earned that day. User has to communicate to the Vendor when the
purchase of goods takes place. User has to communicate to the
vendor once a month for the exchange of PayWords.

In Micromint scheme vendor has to communicate to broker once a
day for the payment of money in return of coins. User has to
communicate to the Vendor when the purchase of goods takes
place. User has to communicate to the broker once a month for the
purchase of new coins and returning the unspent coins of last
month.

In NetBill each transaction requires eight (8) interactions between
customer, merchant and NetBill server. The customer sends an
authenticated request for a quote to the merchant. The merchant
then determine a price for the authenticated user and returns the
digitally signed price quote to the customer. The customer sends a
digitally signed purchase request to the merchant. The merchant
then sends the encrypted goods to the customer. Now customer
sends the digitally signed electronic payment order to the
merchant. The merchant sends this EPO along with the decryption
key to the net bill server. The NetBill server returns merchant a
digitally signed message containing an approval, or an error code
indicating why the transaction failed. The merchant then forwards
the NetBill server's reply to the customer along with the
decryption key.

Millicent requires four (4) interactions between customer, vendor
and broker for each transaction. First customer requests broker the
scrip of vendor for payment to the vendor against broker scrip.

17

Journal of Theoretical and Applied Information Technology

 © 2005 JATIT. All rights reserved.

www.jatit.org
Broker returns the vendor scrip to customer. Customer then
requests the vendor for goods against vendor scrip. Vendor then
provides the goods to customer.

In MPTP scheme vendor has to communicate to broker once a
day for the payment of money in return of PayWords which he
earned that day. User has to communicate to the Vendor when
the purchase of goods takes place. User has to communicate to
the vendor once a month for the exchange of PayWords.

C) Storage Cost

In PayWord the Broker should store all the certificates issued by
him to the users .The vendor should store verified commitments
until they expire at the end of the day. Otherwise, if he redeemed
(and forgot) PayWords received before the expiration date of the
commitment, user could cheat vendor by replay attack. The user
should preferably also store his commitment until he believes
that he is finished ordering information from vendor.

In Micromint scheme the broker keeps a record of coins that user
has bought from him. Vendor also stores the coins which he
earned during the day and at the end of day he returns them to
broker for money. User stores all his coins which he bought at
the start of the month till the end of month, he purchased goods
by spending these coins and at the end of month he returns the
unspent coins.

NetBill server stores each transaction’s complete information.
This information all resides in Electronic Payment Order. In
EPO following important identities are stored.
These are User Identity , Product ID , Price , Merchant ID,
Cryptographic check sum of goods etc.

In Millicent broker stores the scrip of all the vendors with which
his customers interacts and give these scrip to users for purchase
of goods, and similarly vendor stores the scrip of all brokers
collected from the customers in return of goods against which
brokers paid him. User only stores only the scrip of vendors
which he obtained from the broker.

In MPTP Customer stores the computed paychains in complete
or partial form. The vendor must maintain an online record for
each open session. This record is fixed length consisting of the
authority identifier and payer identifier from the authority, and
the paychain root or most recent valid pay-word plus the
currency unit. If the symmetric signature option is not provided
the broker may perform almost all operations offline in batch.
Incoming collection requests from vendors may be pre-processed
to optimize access to secondary storage such as disk. Detection
of double spending requires a record of all transactions to be
available at the time when a record is added. This need not
involve the expense of online memory however.

D) Privacy

Privacy is a necessary concern in electronic commerce. It is
difficult, if not impossible, to complete a transaction without
revealing some personal data – a shipping address, billing
information, or product preference. Users may be unwilling to
provide this necessary information or even to browse online if

they believe their privacy is invaded or threatened. People are
concerned about privacy, particularly on the Internet.

Some parties involved may wish confidentiality of transactions.
Confidentiality in this context means the restriction of the
knowledge about various pieces of information related to a
transaction: the identity of payer/payee, purchase content, amount,
and so on. Where anonymity or un-traceability are desired, the
requirement may be to limit this knowledge to certain subsets of
the participants only.

In Payword scheme privacy is lost because of the use of email
address in each transaction. Privacy is achieved in Micromint
since no user data is sent to vendor. However if the user specific
coins are used than privacy is lost. In NetBill privacy is achieved
since no user data is sent to vendor. In Millicent the secrets are
used in a way that shows knowledge of the secret without
revealing the secret. To attest to a message, the secret is appended
to the message, and the result is hashed to produce a signature. In
MPTP scheme privacy is achieved since (certificate) authority is
used and no user information is received.

E) Repudiation

Repudiation is that the originator of a message falsely denies later
that they were the party that sent the message. It is much easier to
repudiate an electronic business transaction then in the Cash based
system. Thus the protocol should prevent the denial of previous
commitments or actions. This can be achieved through digital
signatures. Digital Signatures are bit patterns that depend upon the
message being signed and use some information unique of the
sender.

In Payword the user cannot repudiate since the PayWord is
digitally signed by private key of user and the Broker also cannot
repudiate since the PayWord is digitally signed by private key of
Broker. Micromint transactions are non repudiable since the coins
are user specific and Broker cannot repudiate since the coins are
generated by broker and can be checked. NetBill transactions are
also non repudiable since digital signature of user are used.
Millicent ensures non repudiability by enforcing the customer to
sign each use of scrip with a secret that is associated with the
scrip. MPTP payment orders are non-repudiable in the sense that
the customer cannot deny payment authorization made by him.

F) Reliability
Fault tolerance and reliability is a must in any enterprise class
deployment. Commercial web applications in fields such as
shopping, financial and stock markets constitute the most
important market segment for high-performance servers today. As
the popularity of such commercial applications on web servers
increase, there is an increasing amount of dynamic pages using
server side scripts, as opposed to static html pages that dominated
internet traffic until a few years ago. This increases the workload
on servers that host these sites significantly, such as increased
CPU time, memory usage and response time spent servicing
requests. Such on-line transaction processing (OLTP) workloads
provide a challenging set of requirements for Fault Tolerance,
such as High Availability and Reliability. Even a slight reduction
of availability and reliability in such Servers could lead to
tremendous business losses. Studies have shown that service
downtime, even for relatively brief periods can cause major losses

18

Journal of Theoretical and Applied Information Technology

 © 2005 JATIT. All rights reserved.

www.jatit.org
of revenue, staff hours, and customer confidence and on
customer side can also cause both financial and psychological
agony. It is therefore no longer acceptable to be running mission
critical or revenue- generating services without some kind of
fault tolerant and reliability features.

A reliable payment system is the one that allows no money to be
taken from a user without explicit authorization by that user. It
may also disallow the receipt of payment without explicit
consent, to prevent occurrences of things like unsolicited bribery.
Payment transactions must be atomic: They occur entirely or not
at all, but they never hang in an unknown or inconsistent state.
Moreover the system should be available at all time. Denial of
service is a significant risk, unfortunately it is one that the
underlying infrastructure of the Internet does not protect against.

Payword and Micromint are highly reliable due to the use of
multi-Broker and multi-Vendor schemes. Thus the failure of one
of the broker or the vendor does not affect the overall system.
NetBill is reliable since all the transactions are atomic they occur
entirely or not at all, but they never hang in an unknown or
inconsistent state however it can be badly effected by the Dos/
DDos Attacks resulting in total failure of the system. Millicent
and MPTP also provide high reliability by using scheme of
multi-Broker and multi-Vendor scheme.

G) Offline / Online
Concern in online transactions is always about how the online
medium influences satisfaction and loyalty and the relationship
between satisfaction and loyalty. Typically, online customers can
more easily compare alternatives than offline customers,
especially for functional products and services. A competing
offer is just a few clicks away on the Internet.

Because of this potential for “frictionless commerce,” many
managers fear that the online environment might raise
customers’ expectations about the service, making them less
satisfied and also more prone to switching to, or among,
competing services. In other words, the online medium may
induce lower customer satisfaction and loyalty compared to the
offline medium, and that increased satisfaction with a service
may not lead to higher loyalty when that service is chosen
online. [9].
But research survey have showed that people care more about
the actual service received, which apparently is no different
whether the service is chosen online or offline [9]

In an online scheme, when a vendor receives digital cash, he
must contact the issuer to see if it is valid and not already spent.
This extra communication makes the central site a bottleneck
and adds cost to the transaction. In an off-line scheme, the
vendor authenticates the digital cash during the transaction and
then later transmits it to the issuer. This scheme adds
computational costs to the vendor for authenticating the digital
cash, and adds messages and encryption to the protocol for
pinpointing the source of the double spending.

Payword, Micromint, MPTP and Millicent are the offline
schemes while the NetBill is the online scheme.

G)Trust

An important barrier to the widespread diffusion of electronic
commerce among consumers is “the fundamental lack of faith
between most businesses and consumers on the web today. In
essence, consumers simply do not trust most Web providers
enough to engage in relationship exchanges (financial /
commercial).

None of these protocols discusses trust as a separate criteria and it
is a highly under explored topic needing much research. In simple
terms, trust can be defined as the belief by one party about another
party that the other party will behave in a predictable manner
(Luhmann 1979) [11].

Two important elements of trust by a focal party about the other
party are: (1) the perception of risk and vulnerability by the focal
party in dealing with the other party and (2) the expectation that
the other party will behave in the interest of the focal party
(Rousseau et al. 1998).[12] Trust
has been extensively studied in communication, computer science,
information systems, management, marketing, philosophy,
psychology, and political science since the 1950’s. Although each
field has its own definition(s), they all have contributed to a better
understanding of trust in general. According to our understanding
two types of trust exist:
(1) offline trust that involves the offline activities of the firm and
its relationships with its customers and other stakeholders. (2)
online trust that involves the firm’s business activities in the e-
medium.
Although online trust is similar to offline trust in many ways, there
are some important distinctions. In offline trust, the object of trust
is typically a human or an entity (organization). In online trust,
typically, the technology (mainly the Internet) itself is a proper
object of trust (Marcella 1999). In a sense, a firm’s Web site is its
salesperson that needs to build trust with her/his customers
(Jarvenpaa et al. 1999). There is, however, some degree of overlap
or transfer of trust between the online and offline environments.

It is obvious form the above discussion that online trust is to be the
main concern when having a technical peek at the E-commerce.
With the emergence of multiple touch point or multi channel
marketing, consistency in online trust and in trust across the
multiple touch points is becoming important.
Dayal et al. (1999) discuss security, merchant legitimacy and
fulfillment as important determinants of online trust and claims
that trustworthiness affects credibility [13].

We can also use virtual-advisor technology to gain customer
confidence and belief, provide unbiased and complete information
and design protocols to keep tag and include information on
competitive products and tag promises to promote trust. Reliability
in fulfillment is a key aspect of trust, so reliability issue concern is
a good step towards next generation trustworthy protocols.
Furthermore disclosed patterns of past performance, references
from past and current users, get third-party certifications, and
make locality assurance easy, awareness and enforcing of policies
involving privacy and security must be there. Trust can be
enhanced by credit card loss assurance, warranty and merchandise
return policies, availability of escrow service, ability to schedule
human customer service, and availability of user friendly

19

Journal of Theoretical and Applied Information Technology

 © 2005 JATIT. All rights reserved.

www.jatit.org
interfaces. Privacy statements and third party involvement can
improve trust (Palmer et al. 2000). Because different
organizations such as retailer, shipping courier, and bank are
involved in an online transaction, online trust may increase if
these organizations are properly rated and compiled result
accessible to the user.

The consequences of above include intention to act, satisfaction,
loyalty, traffic, price, revenues and profitability. Online trust is a
relatively under explored topic that offers several promising
avenues for future research including the roles of multiple
stakeholders, the impact of strategic alliances etc.

Keeping in view the above discussion no protocol of today
fulfills these quality attributes of trust thus is not a candidate of
being fully trustworthy but can claim to be partially trustworthy.

8. CONCLUSION
For users to adopt e-commerce, it is imperative that the benefits
of using this new commercial medium significantly outweigh
potential risks and inconveniences. Indeed, difficulty of use and
lack of trust with respect to online payment, privacy and
consumer service have been found to constitute a real
psychological barrier to e-commerce. Although it is not up to
interaction designers and usability engineers to solve issues
linked to legislation or cryptography, it is argued that they can
nevertheless play an important role in ensuring the
trustworthiness.

We discussed the fundamental problems of designing and
analyzing protocols specialized towards secure E-commerce
which formalizes interactions in this highly sophisticated and
intricate environment. We have discussed and analyzed five
emerging micro commerce protocols namely NetBill, Payword,
Micromint, Millicent and Micro payment transfer protocol. The
analysis is done the basis of eight parameters which are
Computational cost, Communication Cost, Storage cost,
Repudiation, Reliability, Privacy and online/offline. It has been
established in the research that protocol design is a mounting
problem since so many tradeoffs have to be considered. These
issues are as old as communication itself. Only when the
interpretation of the protocol rules had to be automated in
technically diverse environment, was it discovered that protocol
design in itself can be a challenging problem. The protocols
being developed for e-commerce are larger and more
sophisticated than ever before. They try to offer more
functionality and reliability, but as a result they have increased in
size and in complexity. The problem that a designer now faces is
fundamental, that is, how to design large sets of rules for
information exchange that are minimal, logically consistent,
complete, and efficiently implemented.

The problem in all such systems is to come up with an
unambiguous set of rules that allows one to initiate, maintain,
and complete information exchanges reliably.

During this research venture it is concluded by the study of
architectural designs that none of these five protocols is a whole
solution, but there exist tradeoffs. The main trade off is between
security and cost. If we increase the security then the overall cost

also increases as in the case of NetBill. By addressing these issues
we hope to converge towards a unanimously adoptable scheme in
this regard. But due to such diversity in issues there is little chance
that the world will agree on a single scheme for electronic
payments in near future. However, the world needs one card
holder scheme, not one per brand or one per country.

Future work
A Forrester survey found that 51% of companies would not trade
with parties they do not trust over the Web. Lack of trust is one of
the greatest barriers inhibiting online trade between buyers and
sellers who are unfamiliar with one another [10].
On basis of this research we intend to provide a conceptual
architectural framework for single ecommerce scheme to get rid of
most of the shortfalls of the current ecommerce protocols and give
a research bed for ecommerce on basis of which world will agree
on a single scheme for electronic payments in near future. As
mentioned above the world needs one card holder scheme, not one
per brand or one per country.

REFERENCES

[1] M. Sirbu and J. D. Tygar. “ NetBill: An Internet Commerce
 System Optimized for Network Delivered Services “. In
 IEEE Personal Communications, 2(4) pages 34Ð39,
 August 1995.

[2] M. Sirbu and J. D. Tygar. “ NetBill Security and
 Transaction Protocol “. Carnegie Mellon University
 Pittsburgh, January 1996.

[3] Ronald L. Rivest, Addi Shamir. ”Payword and Micromint”.
 In Proceedings of the International Symposium on
 Ecommerce, October 2002.

[4] Steve Glassman et all. The Millicent protocol for
 inexpensive electronic commerce

[5] MicroPayment Transfer Protocol (MPTP)
 Version 0.1, W3C Working Draft, November 1995

[6] Mark E. Peters. Emerging eCommerce Credit and Debit
 Protocols, In proceedings of the third International
 Symposium on Ecommerce, IBM Corporation, October
 2002.

[7] Randy C. Marchany and Joseph G. Tront. E-Commerce
 Security Issues, Proceedings of the 35th Hawaii
 International Conference on System Sciences, 2002

[8] N. Asokan and Michael Waidner. The State of the Art in
 Electronic Payment Systems, IBM Research Laboratory,
 1997

[9] Customer Satisfaction and Loyalty in Online and Offline

Environments Venkatesh Shankar, Amy K. Smith, Arvind
Rangaswamy. October 2000, Revised, May 2002

[10]Beyond “web of trust”: Enabling P2P E-commerce

Anwitaman Datta, Manfred Hauswirth, Karl Aberer

20

Journal of Theoretical and Applied Information Technology

 © 2005 JATIT. All rights reserved.

www.jatit.org
Distributed Information Systems Lab ´ Ecole Polytechnique
F´ed´erale de Lausanne (EPFL) CH-1015 Lausanne,
Switzerland

 [11] LUHMANN, N. (1979), TRUST AND POWER, JOHN WILEY AND
SONS, LONDON.

[12] Rousseau, Denise, M. Sitkin, Sim B. Ronals S. (1998). "Not

so Different after All: A Cross-discipline View of Trust"
Academy of Management Review, 23 (3), 393-404.

[13] Dayal, Sandeep, Helene Landesberg, and Michael Zeisser

(1999), “How to Build Trust
 Online,” Marketing Management, Fall, 64-69.

21

	2. NETBILL
	Security and Trust��In Millicent, it is imagined that people
	B) Trust model�Millicent assumes asymmetric trust relationships among the three entities - customers, brokers, and vendors. Brokers are assumed to be the most trustworthy, then ve
	C) Security
	The security of Millicent transactions comes from several as

	D) Scrip�The main properties of scrip are:
	E) Scrip structure
	F) Brokers
	G) Scrip warehouse

	When the broker is acting as a scrip warehouse, the broker b
	The broker uses the Millicent protocol to buy the scrip from
	H) Licensed scrip production

	There is less communication because the license is smaller t
	I) Multiple brokers

	J) Customer, Broker, and Vendor Interactions
	C) Signature

	E) Credit Liability
	I) Purchase Order Modification
	O) Framing
	8. Conclusion

