ENHANCE FUZZY COMMITMENT SCHEME: AN APPROACH FOR POST QUANTUM CRYPTOSYSTEM

J.P.PANDEY¹, D.B.OJHA², AJAY SHARMA³
¹ Prof., Department of Electrical Engineering, KNIT, U.P.T.U., Sultanpur India-228118
² Asstt.Prof., Department of Mathematics, RKGIT, Ghaziabad, India -201003
³ Lecturer(Sr.Grade), Department of Information Technology, RKGIT, Ghaziabad, India -201003
E-mail: toippandey@rediffmail.com, ojhdb@yahoo.co.in, ajaypulastya@gmail.com

ABSTRACT

This paper attempt has been made to explain a fuzzy commitment scheme with McEliece scheme because the efficiency and security of this cryptosystem is comparatively better than any other cryptosystem. Since this scheme is one of the interesting candidates for post quantum cryptography. Hence our interest to deal this system with fuzzy commitment scheme.

Key words: Cryptography, Error Correcting Codes, Fuzzy logic and Commitment scheme, McEliece scheme.

1. INTRODUCTION

We combine well-known techniques from the areas of error-correcting codes and cryptography to achieve an improve type of cryptographic primitive. Fuzzy commitment scheme is both concealing and binding: it is infeasible for an attacker to learn the committed value, and also for the committer to decommit a value in more than one way. In a conventional scheme, a commitment must be opened using a unique witness, which acts, essentially, as a decryption key. It accepts a witness that is close to the original encrypting witness in a suitable metric, but not necessarily identical. This characteristic of fuzzy commitment scheme makes it useful for various applications. Also in which the probability that data will be associate with random noise during communication is very high. Because the scheme is tolerant of error, it is capable of protecting data just as conventional cryptographic techniques.

McEliece proposed the first public-key cryptosystem (McEliece Scheme) based on algebraic coding theory in 1978[1]. The idea behind this public-key cryptosystem is based on the fact that the decoding problem of an arbitrary linear code is an NP-hard problem[2]. The McEliece has the advantage of high speed encryption and decryption and this system employs probabilistic encryption [3,4], which is better than other type of deterministic encryption[5,6] in preventing the elimination of any information leaked through public-key cryptography.

Protocols are essentially a set of rules associated with a process or a scheme defining the process. Commitment protocols were first introduced by Blum[7]. Moreover in the conventional commitment schemes, opening key are required to enable the sender to prove the commitment. However there could be many instances where the transmission involves noise or minor errors arising purely because of the factors over which neither sender nor the receiver have any control, which creates uncertainties. Fuzzy commitment scheme was first introduced by Juels and Martin[8]. The new property “fuzziness” in the open phase to allow, acceptance of the commitment using corrupted opening key that is close to the original one in appropriate metric or distance.

2. PRELIMINARIES

2.1. Crisp Commitment Schemes

In a commitment scheme, one party Alice(sender) aim to entrust a concealed message m to the second party Bob(receiver), intuitively a commitment scheme may be seen as the digital equivalent of a sealed envelope. If Alice wants to
commit to some message \(m \) she just puts it into the sealed envelope, so that whenever Alice wants to reveal the message to Bob, she opens the envelope. First of all the digital envelope should hide the message from Bob: he should be able to learn \(m \) from the commitment. Second, the digital envelope should be binding, meaning with this that Alice can not change her mind about \(m \), and by checking the opening of the commitment one can verify that the obtained value is actually the one Alice had in mind originally.

2.2. The McEliece public-Key Cryptosystem

Secret Key: \(W \) is a random \((k \times k)\) nonsingular matrix over \(GF(2) \), called the scrambling matrix, \(T \) is a \((k \times n)\) generator matrix of binary Goppa code \(T \) with the capability of correcting an \(n \)-bit random error vector of weight less than or equal to \(\alpha \), and \(Q \) is a random \((n \times n)\) permutation matrix.

Public Key: \(V = WTQ \)

Encryption: \(c = mV + e \), where \(m \) is a \(n \)-bit message, \(c \) is \(n \)-bit ciphertext, and \(e \) is an \(n \)-bit random error vector of weight \(\alpha \).

Decryption: The receiver first calculates \(c' = cQ^{-1} = mWT + eQ^{-1} \), where \(Q^{-1} \) is the inverse of \(Q \). Because the weight of \(eQ^{-1} \) is the same as the weight of \(e \), the receiver uses the decoding algorithm of the original code \(T \) to obtain \(m' = mW \). Finally, the receiver recovers \(m \) by computing \(m = m'W^{-1} \), where \(W^{-1} \) is the inverse of \(W \).

2.3 Definition:

A metric space is a set \(C \) with a distance function \(\text{dist} : C \times C \rightarrow R^+ = [0, \infty) \), which obeys the usual properties (symmetric, triangle inequalities, zero distance between equal points).

2.4 Definition:

Let \(C \{0,1\}^n \) be a code set which consists of a set of code words \(c_i \) of length \(n \). The distance metric between any two code words \(c_i \) and \(c_j \) in \(C \) is defined by

\[
\text{dist}(c_i, c_j) = \sum_{r=1}^{n} |c_{i,r} - c_{j,r}| \quad c_i, c_j \in C
\]

This is known as Hamming distance [9].

2.5 Definition:

An error correction function \(f \) for a code \(C \) is defined as

\[
f(c_i) = \{c_j / \text{dist}(c_i, c_j) \text{ is the minimum, over } C - \{c_i\}\}
\]

Here, \(c_j = f(c_i) \) is called the nearest neighbor of \(c_i \).

2.6 Definition:

The measurement of nearness between two code words \(c \) and \(c' \) is defined by

\[
\text{nearness}(c, c') = \text{dist}(c, c') / n,
\]

it is obvious that \(0 \leq \text{nearness}(c, c') \leq 1 \).

2.7 Definition:

The fuzzy membership function for a codeword \(c' \) to be equal to a given \(c \) is defined as[10]

\[
F(UZ(c')) = 0, \text{if nearness}(c, c') = z \leq z_0 < 1
\]

\[
= z, \text{otherwise.}
\]

3. ENHANCE FUZZY COMMITMENT SCHEME: A APPROACH FOR POST QUANTUM CRYPTOSYSTEM

First select secret key \(W \) is a random \((k \times k)\) nonsingular matrix over \(GF(2) \) called the scrambling matrix, \(T \) is a \((k \times n)\) generator matrix of a binary Goppa code \(T \) with the capability of correcting \(n \)-bit random error vector of weight less than or equal to \(\alpha \), and \(Q \) is a random \((n \times n)\) permutation matrix.

Public Key: \(V = WTQ \)

A tuple \(\{P, H, M, f\} \) where \(M \subseteq \{0,1\}^k \) is a message set which consider as a code, \(P \) is a set of individuals, generally with three elements \(A \) as the committing party, \(B \) as the party to which commitment is made and \(TC \) as the trusted party, \(f \) is error correction function and \(H = \{t_i, a_i\} \) are called the events occurring at
times \(t_i, i = 0,1,2 \), as per algorithm \(a_i, i = 0,1,2 \).

The scheme always culminates in either acceptance or rejection by \(A \) and \(B \).

In the setup phase, the environment is setup initially and public commitment key \(CK \) generated, according to the algorithm

\[
\text{setupa}(0, a, t_0)\]

and published to the parties \(A \) and \(B \) at time \(t_0 \). During the commit phase, Alice commits to a message \(m \in M \) then she finds \(mVmg \).

Encryption:

\[
emVE = m + e, \quad \text{where } m \text{ is the } k \text{-bit message, } c \text{ is an } n \text{-bit cipher text and } e \text{ is an } n \text{-bit random error vector of weight } \alpha.
\]

According to the algorithms \(\text{commita}(g) \), string \(c \) i.e. her commitment

\[
c = \text{commita}(g)(XOR, g(m), E),
\]

then after Alice sends \(c \) to Bob, which Bob will receive as \(t(c) \), where \(t \) is the transmission function which includes noise.

In the open phase, Alice sends the procedure for revealing the hidden commitment at time \(t_2 \) and Bob uses this.

So Alice discloses the procedure \(g(m) \) and \(E \) to Bob to open the commitment.

Opena \(\text{lg}(e_2) \): Bob constructs \(c' \) using

\[
\text{commita}(g), \quad \text{message } t(m) \text{ and opening key}
\]

\(i.e \quad c' = \text{commita}(g)(XOR, t(g(m)), t(E)) \) and checks whether the result is same as the received commitment \(t(c) \).

Fuzzy decision making

\[
\text{If } (\text{nearness}(t(c), f(c')) \leq Z_0)\]

Then \(A \) is bound to act as in \(m \)

Else he is free not to act as \(m \).

Then after acceptance, Bob calculates \(f(c')(WTQ)^{-1} \) and finally get the message.

3. OUR PROCESS

Secret Key: \(W \) is a random \((4 \times 4)\) nonsingular matrix over \(GF(2) \), called the scrambling matrix, \(T \) is a \((4 \times 7)\) generator matrix of binary Goppa code \(T \) with the capability of correcting an 7-bit random error vector of weight less than or equal to \(\alpha \), and \(Q \) is a random \((7 \times 7)\) permutation matrix.

Public Key: \(V = WTQ \)

Encryption: Let \(g : m \rightarrow mV \), where \(m \) is a 4-bit message. Then after for the sake of secrecy add error \(e \), which is a 7-bit random error vector of weight \(\alpha \).

Then \(E = g(m) + e \), \(E \) is a 7-bit ciphertext.

Now commitment

\[
c = \text{commita}(g)(CK, g(m), E).
\]

Decryption: The receiver first calculates

\[
c' = \text{commita}(g)(CK, t(g(m), t(E))),\quad \text{where } t \text{ is the transmission function.}
\]

The receiver checks the \(\text{dist}(t(c), c') \neq 0 \), then apply Error Correction function \(f \) to \(c' \) and finds \(f(c') \). Then after apply

Fuzzy decision making:

\[
\text{If } (\text{nearness}(t(c), f(c')) \leq Z_0)\]

Then \(A \) is bound to act as in \(m \)

Else he is free not to act as \(m \).

Then receiver uses the decoding algorithm of the original code \(T \) to obtain \(m' = mWTQ \). Finally, the receiver recovers \(m \) by computing \(m = m'(WTQ)^{-1} \), where \((WTQ)^{-1} \) is the inverse of \(WTQ \).

4. CONCLUDING REMARKS

In this paper, we used McEliece scheme. As we know that if \(n \in N \) and let \(F = \{0,1\} \) be the field of two elements, consider \(F \)-vector space \(F^n \), then a decoding problem having

\[
n, k \in N, k \leq n, \text{an } (n,k) - \text{code } C, \quad \text{and } y \in F^n
\]

to find \(x \in C \) such that \(\text{dist}(x, y) \) is minimum. For \(y = 0 \) the decoding problem is the minimum weight problem if \(x \neq 0 \). Berlekamp, McEliece, and Van Tilborg [2] show that the minimum weight problem is NP-complete. Linear codes can be used for error correction. A message \(m \in F^k \) is encoded as \(z = mC \).

The encoded message \(z \) is transmitted. It is possible that during the transmission some bits of \(z \) are changed. The receiver receives the incorrect message \(y \). He solves the decoding problem, that is, he calculates \(x \in C \) such that \(\text{dist}(x, y) \) is minimum. If the error is not too big, that is,

\[\text{dist}(z, y) < \frac{1}{2d} \]

where \(d \) is the minimum distance of any two distinct code words, then \(x \) is equal to the original message \(z \). Linear codes are also used for encryption, for example in the McEliece cryptosystem [2], to encrypt a message it is encoded and an error vector of fixed weight \(\alpha \) is added. Decryption requires the solution of the decoding problem. In order for error correction to be efficient, the decoding problem must be efficiently solvable. Also, coding theory based cryptosystems can only be secure if decoding is hard without the knowledge of a secret. This is both true for binary Goppa codes. Decryption of a coding theory based cryptosystem means solving a decoding problem for which the weight of the error vector is known. If we have no special knowledge about the linear code such as a generating polynomial of a Goppa code, then generic methods for decoding can be used. The efficiency and security of McEliece cryptosystem comparatively better than the RSA cryptosystem also[11]. Hence our approach is more appropriate than previous literature of fuzzy commitment schemes.

REFERENCES:
