QOS ROUTING USING LINK AND NODE STABILITY IN MOBILE AD HOC NETWORKS

Shuchita Upadhayaya, Charu Gandhi
Department of Computer Science and Applications, Kurukshetra University, Kurukshetra-136118, India
Shuchita_bhasin@yahoo.com, er.charu.gandhi@gmail.com

ABSTRACT

Mobile Ad hoc Networks are highly dynamic networks. Quality of Service (QoS) routing in such networks is usually limited by the network breakage due to either node mobility or energy depletion of the mobile nodes. Also, to fulfill certain quality parameters, presence of multiple node-disjoint paths becomes essential. Such paths aid in the optimal traffic distribution and reliability in case of path breakages. Thus, to cater such problem, we present a node-disjoint multipath protocol. The metric used to select the paths taking into account both the link stability and energy levels of the nodes.

Keywords: QoS routing, Mobile Ad hoc Networks, Energy-Aware Routing.

I. INTRODUCTION

A Mobile Ad hoc Network (MANET) [4,8] is collection of mobile/semi mobile nodes with no existing pre-established infrastructure, forming a temporary network. Each mobile node in the network acts as a router. Such networks are characterized by: Dynamic topologies, existence of bandwidth constrained and variable capacity links, energy constrained operations and are highly prone to security threats. Due to all these features routing is a major issue in ad hoc networks. The routing protocols for ad hoc networks have been classified as proactive/table driven e.g. Destination Sequenced Distance Vector (DSDV) [20], Optimized Link State Routing (OLSR) [13], Reactive/On-demand, e.g. Dynamic Source Routing Protocol (DSR) [2], Ad hoc On-Demand Distance Vector routing protocol (AODV) [1], Temporally Ordered Routing Algorithm (TORA) [13] and Hybrid, e.g. Zone Routing Protocol (ZRP), [25].

Quality of Service (QoS) based routing is defined in RFC 2386 [18] as a "Routing mechanism under which paths for flows are determined based on some knowledge of resource availability in the network as well as the QoS requirement of flows." The main objectives of QoS based routing are [18]: Dynamic determination of feasible paths for accommodating the QoS of the given flow under policy constraints such as path cost, provider selection etc, optimal utilization of resources for improving total network throughput and graceful performance degradation during overload conditions giving better throughput. QoS routing strategies are classified as source routing, distributed routing and hierarchical routing [21]. QoS based routing becomes challenging inMANETs, as nodes should keep an up-to-date information about link status. Also, due to the dynamic nature of MANETs, maintaining the precise link state information is very difficult. Finally, the reserved resource may not be guaranteed because of the mobility-caused path breakage or power depletion of the mobile hosts. QoS routing should rapidly find a feasible new route to recover the service. Our motive in this paper is to design a routing technique, which considers all three above problems together. We define a metric that attempts to maintain a balance between mobility and energy constraints in MANETs.

2. RELATED WORKS

In the recent period lot of research has been done in QoS based, multi-path and node disjoint routing. Lately, the upcoming concern is the energy issues in mobile ad hoc networks (MANETs) The recent studies extensively focused on the multipath discovering extension of the on-demand routing protocols in order to alleviate single-path problems like AODV[1] and DSR[5], such as high route discovery latency, frequent route discovery attempts and possible improvement of data transfer.
throughput. The AODVM (AODV Multipath) AOMDV[14], is a multipath extension to AODV. These provide link-disjoint and loop free paths in AODV. Cross-layered multipath AODV (CM-AODV) [9], selects multiple routes on demand based on the signal-to-interference plus noise ratio (SINR) measured at the physical layer. The Multipath Source Routing (MSR) protocol [20] is a multipath extension to DSR uses weighted round robin packet distribution to improve the delay and throughput. (Split Multipath Routing) [20] is another DSR extensions, which selects hop count limited and maximally disjoint multiple routes. Node-Disjoint Multipath Routing (NDMR) [24], provides with node-disjoint multiple paths. Other energy aware multipath protocols which give disjoint paths are Grid-based Energy Aware Node-Disjoint Multipath Routing Algorithm GEANDMRA) [26], Energy Aware Source Routing (EASR)[10] and Energy Aware Node Disjoint multipath Routing(ENDMR)[15]. The Lifetime-Aware Multipath Optimized Routing (LAMOR)[12] is based on the lifetime of a node which is related to its residual energy and current traffic conditions. Cost-effective Lifetime Prediction based Routing (CLPR) [23], combines cost efficient and lifetime predictions based routing. Minimum Transmission Power Routing (MTPR)[14], Power-aware Source Routing(PSR)[16].

2.1 Dynamic Source Routing Protocol (DSR):
The Dynamic Source Routing (DSR) [2] is a reactive unicast routing protocol that utilizes source routing algorithm. In source routing algorithm, each data packet contains complete routing information to reach its destination. In DSR each node also maintains route cache to maintain route information that it has learnt. There are two major phases in DSR [2], the route discovery phase and the route maintenance phase. When a source node wants to send a packet, it firstly checks its route cache. If the required route is available, the source node includes the routing information inside the data packet before sending it. Otherwise, the source node initiates a route discovery operation by broadcasting route request packets. A route request packet contains addresses of both the source and the destination and a unique number to identify the request. Receiving a route request packet, a node checks its route cache. If the node doesn’t have routing information for the requested destination, it append its own address to the route record field of the route request packet. Then, the request packet is forwarded to its neighbors.

To limit the communication overhead of route request packets, a node processes route request packets that both it has not seen before and its address is not presented in the route record field. If the route request packet reaches the destination or an intermediate node has routing information to the destination, a route reply packet is generated. When the route reply packet is generated by the destination, it comprises addresses of nodes that have been traversed by the route request packet. Otherwise, the route reply packet comprises the addresses of nodes the route request packet has traversed concatenated with the route in the intermediate node’s route cache.

3. PROBLEM ISSUE

Nodes in Mobile Ad hoc Networks (MANETs) [4,8] are battery driven. Thus, they suffer from limited energy level problems. Also the nodes in the network are moving, if a node moves out of the radio range of the other node, the link between them is broken. Thus, in such an environment there are two major reasons of a link breakage:

a) Node dying of energy exhaustion
b) Node moving out of the radio range of its neighboring node

Hence, to achieve the route stability in MANETs, both link stability and node stability is essential.

The above mentioned techniques consider either of the two issues. Techniques in [19, 14, 20,24] calculate only multiple paths. Both stability issues are neglected in these. The work in [9] measures route quality in terms of SINR, which gives reliable links, but overall networks stability is not considered. Though [23] uses lifetime of a node as a generalized metric, it does not considers the mobility and energy issues which are critical to network - lifetime estimation. The protocol in [26] considers the energy issues in terms of the energy expenditure in data transmission, but the lifetime of the node and mobility factor is not discussed [7, 15, 14, 16] consider only energy metric to route the traffic.

Also, to send a packet from a source to destination many routes are possible. These routes can be either link disjoint or node-disjoint. Node disjoint protocols have an advantage that they prevent the fast energy drainage of a node which is the member of multiple link disjoint paths [24]. Hence, a technique which finds multiple node-disjoint
paths considering both link and node stability has been proposed. The attempt is to find multiple node disjoint routes which consider both link stability and the node stability on their way.

4. METRICS USED

To measure link and node stability together we are using two metrics, Link Expiration Time (LET) [23] and Energy Drain Rate (EDR) [6] respectively. These two metrics can be used to generate a composite metric which keeps track of the stability level of the entire path.

Mobility Factor: The mobility factor Link Expiration Time (LET) was proposed in [23], by using the motion parameters (velocity, direction) of the nodes. It says that if \(r \) is the transmission distance between the two nodes, \(i \) and \(j \), \((x_i, y_i)\) and \((x_j, y_j)\) be the position co-ordinates and \((v_i, \theta_i)\) and \((v_j, \theta_j)\) be the (velocity, direction) of motion of nodes. LET is defined as:

\[
\text{LET} = -(ab + cd) + Q / (a^2 + c^2) \quad (1)
\]

Where, \(Q = \sqrt{(a^2 + c^2)r^2 - (ad - bc)^2} \) and,

\[
a = v_i \cos \theta_i - v_j \cos \theta_j \\
b = x_i - x_j \\
c = v_i \sin \theta_i - v_j \sin \theta_j \\
d = y_i - y_j
\]

The motion parameters are exchanged among nodes at regular time intervals through GPS. The above parameter suggests that if the two nodes have zero relative velocity, i.e., \(v_i = v_j \) and \(\theta_i = \theta_j \), the link will remain forever, as, LET will be \(\infty \).

Energy factor: Most of the energy based routing algorithms [14, 15, and 16], send large volume of data on the route with maximum energy levels. As a result, nodes with much higher current energy levels will be depleted of their battery power very early.

The mobile node also loses some of it energy due to overhearing of the neighboring nodes. Thus, a node is losing its power over a period of time even if no data is being sent through it. Viewing all these factors a metric called Drain Rate (DR) was proposed in [17]. Drain Rate of a node is defined as the rate of dissipation of energy of a node. Every node calculates its total energy consumption every \(T \) sec and estimates the DR. Actual Drain Rate is calculated by exponentially averaging the values of \(\text{DR}_{\text{old}} \) and \(\text{DR}_{\text{new}} \) as follows:

\[
\text{DR} = \alpha \text{DR}_{\text{old}} + (1 - \alpha) \text{DR}_{\text{new}} \quad (2)
\]

Where, \(0 < \alpha < 1 \), can be selected so as to give higher priority to updated information. Thus, higher the Drain Rate, faster the node is depleted of its energy.

5. PROPOSED WORK: NODE DISJOINT MULTIPATH ROUTING CONSIDERING LINK AND NODE STABILITY (NDMLNR)

The main aim of the proposed work is to find the multiple node disjoint routes from source to a given destination. The routes selected are such that all the links of the routes are highly stable. This will increase the lifetime of the route. Also it keeps track of the route bandwidth which can be further used by the source to select the optimal routes. From the factors Link Expiration Time (LET) and Drain Rate (DR) it is inferred that the Link Stability:

a) Depends directly on Mobility factor

b) Depends inversely on the energy factor

Hence, Link Stability Degree (LSD) is defined as:

\[
\text{LSD} = \frac{\text{Mobility factor}}{\text{Energy factor}} \quad (3)
\]

It defines the degree of the stability of the link. Higher the value of LSD, higher is the stability of the link and greater is the duration of its existence. Thus, a route having all the links with LSD > LSD thr is the feasible route.

We choose the Dynamic Source Routing (DSR) [2] protocol as a candidate protocol, details of which are given in section 2. Modifications are made to the Route Request (RREQ) and Route Reply (RREP) packets to enable the discovery of link stable node disjoint paths. The proposed scheme has three phases:

1. Route Discovery
2. Route Selection
3. Route Maintenance

The various phases are as follows:

5.1 Route Discovery

The source node when needs to send packet to some destination node, starts the route discovery procedure by sending the Route Request packet to all its neighbors. In this strategy, the source is not allowed to maintain route cache for a long time, as network conditions change very frequently in terms of position and energy levels of the nodes. Thus, when a node needs route to the destination, it initiates a Route Request packet, which is broadcasted to all the neighbors which satisfy the broadcasting condition.
The Route Request (RREQ) packet of the DSR [2] is extended as RREQ of the NDMLNR adding two extra fields, LSD and Bandwidth, B as shown in fig I. RREQ contains type field, source address field, destination field, unique identification number field, hop field, LSD, Bandwidth (cumulative bandwidth), Time - to-Live field and path field. **Type (T) field:** It indicates the type of packet, SA (Source Address) field: It carries the source address of node, ID field: unique identification number generated by source to identify the packet. DA (Destination Address) field: It carries the destination address of node. **Time To Live (TTL) field:** It is used to limit the life time of packet, initially, by default it contains zero. **Hop field:** It carries the hop count; the value of hop count is incremented by one for each node through which packet passes. Initially, by default this field contains zero value. **LSD field:** When packet passes through a node, its LSD value with the node from which it has received this packet is updated in the LSD field. Initially, by default this field contains zero value. **Bandwidth field:** carries the cumulative bandwidth of the links through which it passes; initially, by default this field contains zero value. **Path field:** It carries the path accumulations, when packet passes through a node; its address is appended at end of this field. The fig I. shows the RREQ packet.

The Route Reply packet (RREP) of the DSR [2] is extended as RREP of the NDMLNR adding Bandwidth field. It is sent by the destination node after selecting the node disjoint paths among the various RREQ packets reaching it.

2. When an intermediate node receives a RREQ for the first time, it introduces a Wait Period, W. for the subsequent packets if any, with same identification number, traveling through different paths. It updates the value of LSD corresponding to the link on which it received the RREQ packet in the LSD field. It then checks its neighbors for QoS parameters, bandwidth here. Only those neighbors having LSD> LSD thr and Link Bandwidth >= B are considered for broadcasting. Once the neighbors with required LSD are selected, node forwards packet. Later if an intermediate node receives duplicate RREQ packets with same (Source address and ID), as received from other paths, those duplicate RREQ packets will be dropped.

3. Every node maintains a Neighbor Information Table (NIT), to keep track of multiple RREQs. With following entries Source Address, Destination Address, Hops, LSD, ID and bandwidth.

Fig 2. Neighbor Information Table (NIT)

<table>
<thead>
<tr>
<th>SA</th>
<th>DA</th>
<th>ID</th>
<th>Hops</th>
<th>LSD</th>
<th>Bandwidth</th>
</tr>
</thead>
</table>

As a RREQ reaches a node it enters its information in the NIT. It makes all the entries for the requests till Wait Period. At the end of the Wait Period, it accepts the request with the highest value in LSD field. It adds the value of the link bandwidth to the Bandwidth field of the RREQ packet. If two RREQs have same LSD values, the one with lesser value of hop count is selected. In case, hops are also same, one with higher bandwidth is selected. In the worst case, RREQ is selected on First-come-first-serve basis. This prevents loops and unnecessary flooding of RREQ packets.

4. None of the intermediate nodes is allowed to send RREP if it has the current route to the destination. As doing this may lead to those paths which do not fulfill current QoS requirements.

Destination node

In the NDMLNR, when the destination receives multiple RREQs, it selects the paths with disjoint nodes. It then generates several replies and unicasts them to the source. Before that it appends its address and adds total bandwidth to each route request. Now each route reply that reaches the source contains a node-disjoint path from source to destination. Hence, source
knows all the paths to the destination and their respective bandwidths. In case of two paths with one or more nodes common, the path with higher bandwidth is selected.

5.2 Route Selection
When the source node receives the RREPs from the multiple paths, it sorts the paths in the order of the increasing bandwidth. Depending on the bandwidth the source decides to use the single path, or all of the paths. In case of the multiple paths with same bandwidths, path with minimum number of hops is selected.

5.3 Route maintenance
In case, LSD of a node falls below LSDthr, it informs its predecessor node of the node failure by sending the NODEOFF message. Once a node receives such a message, it sends the ROUTEDISABLE message to the source node. Source can then reroute the packets to the backup routes. If no backup routes exists, the source then starts the route discovery procedure again.

6. CONCLUSION
The above mentioned technique considers both link and node stability. This technique is expected to provide highly stable, reliable, robust node disjoint paths. As the paths are node disjoint, energy drain rate of the nodes is expected to be less and hence longer lifetime. As the routes are selected completely satisfying stability and capacity constraints, this technique fully complies with QoS objectives.

REFERENCES

[18]. RFC2386.

[24]. X. Li, Ph.D thesis on "Multipath Routing and QoS Provisioning in Mobile Ad hoc Networks", Queen Mary University of London, Apr 2006.