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ABSTRACT 
 

This paper presents a reinforced genetic approach to a defined d-resource system optimization problem. The 
classical evolution schema was ineffective due to a very strict feasibility function in the studied problem. 
Hence, the presented strategy has introduced several modifications and adaptations to standard genetic 
routines, e.g.: a migration operator which is an analogy to the biological random genetic drift. 
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1. INTRODUCTION  
 

A fundamental goal in computer science is to 
provide an algorithm which would determine an 
optimal solution in acceptable time. Computational 
Complexity Theory is the field which studies the 
efficiency of computation; its major goals are to 
find efficient algorithms for natural problems or to 
show that no efficient solutions exist.  

NP-hard (Nondeterministic Polynomial-time 
hard), represents a class of problems which are ‘at 
least as difficult as problems in NP’ [7][19]. NP-
complete problems can be solved by means of 
exhaustive search. However the time to wait for the 
solution grows unacceptably with the problem size 
as the number of iterations needed to solve the 
problem becomes tremendous [19]. In such a case 
the best we can hope for are super-polynomial time 
algorithms. The ‘P versus NP’ problem is one of 
the seven open Millennium Prize Problems of the 
Clay Mathematics Institute. It is now commonly 
believed that P ≠ NP [7][19][22] and it is rather 
unlikely that there can ever be any efficient 
(Polynomial Time) exact algorithms able to solve 
NP-hard problems. 

NP-hard problems may be of any type, ranging 
from search, decision, or optimization problems to 
feasibility problems [19]. Discrete optimization 
problems are generally NP-hard problems.  

In Computational Complexity Theory, a meta-
heuristic algorithm (the term ‘meta-heuristic’ is 
originally derived from the Greek ‘μετá’ (a higher 
level) and ‘ευρισκειν’ (to discover)) is a scientific 
method that solves a problem with the help of 
iterative stochastic processes. A heuristic algorithm  

 
 
usually gives up the optimality of the solution in 
order to finish within a satisfactory timeframe [22]. 
Generally speaking, it is able to find quite a good 
solution, but there is no proof that the result could 
not be better or that the solution found by the 
heuristic algorithm would be feasible in the first 
place. 

Genetic Algorithms play a significant role 
among meta-heuristics schemas due to their 
universality and scalability [8][9]. Additionally, 
Genetic Algorithms are able to fulfil their tasks 
even in the presence of noise [15] and, unlike other 
AI schemas; they do not break even if inputs 
change significantly [4]. Genetic Algorithms may 
also offer significant benefits over a more typical 
search of optimization techniques as they can be 
applied to several problems without any major 
changes in their design [2][11][14][20]. 

In this paper, a reinforced evolution approach to 
defined NP-hard optimization problem is presented. 
The studied problem is quite unusual as it 
introduces a strict feasibility function. Several 
interesting adaptations and modifications to the 
classical evolution schema were required in order to 
create a satisfying strategy, i.a. authors developed 
original migration operator which emulates 
biological random genetic drift [6]. 

The proposed schema has been implemented and 
the experiment results as well as the conclusions are 
presented here. 
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2. PROBLEM FORMULATION 
 
Definition 1. Let us define ( )cra ,,,,, ψητ=Λ  

as problem space and our system as twice ( )μ,Λ . 

In the d-resource system optimization problem, we 
receive a set τ  of l  mobile tasks: { }lttt ,...,, 21=τ  

and a set η  of m  fixed nodes: { }mnnn ,...,, 21=η . 

We call ητμ →:  a task assignment function, i.e.: 

every task has to be assigned to the node.  

We also consider: 
• { }diii ,...,, 21=ψ  as a set of all different kinds 

of resources, e.g.: for 3=d  we could define 

{ }networkmemoryCPU ,,=ψ . 

• { }0: ∪Ν→×ηψa  as fixed available 

resources on the nodes, i.e.: ( )nai  is the 

available level (integer value) of a resource i  on 

the node n .  
• { }0: ∪Ν→×τψr  as fixed required 

resources for tasks, i.e.: ( )tri  is the required 

level (integer value) of a resource i  of a task t .  
• { }0: ∪Ν→τc  as a task migration cost 

function, i.a.: ( )tc  can mean the amount of 

hours a developer has to spend deploying task t  

on the node. 

 
For every node η∈n , we define a set 

( ){ }nttAn =∈= μτ :  of all tasks assigned to the 

node n . We consider the system ( )μ,Λ  as stable 

iff:  
( ) ( )natr i

At
i

n

≤∑
∈

, for every η∈n , ψ∈i  (1) 

Otherwise, the system ( )μ,Λ  is overloaded. 

 

Each task t  is initially assigned by the task 
assignment function 0μ  to a node n ; during 

system transformation ( )10 μμ → , the task τ∈t  

can be reassigned to any other node η∈n . The 

process of moving the task to another node is called 

here task migration and it generates task 

reassigning cost: 

( ) ( ) ( )
( ) ( )
( ) ( )tt

tt
tc

tc
10

10

,
,0

10 μμ
μμ

μμ ≠
=

⎩
⎨
⎧

=→  

Every system transformation process ( )10 μμ →  

has its system transformation cost: 

( ) ( )( )∑
∈

→→ =
τ

μμμμ
t

tcc
1010

 

Consider an initial task assignment 0μ ; the task 

assignment *μ  is optimal for 0μ , iff *μ  renders 

system ( )*,μΛ  stable and: 

( ) ( )μμμμ →→
≤

0
*

0
cc , for every stable 

system ( )μ,Λ  
(2) 

 
N.b.: when ( )0,μΛ  is stable for the initial task 

assignment 0μ , the system transformation cost 
equals 0 as it is considered optimal. 

 

3. WORKING EVOLUTION SCHEMA 
 

Nowadays, stochastic algorithms are used ever 
more frequently, ranging from designing a concert 
hall with optimal acoustic properties [18], evolving 
wire antennas [1], predicting the future 
performance of stocks [12] to even guessing the 
location of earthquake hypocenters [17]. 

The classical approach defines a binary vector 

as genotype mapping [20]. However, in our 

approach we found it more suitable to denote the 
search space by τη=Φ g , therefore defining the 

η -ary language as a candidate solution 

representation. Each genotype αG  within search 

space gΦ  represents a system transformation 

( )αμμ →0  and is defined as an arbitrary vector: 

( ) ( ) ( )( ) gltttG Φ∈= αααα μμμ ,...,, 21  
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We adapt the system transformation cost in the 
fitness function equation { }0: ∪Ν→Gf fit . For 

genotype αG  it is defined:  

( ) ( ) ( )αμμ
τ

α →
∈
∑ −=

0
ctcGf

t
fit  

 
In our experiment, usually less than 4% of all 

the possible genotypes represented a feasible 
solution (i.e. solution shall satisfy (1) and (2)) at all, 
not even mentioning its optimality. It can be also 
noticed that feasible solutions were usually 
scattered all over the problem search space. 

To confront this optimization enigma, we 
utilized a number of standard genetic operators 
[4][8][9][15] as well as a few new ones which had 
been developed for the purpose of this experiment.  

We did not follow the classical schema of 
forming a new population with the current one as a 
base in every iteration of the algorithm [8][15]. 
Instead, we enabled our individuals to recombine 
freely, even with the individuals from the previous 
population if suitable.  

Our evolution model operates in iterations. One 
system cycle is presented below: 

 
1. Selection for crossover (25% of individuals are 
chosen) 
2. Selection for mutation (5% of individuals are 
chosen) 
3. Termination of unstable genotypes (with a 10% 
survival rate) 
4. Termination of the weakest individuals (up to 
20% of the population size) 
5. Migration (filling up the gene pool to the 
population limit) 
 

Since the initial generation, the size of the 

population will never decrease below a defined 

number, called here the living space. We 

experimented with various population sizes and we 

found out that the best results are obtained for the 

sizes between: 

ητητ 2≤≤ X  

For the sizes less than ητ , the population 

sometimes lacked genotype diversity and the 

algorithm could not escape from local minima. The 

sizes above ητ2  generally provided no significant 

gain in the algorithm performance, so we decided to 

use this value as our default.  
Several genetic operators were adapted to serve 

our evolution model needs: 
 
3.1 Selection 

 
We have employed Tournament Selection 

algorithm [5]. It is one of the selection methods in 
Genetic Algorithms which runs a ‘tournament’ 
among a few individuals randomly chosen from the 
population. The individuals are paired and they 
perform a ‘match’ where the better one is selected 
for the next ‘turn’. The tournament is played in a 
repetitive manner with the individual winners 
becoming participants again. The winner of the last 
pair is then selected for a recombination. 

Tournament Selection allows the selection 
pressure to be easily adjusted by changing the 
tournament size. If the tournament size is larger, 
weak individuals have a smaller chance to be 
selected. 
 
3.2 Crossover 
 

In Genetic Algorithms, crossover is analogous 
to a reproduction and biological crossover [6], upon 
which genetic algorithms are based. The operator 
attempts to combine some elements of the existing 
solutions in order to create a new solution 
comprising certain features of each of the parents. 

The combination of parents’ chromosomes is 
usually made by selecting one or more crossover 
points randomly, splitting input chromosomes onto 
the selected points and then linking those sequences 
of different chromosomes to eventually compose 
new genotypes [5]. For a detailed survey of 
crossover techniques please refer to [15][16]. 

In our approach, however, we produce only one 
offspring. We randomly copy one part of a 
chromosome from the first parent and complete it 
with some genetic material from the other parent 
(one-point crossover [2][20]). 
 
3.3 Mutation 
 

Optimization algorithms are sometimes prone to 
local minima – a point where the fitness function 
value is bigger than its neighbours, but possibly 
smaller than at some distant point in the search 
space. The genetic algorithm can overcome this 
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deficiency with the mutation operator, forcing the 
genetic diversity, subject to right settings. 

In our case, the mutation operator does not alter 
the structure of the target genotype. Instead, it 
clones the whole structure and changes one random 
gene to a random value within possible gene space. 
This feature proved to be capable of preventing the 
slowdown of the evolution process [11]. 
3.4 Termination 
 

The termination operator plays a very important 
role of eliminating weak individuals from the 
population and thus improving the whole solution 
pool and producing living space for the coming 
individuals. On the other hand, the size of the 
population has to be limited in order to keep a good 
computing and also due to computer limitations. 
 
3.5 Migration 
 

In population genetics, a random genetic drift 
(also known as a gene flow) is a transfer of alleles 
of genes from one population to another [6]. The 
immigration takes place strictly by chance and it 
may result in adding some new genetic material to 
the established gene pool of the current population. 

The main purpose of introducing the migration 
operator was the necessity to compensate for the 
intolerant elimination of individuals from the 
population. Therefore, in our case, migration, along 
with the mutation operator, are main sources of 
genotype diversity in the population. 

In the migration phase, we randomly create a 
genotype. Only stable genotypes are accepted, thus 
in some setups it takes a number of draws to create 
a valid individual. 

It is a very crucial process. In our model, at least 
20% of the population is eliminated in iteration. 
The random genetic drift feature helps the system 
to maintain a constant number of individuals in the 
population. 

 
4. EXPERIMENT 
 

Similar to our previous system [21], the 
simulation was performed with the help of JMASB 
(Java Multi-Agent System Balancer). The 
framework was initially developed for agent-based 
system performance analysis, and it enables the 
researcher to test even complex schemes when 
planning a resource management strategy. It was 
quite a challenge itself to recode the framework so 
that we could utilize the evolution approach.  

The system is designed to solve d-resource 
system optimization problem on average machine 
and so an accessible configuration has a 
considerable impact on the system performance. 
Thus, we decide to use low-end hardware to 
process, which should be widely available in our 
market: 
 

 

Figure 1. Testing environment 

 
Our earlier work [21] demonstrated that a non-

deterministic strategy is able to handle a potentially 
unlimited number of resources; in this simulation 
we used various resources: CPU, memory and 
network. As we have already tested the system 
functionalities and correctness, we will focus on 
testing general usefulness of the presented approach 
to discrete optimization problems. 
 
4.1 Research principles 
 

For the purpose of the experiment, five different 
strategies: FULLSCAN, GREEDY, BALANCE, 
GENETIC and EVOLVE, were deployed; the goal 
was to compare the system with other common 
optimization schemas. 

The FULLSCAN strategy, as the name 
suggests, performs a full search over all available 
configurations. The FULLSCAN strategy 
guarantees a globally optimal solution under 
appropriate modelling assumptions. It cannot be 
considered an efficient strategy due to a large scale 
of computation level required – in bigger instances 
of a problem we could not wait for this algorithm to 
finish and so we decided to terminate it if the 
continuous computation took more than a week. 

GREEDY is an algorithm that follows solving 
problems of making locally optimum choices in its 
every iteration. This is a simple but generally 
effective strategy. A brief description of this 
approach can be found in [3]. 

The BALANCE strategy is an adaptation of 
Google AdWords schema [13]. The original Google 
strategy is based on the remaining budgets 
comparison. We noticed there an analogy to our 
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nodes capacity. In our experiment its results were 
generally better than the GREEDY algorithm. 

The GENETIC strategy is an implementation of 
a original Holland’s Genetic Algorithm approach 
[8][9]. The results from this strategy are used as 
referring point for the result of experiments. 

The EVOLVE strategy is basically what we are 
describing in this paper. Among all the defined 
strategies, EVOLVE and GENETIC are not 
deterministic, thus we run them up to forty times 
and compare the obtained results (Fig. 4). 
 
4.2 Experiment configuration 
 

The initial configuration consists of eight nodes 
with assigned levels of available resources (Fig. 2): 
 

 

Figure 2. Experiment nodes available resources 

 
Forty jobs were generated (Fig. 3). We also defined 
the task migration cost for each of them: 

 

Figure 3. Experiment tasks and their migration costs  

 
In the course of the experiment, several different 
scenarios were tested. There we present three 
random samples together with their output (for the 
reader’s convenience the initially overloaded nodes 
have been bolded): 
 

 

Figure 4. The first test 

 
All the strategies finished their tasks (Fig. 4) in a 
relatively short time. Both GREEDY and 
BALANCE ended almost immediately rendering 
pretty good results. An optimal solution was 
computed in less than 2 minutes by the 
FULLSCAN algorithm. We set a 30 second time 
limit for GENETIC and EVOLVE strategies. Both 
approaches behaved similar and an optimal system 
transformation cost was found in just few cycles of 
their runs.  

 

Figure 5. The second test 
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The second test (Fig. 5) demonstrated that we could 
not use the exhaustive scan approach for bigger 
instances of a problem. We were able to compute 
an optimal solution with this approach, but it took 
as many as two days. 

Again, GREEDY and BALANCE finished in a 
few seconds. Strangely, the GREEDY outcome is 
worse than in the previous test, but this is how 
deterministic algorithms sometimes work. 

The EVOLVE strategy computed solutions with 
the system transformation cost equal to 21.90 on 
average. The results from GENETIC schema were 
slightly worse, averaging on 23.48. The timeouts 
for both strategies were set to 10 minutes for each 
run; the EVOLVE strategy found the optimal 
solution cost in one of its runs. 
 

 

Figure 6. The third test 

 
The last test (Fig. 6) demonstrated that the 
evolution schema outperforms deterministic 
strategies in terms of correctness and scalability. 
The timeout for this simulation was set to 60 
minutes and during that time EVOLVE found the 
lowest system transformation cost equal to 19. We 
were not able to compute optimal solution, due to 
long time the computation would require (over 1036 
iterations are needed at the worst), but we believe 
this value is close to optimal. 
 
4.3 Outcome analysis 
 

Working solutions were found for all the 
strategies. The results of our experiment are 
presented as statistics in table below (Fig. 7): 

 

Figure 7. Experiment results  

 
The EVOLVE strategy has high estimated standard 
deviation (StDev) to average (Avg) migration cost 
ratio. In forty runs of each instance of the problem, 
the algorithm usually found two to three solutions 
with extreme migration cost. However, most of the 
given solutions were of a good quality, which 
resulted in small differences between average (Avg) 
and median (Med) of the migration costs. In all 
cases the best migration cost (Min) found was 
better that results of GREEDY and BALANCE 
strategies. In two cases we were also able to 
confirm optimality of the solutions. 

The FULLSCAN strategy was characterized by 
a long computation time. Its outcome is always a 
global optimum, however, the trade-off of this 
schema is the necessity to test a tremendous 
number of candidate solutions. Still, this approach 
is pretty useful in smaller instances of a given 
problem (up to thirty jobs and six nodes). 

The GREEDY strategy performed the worst, 
which came as a surprise. It seems not well suited 
for this kind of combinatorial optimization 
problems where solution space swarms with local 
minima. 

The BALANCE strategy behaved well. The 
Google AdWords idea of utilizing the remaining 
capacity comparisons finds its application here. It is 
a very fast strategy which generally renders good 
results. 

The biggest drawback of the EVOLVE and 
GENETIC schemas is their complexity. The 
Genetic Algorithm schema is universal and can be 
easily adapted to various problems. However, this 
has its cost in a highly abstract model it provides. 
Such models usually require more redundancy in 
the computer code of their implementations. It has 
also its execution time demand. The GENETIC 
strategy has been slightly faster and computed on 
average 25% cycles more in defined time. The 
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EVOLVE schema spent most of the algorithm 
execution time (over 70%) on the migration step, 
due to a large number of random draws that had to 
be performed in order to create an acceptable 
individual.  

Particularly, computing the first population 
takes a lot of time as the algorithm has to fill up the 
whole genotype pool which is initially empty. After 
this step, migration adds no more than 20% of the 
maximum population size, usually ~1-3% in one 
algorithm iteration, hence it is bearable. 

It could be discussed if we should not have 
computed a table of sample solutions first, and then 
tried to randomize them. Our research suggests that 
we could have possibly distributed the produced 
individuals in certain areas of the problem search 
space. This technique, called seeding, can 
scientifically improve the algorithm outcome, as it 
was referred to in [10]. 

Nevertheless, our strategy is really remarkable 
in larger instances of the problem regarding both 
completeness and scalability. The results are well 
refined, even in comparison to the exhaustive 
search approach. 

 
5. CONCLUSION 
 

In this paper, we have demonstrated the 
usefulness of evolution schemas to a combinatorial 
optimization problem of the presented proprieties. 
The defined problem was characterized by a 
rigorous feasibility requirement which caused the 
solution space to be chaotic, rendering the classic 
Genetic Algorithms approach less effective. 
Therefore, the presented strategy introduced several 
modifications and adaptations to standard genetic 
routines.  

In the course of the research, we defined a new 
genetic operator called migration. The migration 
operator is analogous to the biological random 
genetic drift. Its main purpose was to compensate 
for a very rigid elimination of individuals of the 
population. 

The presented strategies were also tested against 
optimal solutions computed with the help of 
exhaustive search. This experiment demonstrated 
that the algorithm met its requirements and the 
evolution strategy proved competitive enough. In 
terms of correctness and scalability our strategy 
performs well. It is necessary, however, to mention 
the drawbacks of our schema.  

First, the process spends over 70% of execution 
time on the migration step. It has been already 
mentioned that the introduction of sample solution 

tables would possibly reduce the computation 
power required to perform the algorithm iteration. 
Additionally, we could possibly distribute the 
produced individuals in certain areas of problem 
search space.  

Another drawback of the presented approach 
can be the number of solution feasibility checks 
required to probe a genotype. Our current model 
has to iterate through every node and its tasks to 
check if (1) is satisfied. We could probably group 
the genotypes by their similarity and then compute 
checks exclusively on the varying nodes. 
The experiment results were more than satisfactory. 
However, in order to address performance issues 
we are considering the introduction of the seeding 
schemas and various other model optimizations in 
our future work on the system. 
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