
Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

717

A REINFORCED EVOLUTION-BASED APPROACH TO
MULTI-RESOURCE LOAD BALANCING

1Leszek Sliwko
1Institute of Applied Informatics, Wrocław University of Technology, Wrocław, Poland

E-mail: lsliwko@gmail.com

ABSTRACT

This paper presents a reinforced genetic approach to a defined d-resource system optimization problem. The
classical evolution schema was ineffective due to a very strict feasibility function in the studied problem.
Hence, the presented strategy has introduced several modifications and adaptations to standard genetic
routines, e.g.: a migration operator which is an analogy to the biological random genetic drift.

Keywords: Combinatorial Problems; Genetic Algorithms; Load Balancing; JMASB

1. INTRODUCTION

A fundamental goal in computer science is to
provide an algorithm which would determine an
optimal solution in acceptable time. Computational
Complexity Theory is the field which studies the
efficiency of computation; its major goals are to
find efficient algorithms for natural problems or to
show that no efficient solutions exist.

NP-hard (Nondeterministic Polynomial-time
hard), represents a class of problems which are ‘at
least as difficult as problems in NP’ [7][19]. NP-
complete problems can be solved by means of
exhaustive search. However the time to wait for the
solution grows unacceptably with the problem size
as the number of iterations needed to solve the
problem becomes tremendous [19]. In such a case
the best we can hope for are super-polynomial time
algorithms. The ‘P versus NP’ problem is one of
the seven open Millennium Prize Problems of the
Clay Mathematics Institute. It is now commonly
believed that P ≠ NP [7][19][22] and it is rather
unlikely that there can ever be any efficient
(Polynomial Time) exact algorithms able to solve
NP-hard problems.

NP-hard problems may be of any type, ranging
from search, decision, or optimization problems to
feasibility problems [19]. Discrete optimization
problems are generally NP-hard problems.

In Computational Complexity Theory, a meta-
heuristic algorithm (the term ‘meta-heuristic’ is
originally derived from the Greek ‘μετá’ (a higher
level) and ‘ευρισκειν’ (to discover)) is a scientific
method that solves a problem with the help of
iterative stochastic processes. A heuristic algorithm

usually gives up the optimality of the solution in
order to finish within a satisfactory timeframe [22].
Generally speaking, it is able to find quite a good
solution, but there is no proof that the result could
not be better or that the solution found by the
heuristic algorithm would be feasible in the first
place.

Genetic Algorithms play a significant role
among meta-heuristics schemas due to their
universality and scalability [8][9]. Additionally,
Genetic Algorithms are able to fulfil their tasks
even in the presence of noise [15] and, unlike other
AI schemas; they do not break even if inputs
change significantly [4]. Genetic Algorithms may
also offer significant benefits over a more typical
search of optimization techniques as they can be
applied to several problems without any major
changes in their design [2][11][14][20].

In this paper, a reinforced evolution approach to
defined NP-hard optimization problem is presented.
The studied problem is quite unusual as it
introduces a strict feasibility function. Several
interesting adaptations and modifications to the
classical evolution schema were required in order to
create a satisfying strategy, i.a. authors developed
original migration operator which emulates
biological random genetic drift [6].

The proposed schema has been implemented and
the experiment results as well as the conclusions are
presented here.

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

718

2. PROBLEM FORMULATION

Definition 1. Let us define ()cra ,,,,, ψητ=Λ

as problem space and our system as twice ()μ,Λ .

In the d-resource system optimization problem, we
receive a set τ of l mobile tasks: { }lttt ,...,, 21=τ

and a set η of m fixed nodes: { }mnnn ,...,, 21=η .

We call ητμ →: a task assignment function, i.e.:

every task has to be assigned to the node.

We also consider:
• { }diii ,...,, 21=ψ as a set of all different kinds

of resources, e.g.: for 3=d we could define

{ }networkmemoryCPU ,,=ψ .

• { }0: ∪Ν→×ηψa as fixed available

resources on the nodes, i.e.: ()nai is the

available level (integer value) of a resource i on

the node n .
• { }0: ∪Ν→×τψr as fixed required

resources for tasks, i.e.: ()tri is the required

level (integer value) of a resource i of a task t .
• { }0: ∪Ν→τc as a task migration cost

function, i.a.: ()tc can mean the amount of

hours a developer has to spend deploying task t

on the node.

For every node η∈n , we define a set

(){ }nttAn =∈= μτ : of all tasks assigned to the

node n . We consider the system ()μ,Λ as stable

iff:
() ()natr i

At
i

n

≤∑
∈

, for every η∈n , ψ∈i (1)

Otherwise, the system ()μ,Λ is overloaded.

Each task t is initially assigned by the task
assignment function 0μ to a node n ; during

system transformation ()10 μμ → , the task τ∈t

can be reassigned to any other node η∈n . The

process of moving the task to another node is called

here task migration and it generates task

reassigning cost:

() () ()
() ()
() ()tt

tt
tc

tc
10

10

,
,0

10 μμ
μμ

μμ ≠
=

⎩
⎨
⎧

=→

Every system transformation process ()10 μμ →

has its system transformation cost:

() ()()∑
∈

→→ =
τ

μμμμ
t

tcc
1010

Consider an initial task assignment 0μ ; the task

assignment *μ is optimal for 0μ , iff *μ renders

system ()*,μΛ stable and:

() ()μμμμ →→
≤

0
*

0
cc , for every stable

system ()μ,Λ
(2)

N.b.: when ()0,μΛ is stable for the initial task

assignment 0μ , the system transformation cost
equals 0 as it is considered optimal.

3. WORKING EVOLUTION SCHEMA

Nowadays, stochastic algorithms are used ever
more frequently, ranging from designing a concert
hall with optimal acoustic properties [18], evolving
wire antennas [1], predicting the future
performance of stocks [12] to even guessing the
location of earthquake hypocenters [17].

The classical approach defines a binary vector

as genotype mapping [20]. However, in our

approach we found it more suitable to denote the
search space by τη=Φ g , therefore defining the

η -ary language as a candidate solution

representation. Each genotype αG within search

space gΦ represents a system transformation

()αμμ →0 and is defined as an arbitrary vector:

() () ()() gltttG Φ∈= αααα μμμ ,...,, 21

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

719

We adapt the system transformation cost in the
fitness function equation { }0: ∪Ν→Gf fit . For

genotype αG it is defined:

() () ()αμμ
τ

α →
∈
∑ −=

0
ctcGf

t
fit

In our experiment, usually less than 4% of all

the possible genotypes represented a feasible
solution (i.e. solution shall satisfy (1) and (2)) at all,
not even mentioning its optimality. It can be also
noticed that feasible solutions were usually
scattered all over the problem search space.

To confront this optimization enigma, we
utilized a number of standard genetic operators
[4][8][9][15] as well as a few new ones which had
been developed for the purpose of this experiment.

We did not follow the classical schema of
forming a new population with the current one as a
base in every iteration of the algorithm [8][15].
Instead, we enabled our individuals to recombine
freely, even with the individuals from the previous
population if suitable.

Our evolution model operates in iterations. One
system cycle is presented below:

1. Selection for crossover (25% of individuals are
chosen)
2. Selection for mutation (5% of individuals are
chosen)
3. Termination of unstable genotypes (with a 10%
survival rate)
4. Termination of the weakest individuals (up to
20% of the population size)
5. Migration (filling up the gene pool to the
population limit)

Since the initial generation, the size of the

population will never decrease below a defined

number, called here the living space. We

experimented with various population sizes and we

found out that the best results are obtained for the

sizes between:

ητητ 2≤≤ X

For the sizes less than ητ , the population

sometimes lacked genotype diversity and the

algorithm could not escape from local minima. The

sizes above ητ2 generally provided no significant

gain in the algorithm performance, so we decided to

use this value as our default.
Several genetic operators were adapted to serve

our evolution model needs:

3.1 Selection

We have employed Tournament Selection

algorithm [5]. It is one of the selection methods in
Genetic Algorithms which runs a ‘tournament’
among a few individuals randomly chosen from the
population. The individuals are paired and they
perform a ‘match’ where the better one is selected
for the next ‘turn’. The tournament is played in a
repetitive manner with the individual winners
becoming participants again. The winner of the last
pair is then selected for a recombination.

Tournament Selection allows the selection
pressure to be easily adjusted by changing the
tournament size. If the tournament size is larger,
weak individuals have a smaller chance to be
selected.

3.2 Crossover

In Genetic Algorithms, crossover is analogous
to a reproduction and biological crossover [6], upon
which genetic algorithms are based. The operator
attempts to combine some elements of the existing
solutions in order to create a new solution
comprising certain features of each of the parents.

The combination of parents’ chromosomes is
usually made by selecting one or more crossover
points randomly, splitting input chromosomes onto
the selected points and then linking those sequences
of different chromosomes to eventually compose
new genotypes [5]. For a detailed survey of
crossover techniques please refer to [15][16].

In our approach, however, we produce only one
offspring. We randomly copy one part of a
chromosome from the first parent and complete it
with some genetic material from the other parent
(one-point crossover [2][20]).

3.3 Mutation

Optimization algorithms are sometimes prone to
local minima – a point where the fitness function
value is bigger than its neighbours, but possibly
smaller than at some distant point in the search
space. The genetic algorithm can overcome this

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

720

deficiency with the mutation operator, forcing the
genetic diversity, subject to right settings.

In our case, the mutation operator does not alter
the structure of the target genotype. Instead, it
clones the whole structure and changes one random
gene to a random value within possible gene space.
This feature proved to be capable of preventing the
slowdown of the evolution process [11].
3.4 Termination

The termination operator plays a very important
role of eliminating weak individuals from the
population and thus improving the whole solution
pool and producing living space for the coming
individuals. On the other hand, the size of the
population has to be limited in order to keep a good
computing and also due to computer limitations.

3.5 Migration

In population genetics, a random genetic drift
(also known as a gene flow) is a transfer of alleles
of genes from one population to another [6]. The
immigration takes place strictly by chance and it
may result in adding some new genetic material to
the established gene pool of the current population.

The main purpose of introducing the migration
operator was the necessity to compensate for the
intolerant elimination of individuals from the
population. Therefore, in our case, migration, along
with the mutation operator, are main sources of
genotype diversity in the population.

In the migration phase, we randomly create a
genotype. Only stable genotypes are accepted, thus
in some setups it takes a number of draws to create
a valid individual.

It is a very crucial process. In our model, at least
20% of the population is eliminated in iteration.
The random genetic drift feature helps the system
to maintain a constant number of individuals in the
population.

4. EXPERIMENT

Similar to our previous system [21], the
simulation was performed with the help of JMASB
(Java Multi-Agent System Balancer). The
framework was initially developed for agent-based
system performance analysis, and it enables the
researcher to test even complex schemes when
planning a resource management strategy. It was
quite a challenge itself to recode the framework so
that we could utilize the evolution approach.

The system is designed to solve d-resource
system optimization problem on average machine
and so an accessible configuration has a
considerable impact on the system performance.
Thus, we decide to use low-end hardware to
process, which should be widely available in our
market:

Figure 1. Testing environment

Our earlier work [21] demonstrated that a non-

deterministic strategy is able to handle a potentially
unlimited number of resources; in this simulation
we used various resources: CPU, memory and
network. As we have already tested the system
functionalities and correctness, we will focus on
testing general usefulness of the presented approach
to discrete optimization problems.

4.1 Research principles

For the purpose of the experiment, five different
strategies: FULLSCAN, GREEDY, BALANCE,
GENETIC and EVOLVE, were deployed; the goal
was to compare the system with other common
optimization schemas.

The FULLSCAN strategy, as the name
suggests, performs a full search over all available
configurations. The FULLSCAN strategy
guarantees a globally optimal solution under
appropriate modelling assumptions. It cannot be
considered an efficient strategy due to a large scale
of computation level required – in bigger instances
of a problem we could not wait for this algorithm to
finish and so we decided to terminate it if the
continuous computation took more than a week.

GREEDY is an algorithm that follows solving
problems of making locally optimum choices in its
every iteration. This is a simple but generally
effective strategy. A brief description of this
approach can be found in [3].

The BALANCE strategy is an adaptation of
Google AdWords schema [13]. The original Google
strategy is based on the remaining budgets
comparison. We noticed there an analogy to our

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

721

nodes capacity. In our experiment its results were
generally better than the GREEDY algorithm.

The GENETIC strategy is an implementation of
a original Holland’s Genetic Algorithm approach
[8][9]. The results from this strategy are used as
referring point for the result of experiments.

The EVOLVE strategy is basically what we are
describing in this paper. Among all the defined
strategies, EVOLVE and GENETIC are not
deterministic, thus we run them up to forty times
and compare the obtained results (Fig. 4).

4.2 Experiment configuration

The initial configuration consists of eight nodes
with assigned levels of available resources (Fig. 2):

Figure 2. Experiment nodes available resources

Forty jobs were generated (Fig. 3). We also defined
the task migration cost for each of them:

Figure 3. Experiment tasks and their migration costs

In the course of the experiment, several different
scenarios were tested. There we present three
random samples together with their output (for the
reader’s convenience the initially overloaded nodes
have been bolded):

Figure 4. The first test

All the strategies finished their tasks (Fig. 4) in a
relatively short time. Both GREEDY and
BALANCE ended almost immediately rendering
pretty good results. An optimal solution was
computed in less than 2 minutes by the
FULLSCAN algorithm. We set a 30 second time
limit for GENETIC and EVOLVE strategies. Both
approaches behaved similar and an optimal system
transformation cost was found in just few cycles of
their runs.

Figure 5. The second test

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

722

The second test (Fig. 5) demonstrated that we could
not use the exhaustive scan approach for bigger
instances of a problem. We were able to compute
an optimal solution with this approach, but it took
as many as two days.

Again, GREEDY and BALANCE finished in a
few seconds. Strangely, the GREEDY outcome is
worse than in the previous test, but this is how
deterministic algorithms sometimes work.

The EVOLVE strategy computed solutions with
the system transformation cost equal to 21.90 on
average. The results from GENETIC schema were
slightly worse, averaging on 23.48. The timeouts
for both strategies were set to 10 minutes for each
run; the EVOLVE strategy found the optimal
solution cost in one of its runs.

Figure 6. The third test

The last test (Fig. 6) demonstrated that the
evolution schema outperforms deterministic
strategies in terms of correctness and scalability.
The timeout for this simulation was set to 60
minutes and during that time EVOLVE found the
lowest system transformation cost equal to 19. We
were not able to compute optimal solution, due to
long time the computation would require (over 1036
iterations are needed at the worst), but we believe
this value is close to optimal.

4.3 Outcome analysis

Working solutions were found for all the
strategies. The results of our experiment are
presented as statistics in table below (Fig. 7):

Figure 7. Experiment results

The EVOLVE strategy has high estimated standard
deviation (StDev) to average (Avg) migration cost
ratio. In forty runs of each instance of the problem,
the algorithm usually found two to three solutions
with extreme migration cost. However, most of the
given solutions were of a good quality, which
resulted in small differences between average (Avg)
and median (Med) of the migration costs. In all
cases the best migration cost (Min) found was
better that results of GREEDY and BALANCE
strategies. In two cases we were also able to
confirm optimality of the solutions.

The FULLSCAN strategy was characterized by
a long computation time. Its outcome is always a
global optimum, however, the trade-off of this
schema is the necessity to test a tremendous
number of candidate solutions. Still, this approach
is pretty useful in smaller instances of a given
problem (up to thirty jobs and six nodes).

The GREEDY strategy performed the worst,
which came as a surprise. It seems not well suited
for this kind of combinatorial optimization
problems where solution space swarms with local
minima.

The BALANCE strategy behaved well. The
Google AdWords idea of utilizing the remaining
capacity comparisons finds its application here. It is
a very fast strategy which generally renders good
results.

The biggest drawback of the EVOLVE and
GENETIC schemas is their complexity. The
Genetic Algorithm schema is universal and can be
easily adapted to various problems. However, this
has its cost in a highly abstract model it provides.
Such models usually require more redundancy in
the computer code of their implementations. It has
also its execution time demand. The GENETIC
strategy has been slightly faster and computed on
average 25% cycles more in defined time. The

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

723

EVOLVE schema spent most of the algorithm
execution time (over 70%) on the migration step,
due to a large number of random draws that had to
be performed in order to create an acceptable
individual.

Particularly, computing the first population
takes a lot of time as the algorithm has to fill up the
whole genotype pool which is initially empty. After
this step, migration adds no more than 20% of the
maximum population size, usually ~1-3% in one
algorithm iteration, hence it is bearable.

It could be discussed if we should not have
computed a table of sample solutions first, and then
tried to randomize them. Our research suggests that
we could have possibly distributed the produced
individuals in certain areas of the problem search
space. This technique, called seeding, can
scientifically improve the algorithm outcome, as it
was referred to in [10].

Nevertheless, our strategy is really remarkable
in larger instances of the problem regarding both
completeness and scalability. The results are well
refined, even in comparison to the exhaustive
search approach.

5. CONCLUSION

In this paper, we have demonstrated the
usefulness of evolution schemas to a combinatorial
optimization problem of the presented proprieties.
The defined problem was characterized by a
rigorous feasibility requirement which caused the
solution space to be chaotic, rendering the classic
Genetic Algorithms approach less effective.
Therefore, the presented strategy introduced several
modifications and adaptations to standard genetic
routines.

In the course of the research, we defined a new
genetic operator called migration. The migration
operator is analogous to the biological random
genetic drift. Its main purpose was to compensate
for a very rigid elimination of individuals of the
population.

The presented strategies were also tested against
optimal solutions computed with the help of
exhaustive search. This experiment demonstrated
that the algorithm met its requirements and the
evolution strategy proved competitive enough. In
terms of correctness and scalability our strategy
performs well. It is necessary, however, to mention
the drawbacks of our schema.

First, the process spends over 70% of execution
time on the migration step. It has been already
mentioned that the introduction of sample solution

tables would possibly reduce the computation
power required to perform the algorithm iteration.
Additionally, we could possibly distribute the
produced individuals in certain areas of problem
search space.

Another drawback of the presented approach
can be the number of solution feasibility checks
required to probe a genotype. Our current model
has to iterate through every node and its tasks to
check if (1) is satisfied. We could probably group
the genotypes by their similarity and then compute
checks exclusively on the varying nodes.
The experiment results were more than satisfactory.
However, in order to address performance issues
we are considering the introduction of the seeding
schemas and various other model optimizations in
our future work on the system.

REFERENCES

[1] Altshuler, E.E. and Linden, D.S., “Design of a

wire antenna using a genetic algorithm”,
Journal of Electronic Defence, Vol.20, No.7,
1997, pp.50-52.

[2] Back, T., Hammel, U. and Schwefel, H-P.,
“Evolutionary computation: comments on the
history and current state”, IEEE Transactions
on Evolutionary Computation, Vol.1, Iss.1,
1997, pp.3-17.

[3] Becker, A. and Geiger, D., “Optimization of
Pearls method of conditioning and greedy-like
approximation algorithms for the vertex
feedback set problem”, Artificial Intelligence,
Vol.83, No.1, 1996, pp.167-188.

[4] Dimou, C. and Koumousis, V., “Genetic
algorithms in a competitive environment with
application to reliability optimal design”,
Proceedings of the sixth international
conference on Application of artificial
intelligence to civil & structural engineering,
2001, pp.89-90.

[5] Goldberg, D.E. and Deb, K., “A Comparative
Analysis of Selection Schemes Used in Genetic
Algorithms”, Foundations of Genetic
Algorithms, 1991, pp.69-93.

[6] Hartl, D.L. and Clark, A.G., “Principles of
Population Genetics”, Sinauer Associates,
1997

[7] Hemaspaandra, L.A. and Ogihara, M., “The
Complexity Theory Companion”, Springer-
Verlag, 2001

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

724

[8] Holland, J.H., “Genetic algorithms and the
optimal allocation of trials”, SIAM Journal on
Computing, Vol.2, 1973, pp.88-105.

[9] Holland, J.H., “Adaptation in Natural and
Artificial Systems”, University of Michigan
Press, 1975

[10] Julstrom, B.A., “Seeding the population:
improved performance in a genetic algorithm
for the rectilinear Steiner problem”,
Proceedings of the 1994 ACM symposium on
Applied computing, 1994, pp.222-226.

[11] Koza, J.R., “Genetic Programming: On the
Programming of Computers by Means of
Natural Selection”, MIT Press, 1992

[12] Mahfoud, S. and Mani, G., “Financial
forecasting using genetic algorithms”, Applied
Artificial Intelligence, Vol.10, No.6, 1996,
pp.543-565.

[13] Mehta, A., Saberi, A., Vazirani, U., Vazirani,
V. and Mehta, A., “AdWords and Generalized
On-line Matching”, Proceedings of 46th
Annual IEEE Symposium on Foundations of
Computer Science, 2005, pp.264-273.

[14] Michalewicz, Z., “Genetic Algorithms + Data
Structures = Evolution Programs”, Springer,
1998

[15] Miller, B.L. and Goldberg, D.E., “Genetic
Algorithms, Selection Schemes and the
Varying Effects of Noise”, Evolutionary
Computation, Vol.4, 1996, pp.113-131.

[16] Raghuwanshi, M.M. and Kakde, O.G., “Survey
on multiobjective evolutionary and real coded
genetic Algorithms”, Proceeding of the 8th
Asia Pacific Symposium on Intelligent and
Evolutionary Systems, 2004, pp.150-161.

[17] Sambridge, M. and Gallagher, K., “Earthquake
hypocenter location using genetic algorithms”,
Bulletin of the Seismological Society of
America, Vol.83, No.5, 1993, pp.1467-1491.

[18] Sato, S., Otori, K., Takizawa, A., Sakai, H.,
Ando, Y. and Kawamura, H., “Applying
genetic algorithms to the optimum design of a
concert hall”, Journal of Sound and Vibration,
Vol.258, No.3, 2002, pp.517-526.

[19] Schirmer, A., “A Guide to Complexity Theory
in Operations Research”, Manuskripte aus den
Instituten fur Betriebswirtschaftslehre der
Universitat Kiel, 1995

[20] Schwefel, H-P., “Special Track On
Computational Intelligence – Genetic
Algorithms”, Proceedings of the 23rd
Euromicro Conference, 1997, pp.622-623.

[21] Sliwko, L. and Zgrzywa, A., “Multi-resource
load optimization strategy in agent-based
systems”, Lecture Notes in Artificial
Intelligence 4496, 2007, pp.348–357.

[22] Yagiura, M. and Ibaraki, T. , “On metaheuristic
algorithms for combinatorial optimization
problems”, Systems and Computers in Japan,
Vol.32, No.3, 2001, pp.33-55.

