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ABSTRACT 
 

Reactive power dispatch (RPD) is one of the important tasks in the operation and control of power 
system. This paper presents a Differential Evolution (DE) - based approach for solving optimal reactive 
power dispatch including voltage stability limit in power systems. The monitoring methodology for 
voltage stability is based on the L-index of load buses. The objective is to minimize the real power loss 
subjected to limits on generator real and reactive power outputs, bus voltages, transformer taps and shunt 
power control devices such as SVCs. The proposed algorithm has been applied to IEEE 30-bus system to 
find the optimal reactive power control variables while keeping the system under safe voltage stability 
limit and is found to be effective for this task. The optimal reactive power allocation results obtained 
using DE are compared with other methods. It is shown that the objective function value is less than those 
of other methods. 
 

Keywords: Optimal Reactive Power Dispatch; Differential Evolution; Voltage Stability L-index; Power 
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1. INTRODUCTION  
 

To solve the RPD problem, a number of 
conventional optimization techniques [1-2] have 
been proposed. These include the Gradient 
method, Non-linear Programming (NLP), 
Quadratic Programming (QP), Linear 
programming (LP) and Interior point method. 
Though these techniques have been successfully 
applied for solving the reactive power dispatch 
problem, still some difficulties are associated with 
them. One of the difficulties is the multimodal 
characteristic of the problems to be handled. Also, 
due to the non-differential, non-linearity and non-
convex nature of the RPD problem, majority of the 
techniques converge to a local optimum. Recently, 
Evolutionary Computation techniques like Genetic 
Algorithm (GA) [3], Evolutionary Programming 
(EP) [4] and Evolutionary Strategy [5] have been 
applied to solve the optimal dispatch problem. In 
this paper, GA based approach has been proposed 
to solve the RPD problem. 

Evolutionary Algorithms (EAs) are optimization 
techniques based on the concept of a population of 

individuals that evolve and improve their fitness 
through probabilistic operators like recombination 
and mutation. These individuals are evaluated and 
those that perform better are selected to compose 
the population in the next generation. After several 
generations these individuals improve their fitness 
as they explore the solution space for optimal 
value. The field of evolutionary computation has 
experienced significant growth in the optimization 
area. These algorithms are capable of solving 
complex optimization problems such as those with 
a non-continuous, non-convex and highly 
nonlinear solution space. In addition, they can 
solve problem that feature discrete or binary 
variables, which are extremely difficult. 

Several algorithms have been developed within 
the field of Evolutionary Computation (EC) being 
the most studied Genetic Algorithms were first 
conceived in the 1960’s when evolutionary 
computation started to get attention. Recently, the 
success achieved by EAs in the solution of 
complex problems and the improvement made in 
computation such as parallel computation have 
stimulated the development of new algorithms like 
Differential Evolution (DE), Particle Swarm 
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Optimization (PSO), Ant Colony Optimization 
(ACO) and scatter search present great 
convergence characteristics and capability of 
determining global optima. Evolutionary 
algorithms have been successfully applied to many 
optimization problems within the power systems 
area and to the economic dispatch problem in 
particular [6-23]. 

Voltage Stability is becoming an increasing 
source of concern in secure operation of present-
day power systems. The problem of voltage 
instability is mainly considered as the inability of 
the network to meet the load demand imposed in 
terms of inadequate reactive power support or 
active power transmission capability or both1. 
Voltage collapse is a local load bus problem and 
depends mostly on load conditions in the system. 
There exist two major techniques viz, static 
approach and dynamic approach for this analysis. 
Although not very accurate, yet the static 
technique has gained wide acceptance for its 
inherent virtues, eg, simplistic approach, faster 
execution and less memory consumption. The 
static voltage stability is primarily associated with 
the reactive power support. The real power (MW) 
loadability of a bus in a system depends on 
reactive power support that the bus can receive 
from the system. Several analytical tools have 
been presented in the literature for the analysis of 
the static voltage stability of a system. This paper 
is mainly concerned with analysis and 
enhancement of steady state voltage stability based 
on L-index [24]. An algorithm is proposed using 
new operational load flow (OLF) and optimization 
of reactive power control variables using LP 
technique. Simulated case studies conducted on 
two Indian power networks of 82 and 217 buses 
are presented for illustration purposes. 
 
2. VOLTAGE STABILITY L-INDEX  

 
Consider an n-bus system having 1, 2…g, 

generator buses (g), and g+1,g+2…n the load 
buses(r=n-g-s) and t number of OLTC 
transformers. The transmission system can be 
represented using a hybrid representation, by the 
following set of equations 
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where 

LL I,V  are the voltage and current vectors at the 
load buses 

GG I,V  are the voltage and current vectors at 
the generator buses 

GGGLLGLL Y,K,F,Z  are the sub-matrices of 
the hybrid matrix H. 

The H matrix can be evaluated from the Y bus 
matrix by a partial inversion, where the voltages at 
the load buses are exchanged against their 
currents. This representation can then be used to 
define a voltage stability indicator at the load bus, 
namely Lj which is given by, 
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The term jV 0  is representative of an equivalent 
generator comprising the contribution from all 
generators.  

The index Lj can also be derived and expressed 
in terms of the power terms as the following. 
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The complex power term component jcorrS  
represents the contributions of the other loads in 
the system to the index evaluated at the node j.  

It can be seen that when a load bus approaches a 
steady state voltage collapse situation, the index L 
approaches the numerical value 1.0. Hence for an 
overall system voltage stability condition, the 
index evaluated at any of the buses must be less 
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than unity. Thus the index value L gives an 
indication of how far the system is from voltage 
collapse. This feature of this indicator has been 
exploited in our proposed algorithm to evolve a 
voltage collapse margin incorporated RPD routine. 
The L -indices for a given load condition are 
computed for all load buses. The equation for the 
L -index for j-th  node can be written as 

∑
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* Indicates the complex conjugate of the vector 
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It can be seen that when a load bus approaches a 
steady state voltage collapse situation, the index 
L  approaches the numerical value 1.0. Hence for 
an overall system voltage stability condition, the 
index evaluated at any of the buses must be less 
than unity. Thus the index value L gives an 
indication of how far the system is from voltage 
collapse. This feature of this indicator has been 
exploited in our proposed algorithm to evolve a 
voltage collapse margin incorporated in RPD 
routine.  

 
3. FORMULATION OF ORPD PROBLEM 
 

The objective of RPD is to identify the reactive 
power control variables, which minimizes the real 
power loss ( lossP ) of the system. This is 
mathematically stated as follows:   
 
Minimize F= [ 1f ]          

1f = lossP = ∑
=
∈

−+

),(

22 )cos2(
jik

Nk
ijjijik

l

VVVVg θ

     (11) 

 The reactive power optimization problem is 
subjected to the following constraints. 
Equality Constraints: 

These constraints represent load flow equation 
such as  
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Inequality Constraints: 

These constraints represent the system operating 
constraints. Generator bus voltages (Vgi), reactive 
power generated by the capacitor (Qci), 
transformer tap setting (tk), are control variables 
and they are self-restricted. Load bus voltages 
(Vload) reactive power generation of generator (Qgi) 
and line flow limit (Sl) are state variables, whose 
limits are satisfied by adding a penalty terms in the 
objective function. These constraints are 
formulated as 
(i) Voltage limits  
       maxmin

iii VVV ≤≤       ; BNi∈       (14)               
(ii) Generator reactive power capability limit 
       maxmin

gigigi QQQ ≤≤   ; gNi∈           (15) 
(iii) Capacitor reactive power generation limit  
       maxmin

cicici QQQ ≤≤   ; cNi∈     (16) 
(iv) Transformer tap setting limit  
        maxmin

kkk ttt ≤≤   ; TNk ∈       (17) 
(v) Transmission line flow limit   
           max

ll SS ≤   ; lNl ∈                        (18)  

(vi) Voltage stability constraint 
  PQj NjLL ∈≤ ;max   (19) 
The equality constraints are satisfied by running 

the power flow program. The active power 
generation (P) (except the gi generator at the slack 
bus), generator terminal bus voltages (V) and 
transformer tap-settings (t) are the optimization gi 
k variables and they are self-restricted by the 
optimization algorithm. The active power 
generation at the slack bus (Pgs ), load bus 
voltages (V) and reactive power generation ( Q) 
and voltage stability load gi level (L) are state 
variables which are restricted through penalty 
function approach. 
 
4. OVERVIEW OF DIFFERENTIAL 
EVOLUTION 

 
One extremely powerful algorithm from 
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evolutionary computation due to it’s excellent 
convergence characteristics and few control 
parameters is differential evolution. Differential 
evolution solves real valued problems based on the 
principles of natural evolution [11-15] using a 
population P of Np  floating point-encoded 
individuals that evolve over G generations to reach 
an optimal solution. In differential Evolution, the 
population size remains constant throughout the 
optimization process. Each individual or candidate 
solution is a vector that contains as many 
parameters as the problem decision variables D.  
The basic strategy employs the difference of two 
randomly selected parameter vectors as the source 
of random variations for a third parameter vector. 
In the following, we present a more rigorous 
description of this new optimization method. 
  ]......................[ )()(
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Extracting distance and direction information 

from the population to generate random deviations 
result in an adaptive scheme with excellent 
convergence properties. Differential Evolution 
creates new offsprings by generating a noisy 
replica of each individual of the population. The 
individual that performs better from the parent 
vector (target) and replica (trail vector) advances 
to the next generation. 

This optimization process is carried out with 
three basic operations: 

• Mutation 
• Cross over 
• Selection 

First, the mutation operation creates mutant 
vectors by perturbing each target vector with the 
weighted difference of the two other individuals 
selected randomly. Then, the cross over operation 
generates trail vectors by mixing the parameters of 
the mutant vectors with the target vectors, 
according to a selected probability distribution. 
Finally, the selection operator forms the next 
generation population by selecting between the 
trial vector and the corresponding target vectors 
those that fit better the objective function. 

A. DE Algorithm    
• Initialize population 
• While stopping criteria are not satisfied, 
• Create mutant vector with the difference 

vector and scaling constant 

• Generate trial vectors applying the 
selected crossover scheme 

• Select next generation members 
according to competition performance. 

B.  DE Optimization Process 

1)  Initialization 
The first step in the DE optimization process is to 
create an initial population of candidate solutions 
by assigning random values to each decision 
parameter of each individual of the population. 
Such values must lie inside the feasible bounds of 
the decision variable and can be generated by Eq. 
(21). In case a preliminary solution is available, 
adding normally distributed random deviations to 
the nominal solution often generates the initial 
population. 

)( minmaxmin)0(
, jjjjji YYYY −+= η                   (21) 

           i  = 1,2,…, Np , j = 1,2,…, D  

Where min
jY and max

jY  are respectively, the 

lower and upper bound of the j th decision 

parameter and jη  is a uniformly distributed 

random number within [0,1] generated anew for 
each value of j . 
2) Mutation 

After the population is initialized, this evolves 
through the operators of mutation, cross over and 
selection.  For crossover and mutation different 
types of strategies are in use. Basic scheme is 
explained here elaborately. The mutation operator 
is incharge of introducing new parameters into the 
population. To achieve this, the mutation operator 
creates mutant vectors by perturbing a randomly 
selected vector ( aY ) with the difference of two 

other randomly selected vectors ( bY and cY ). All 
of these vectors must be different from each other, 
requiring the population to be of at least four 
individuals to satisfy this condition. To control the 
perturbation and improve convergence, the 
difference vector is scaled by a user defined 
constant in the range [0, 1.2]. This constant is 
commonly known as the scaling constant ( S ). 
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Where cba YYY ,, , are randomly chosen vectors 

{ }Np,.........2,1∈  and icba ≠≠≠  

cba YYY ,,  are generated anew for each parent 
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vector, S  is the scaling constant. For certain 
problems, it is considered ia = . 
3) Crossover 

The crossover operator creates the trial vectors, 
which are used in the selection process. A trail 
vector is a combination of a mutant vector and a 
parent (target) vector based on different 
distributions like uniform distribution, binomial 
distribution, exponential distribution is generated 
in the range [0, 1] and compared against a user 
defined constant referred to as the crossover 
constant. If the value of the random number is less 
or equal than the value of the crossover constant, 
the parameter will come from the mutant vector, 
otherwise the parameter comes from the parent 
vector.  Figure 3 shows how the crossover 
operation is performed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Mutation operator 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  Crossover operator 

 
The crossover operation maintains diversity in 

the population, preventing local minima 
convergence. The crossover constant (CR ) must 

be in the range of [0, 1]. A crossover constant of 
one means the trial vector will be composed 
entirely of mutant vector parameters. A crossover 
constant near zero results in more probability of 
having parameters from the target vector in the 
trial vector. A randomly chosen parameter from 
the mutant vector is always selected to ensure that 
the trail vector gets at least one parameter from the 
mutant vector even if the crossover constant is set 
to zero. 
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Another type of crossover scheme is mentioned 

in [11]. 
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Where the acute brackets 
D

denote the 

modulo function with modulus D. The starting 
index n is a randomly chosen integer from the 
interval [0, D-1]. The integer L is drawn from 
interval [0, D-1] with the probability Pr (L=v) = 
(CR) v. ]1,0[∈CR  is the crossover probability 
and constitutes a control variable for the DE 
scheme. The random decisions for both n and L 
are made anew for each trial vector. 
4) Selection 

The selection operator chooses the vectors that 
are going to compose the population in the next 
generation. This operator compares the fitness of 
the trial vector and fitness of the corresponding 
target vector, and selects the one that performs 
better. 
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The selection process is repeated for each pair 

of target/ trail vector until the population for the 
next generation is complete. 
5. DIFFERENTIAL EVOLUTION 
SOLUTION TECHNIQUE 

 
In the ORPD problem, the elements of the 

solution consist of all the control variables, 
namely, generator bus voltages (V), the gi 
transformer tap-setting (tk ), and the reactive 
power generation ( Qci ). These variables are 
represented continuous variables in the DE 
population.  
 
Fitness Function: In the ORPD problem under 
consideration the objective is to minimize the total 
power loss satisfying the constraints given by 
equations (12) to (19). For each individual, the 
equality constraints given by equations (12) and 
(13) are satisfied by running Newton-Raphson 
algorithm and the constraints on the state variables 
are taken into consideration by adding a quadratic 
penalty function to the objective function.  

With the inclusion of penalty function, the new 
objective function then becomes,  
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where vK  , qK , fK and lK are the penalty 
factors for the bus voltage limit violation, 
generator reactive power limit violation, line flow 
violation and voltage stability limit violation, 
respectively. In the above objective function Vi 
lim and Qgi lim are defined as;  
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The minimization objective function given by 

equation (26) is transformed to a fitness function 
(f) to be maximized as, where k is a large constant. 
This is used to amplify, the value of 1/F which is 
usually small, so that the fitness value of the 
chromosome will be in a wider range.  

 
6. SIMULATION RESULTS 
 

The details of the simulation study carried out 
on IEEE 30-bus system using the proposed DE-
based method are presented here. It is chosen as it 
is a benchmark system, has more control variables 
and provides results for comparison of the 
proposed method. The approach can be 
generalized and easily extended to large-scale 
systems. IEEE 30-bus system consists of 6 
generator buses, 24 load buses and 41 transmission 
lines of which 4 branches (6-9), (6-10), (4-12) and 
(28-27) are with the tap-setting transformer. 
Generator parameters are given in the Appendix. 
The transmission line parameters of this system 
and the base loads are given in [1]. 

For the ORPD problem, the candidate buses for 
reactive power compensation are 10, 12, 15, 17, 
20, 21, 23, 24 and 29. The DE-based ORPD 
algorithm was implemented using MATLAB code 
and was executed on a PC. Two different studies 
were performed with this system to show the 
significance of the proposed method and the use of 
the algorithm in a bigger system. In case 1 RPD 
problem is solved by the proposed method with 
100% load level, case 2 is reactive power dispatch 
under network contingency with the incorporation 
of the voltage stability limit in both the cases.  

 
Figure 3: IEEE 30-bus system 
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The DE parameters used for the optimal power 
flow solution are given in Table III. They are 
treated as continuous controls. The results of these 
simulations are summarized next.  

 
 

TABLE I 
SYSTEM DESCRIPTION OF CASE STUDY  

Sl.No. Variables  30-bus 
system 

1 Buses 30 
2 Branches 41 

3 Generators 6 
4 Generator buses 6 
5 Shunts reactors 2 
6 Tap-Changing 

transformers 
4 

 
 

TABLE II 
LIMITS OF VARIABLES FOR IEEE 30-BUS SYSTEM 

No. Description Units Lower 
Limits 

Upper 
Limits 

1 Voltage PQ-
bus 

Pu 0.95 1.05 

2 Voltage PV-
bus 

Pu 0.90 1.10 

3 Trans. taps Pu 0.90 1.10 

 
TABLE III 

DE PARAMETERS FOR BEST RESULTS OF OPTIMAL POWER FLOW 
FOR IEEE 30-BUS SYSTEM 

 
Sl.No. 

Parameters of Differential evolution 
Parameters Values 

1 Population 20 
2 Generations 100 

 
C. Case 1: base case  

In this case the system is optimized using the 
optimal reactive power dispatch method under 
base load condition for 100% load level. The real 
power settings of the generator are taken from [1]. 
To obtain the optimal values of the control 
variables the DE-based algorithm was run.  

The optimal values of the control variables and 
power loss obtained are presented in Table IV. The 
minimum transmission loss obtained is 4.8500 
MW which is smaller than the result obtained in 
[1] for the same IEEE 30-bus system. To illustrate 
the convergence of the algorithm, the relationship 
between the best fitness value of the ORPD results 

and the objective function (Ploss) are plotted 
against the number of generations in Figure 2. 
From the figure it can be seen that the proposed 
algorithm converges rapidly towards the optimal 
solution. This shows the effectiveness of the 
proposed method for the ORPD problem.  

 
TABLE IV 

CONTROL VARIABLES FOR THE 30-BUS SYSTEM 
I. Generator 
voltages 

II. Shunt 
Compensation 

III. Transformer 
taps 

Gen 
bus 

Value SVC 
 

Value Tran. 
Tap 

Value 

1 
2 
5 
8 
11 
13 

1.0700 
1.0629 
1.0446 
1.0430 
1.0974 
1.0613 
 

Qc10 
Qc12 
Qc15 
Qc17 
Qc20 
Qc21 
Qc23 
Qc24 
Qc29 

0.0426  
0.0260 
0.0275 
0.0282 
0.0458 
0.0380 
0.0531 
0.0258 
0.0309 
 

96−T  

106−T     

124−T     

2728−T
 

0.9000 

0.9000 

1.0093  

1.0119  

 

 
 

 
 
   Figure 4: Fitness function value Vs Generations for case 1 
 

 
 
Figure 5: Objective function value Vs Generations for case 1 
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D. Case 2: contingency case  
Again in this case, the same values of load 

condition and generator setting as in case 1 are 
followed. But a network contingency is considered 
in this case. Additional constraint in the form of 
limit on the maximum value of L-index as in 
normal condition is incorporated. This is done to 
restrict the maximum value of L-index under 
contingency condition from reaching a 
dangerously high value. For the network 
contingency, namely, line outage (4 -12), with the 
inclusion of the voltage stability constraint the DE-
based algorithm was applied to obtain the optimal 
values of the control variables under normal 
condition, the result of which is given in the  Table 
V. For these optimal values of control variables 
when line (4 -12) was removed it was found that 
the maximum value of L-index reached by the 
system is 0.1800 only. This improvement in 
voltage stability was achieved because of the 
restriction put on the maximum L-index value in 
the base case condition. Table VI shows the 
performance parameters of the reactive power 
dispatch obtained using DE-based RPD. This 
shows the effectiveness of the proposed algorithm 
for voltage security enhancement.  

 
 

TABLE  V 
CONTROL VARIABLES FOR THE 30-BUS SYSTEM 

I. Generator 
voltages 

II. Shunt 
Compensation 

III. Transformer 
taps 

bus 
No
. 

Value SVC Value Tran. 
Tap 

Value 

1 
2 
5 
8 
11 
13 

1.0700 
1.0625 
1.0387 
1.0403 
1.0863 
1.0646 

Qc10 
Qc12 
Qc15 
Qc17 
Qc20 
Qc21 
Qc23 
Qc24 
Qc29 

0.0140 
0.0554 
0.0421 
0.0260 
0.0484 
0.0159 
0.0194 
0.0497 
0.0288 

 

96−T  

106−T   

124−T   

2728−T
 

1.0284 

0.9000 

1.0137 

0.9850 

 
TABLE  VI 

PERFORMANCE PARAMETERS 
Parameter Values 

Case 1 Case 2 

1gP (pu)(slack bus) 0.9985 1.0236 

maxL  0.1310 0.1800 

lossP (pu) 0.0485 0.0507 

 
Figure 6: Fitness function value Vs Generations for case 2 

 
Figure 7: Objective function value Vs Generations for case 2 
 
7. CONCLUSIONS 
 

This paper presents a DE solution to the optimal 
reactive power allocation problem and is applied 
to an IEEE 30-bus power system. The main 
advantage of DE over other modern heuristics is 
modeling flexibility, sure and fast convergence, 
less computational time than other heuristic 
methods. And it can be easily coded to work on 
parallel computers. The main disadvantage of DE 
is that it is heuristic algorithms, and it does not 
provide the guarantee of optimal solution for the 
RPD problem. The DE approach is useful for 
obtaining high-quality solution in a very less time 
compared to other methods. 

Differential evolution algorithm is a stochastic 
optimization technique was employed as the 
optimization approach in determining the optimum 
values for the reactive power to be dispatched to 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2008 JATIT. All rights reserved.                                                                         
 

www.jatit.org 

 
708 

 

establish voltage stability during contingency 
condition. Simulation results shows that the DE-
based reactive power dispatch algorithm is able to 
improve voltage stability condition along with loss 
minimization in the system. Also, it is found that 
the results of the DE-based algorithm are always 
better than that obtained using conventional 
methods.  

The future work in this area consists of the 
applicability of DE solutions to large-scale RPD 
problems of systems with several thousands of 
nodes. The continuous demand in electric power 
system network has caused the system to be 
heavily loaded leading to voltage instability. 
Voltage instability condition in a stressed power 
system could be improved by having an effective 
reactive power dispatch (RPD) procedures.  
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