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ABSTRACT 
Clustering algorithms gives general description of the clusters listing number of clusters and member 
entities in those clusters. It lacks in generating cluster description in the form of pattern. Deriving pattern 
from clusters along with grouping of data into clusters is important from data mining perspective. In the 
proposed approach reduct from rough set theory is employed to generate pattern. Reduct is defined as the 
set of attributes which distinguishes the entities in a homogenous cluster. It is observed that most of the 
remaining attributes in the cluster has same value for their attribute value pair. Reduct attributes are 
removed to formulate pattern by concatenating most contributing attributes.  Proposed approach is 
demonstrated using benchmarking mushroom dataset from UCI repository. 

Keywords:  Rough set theory, Reduct, Indiscernibility, Clustering, Pattern discovery, Cluster description, 
Mushroom 

 
1 INTRODUCTION 

 
In data mining, clustering is used as a tool for 

finding patterns and regularities within the data. 
Clustering algorithms groups the entities into 
different clusters such that entities in a cluster are 
highly similar and hence the entities belonging to 
different clusters are highly dissimilar. Pattern is 
defined as a logical statement describing the cluster 
structure in terms of relevant attributes. Clustering 
algorithms in literature are divided into different 
categories. Partitioning clustering algorithms are 
commonly used clustering algorithms [5]. 
Partitioning algorithms divides the data into k non 
overlapping clusters, where k is the number of 
clusters specified by the user as input. These 
clustering algorithms, only generates general 
description of the clusters depicting member entities 
of each cluster. However, it lacks in generating 
pattern as this approach has no mechanism for 
selecting and evaluating the attributes in the process 
of generating clusters [7]. Post processing of 
clusters is required in data mining for deriving 
useful knowledge in the form of pattern. Pattern is 
formulated by conjunction of significant attribute 
value pair and hence describes the cluster in more 
meaningful format. Producing a pattern is of 
interest in the situation where there is a need to 
study the relationship describing the data. It is also 

useful in a situation where interpretation of clusters 
is required in user understandable format.  

In this paper, an attempt is being made using 
Rough Set Theory (RST) to derive patterns from the 
clusters obtained using partitioning clustering 
algorithm. RST divides the data into indiscernible 
classes. RST has a natural appeal to be applied in 
clustering as these indiscernible classes can be 
construed as clusters. Moreover, RST also performs 
automatic concept approximation by producing 
minimal subset of attributes (Reduct) that can 
distinguish all the entities in the dataset. Our aim is 
to generate pattern of individual clusters and hence 
reduct is computed for each cluster. If reducts are 
removed from the cluster, remaining attributes in 
the cluster will have same attribute value pair. 
These remaining attributes play significant role in 
pattern generation.  Pattern is then formulated with 
the conjunction of major contributing attributes. 
The efficacy of the approach is demonstrated with 
the help of benchmarking mushroom dataset from 
the UCI repository [13]. Objective of applying the 
proposed approach on mushroom dataset is to study 
the relationship of attributes with edible and 
poisonous nature of mushrooms.  

 
The paper is organized as follows: In section 2 

the basic notions of rough set theory and cluster 
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description is described. Section 3 presents the 
cluster description approaches including the 
proposed approach. In section 4 application of the 
proposed approach is demonstrated on mushroom 
dataset followed by conclusion in Section 5.  

 
2  BASIC NOTIONS 

 
2.1. Rough Set Theory Concepts 

In RST, data is represented by an information 
system }){,( dAUX U= [6, 11]. In this U is non-
empty finite set of entities and A  is a non-empty, 
finite set of attributes onU , where Ad ∉  is 
decision/class attribute. With every attribute Aa∈ , 
we associate a set aV such that aVUa →: . The set 

aV  is called the domain or value set of attribute a . 
Every entity x , in an information system X , is 
characterized by its information vector: 

}:))(,{()( AaxaaxInfX ∈=  
Relationship between entities is described by 

their attribute values. Indiscernibility 
relation )(BIND , for any subset AB ⊆  is defined 
by: 

))()(()( yaxayBINDx Ba =∀⇔ ∈  
Two entities are considered to be indiscernible by 

the attributes in B , if and only if they have the same 
value for every attribute in B . Entities in the 
information system about which we have the same 
knowledge form an equivalence relation. )(BIND  
is an equivalence relation that partitions U into 
equivalence classes. Set of such partitions are 
denoted by )(/ BINDU .    

Reduct is the set of attributes that can 
differentiate all equivalence classes. Mostly reduct 
is computed relative to decision attribute in the 
dataset. However, our approach of reduct 
computation is different. Clustering is done on 
unsupervised data where decision/class information 
is not present and hence reduct computation is 
purely on the basis of indiscernibility. We have 
computed reduct for individual cluster as compared 
to reduct computation for dataset because our aim is 
to generate patterns of individual clusters.    There 
are various methods and software’s available for 
computation of reducts. We have used genetic 
algorithm for reduct computation using Rosetta 
software. 

 

 

2.2. Illustration  
 

Small table from mushroom dataset is 
considered for illustration of RST concepts (Table 
1).   

Table 1: Small mushroom data set 
 
Id cap-

shape 
cap-
surface 

cap-
color 

bruises odor 

X1 b s b t n 
X2 f s w t n 
X3 f s p t n 
X4 b s b t n 
X5 b s w t n 
X6 b y w t n 
X7 f y p t n 
X8 b s b t n 
X9 b y p t n 

 
Using Table 1 some concepts of RST described 

in section 2.1 are: 
U={X1, X2, X3, X4, X5, X6,  X7, X8, X9} 
A= {cap-shape, cap-surface, cap-color, bruises, 

odor} 
Vcap-shape = {b, f}, Vcap-surface ={s, y}, 

Vcap-color={b, p, w}, Vbruises={t}, Vodor={n},  
InfX(X1)= {cap-shape, b}, i.e value of attribute 

cap-shape for entity X1is b. 
For any subset AB ⊆ , when B= {cap-

shape}then entities {X1, X4, X5, X6, X8} 
(X2,X3,X7) in these sets are indiscernible and form 
different equivalence classes. Therefore 
U/IND(B)={(X1,X4,X5,X6,X8),(X2,X3,X7)} 

Similarly for B={cap-surface, odor}:  
U/IND(B)={(X1,X2,X3,X4,X5,X8), 

(X6,X7,X9)} 
Computation of reduct using genetic algorithm 

resulted in reduct set (R) of attributes: R={cap-
shape, cap-surface, cap-color}. 

 
2.3. Cluster Description concepts 

In the information system, attribute value pair of 
the form )( aVaD ∈=  is defined as descriptor and 
the value set aV  is called the range of D  [10]. 
Support for the descriptor D  is defined as the 
number of entities from U  satisfying D .  To 
measure and compare the describing capabilities of 
various descriptors, Precision Error (PE) of the 
descriptor is computed. PE of descriptor D is 
defined as:  

CU

DCpositivefalse
DPE

−
=

)(
)(
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where numerator defines the number of entities 
that lies outside cluster C  for which descriptor 
( aD = ) is true and denominator defines the 
number of entities outside cluster C . A descriptor is 
said to be more contributing if it has less PE which 
essentially means that most of the entities satisfying 
that descriptor belongs to a single cluster.  

Now cluster description can be defined in terms 

of pattern CDP i

n

i
∀Λ=

=1
 that is formed by the 

conjunction of most contributing descriptors from 
that cluster. Similarly PE of pattern P  for cluster 
C  is defined as [8]: 

CU

PCpositivefalse
PPE

−
=

)(
)(

 
where numerator denotes the number of entities 

that lies outside the cluster C  for which pattern P is 
true and denominator denotes the number of entities 
outside cluster C .  

Therefore problem of pattern formulation can be 
carried out by combining the attributes with less PE 
such that PE for P  equals zero, means this pattern 
P  distinctively describes the cluster with no errors. 

3 CLUSTER DESCRIPTION APPROACHES 
 

3.1. Review of Literature 
 
The field of producing patterns for individual 

clusters is relatively new. There are few references 
of cluster description approaches available in 
literature. Mirkin has proposed a method for cluster 
description applicable to only continuous attributes 
[8]. In Mirkin’s approach attributes are normalized 
first and then ordered according to their 
contribution weights which are proportional to the 
squared differences between their with-in group 
averages and grand means. A conjunctive 
description of cluster is then formed by 
consecutively adding attributes according to the 
sorted order. An attribute is added to the description 
only if it decreases the error. This forward attribute 

selection process stops after the last element of 
attribute set is checked. Abidi et al. has proposed 
the rough set theory based method for rule creation 
for unsupervised data using dynamic reduct [1, 2]. 
Dynamic reduct is defined as the frequently 
occurring reduct in the population of reduct set 
obtained using genetic algorithm. However these 
approaches have its limitations. Mirkin’s approach 
is applicable only to datasets having continuous 
attributes. Abidi in his approach has used the cluster 
information obtained after cluster finding and 
generated rules from entire data with respect to 
decision attribute, instead of producing description 
for individual clusters. Other popular pattern 
generation approach like decision tree [10] is not 
directly applicable to clustering as criteria in 
clustering is to get homogenous clusters with 
respect to all the attributes. However in decision 
tree homogeneity is with respect to decision 
attribute.  

3.2. Proposed Approach  
 

Proposed approach of pattern formulation is 
divided into three parts.  First part deals with 
obtaining clusters from dataset by applying 
clustering algorithm. In the second stage we have 
computed sets of significant and non significant 
attributes for that cluster. As cluster is set of similar 
data entities, only similar attribute value pair are 
significant for that cluster and rest are non 
significant. Computation of reduct set (RC) in a 
cluster will provide the set of non significant 
attributes for that cluster, as reduct accounts for 
discerning between the entities. These non 
significant attributes (reduct) can be straight away 
removed from the cluster. The remaining attributes 
now termed as descriptors (ref section 2.3) form the 
set of significant attributes (I) for that cluster.  
Contributions of these descriptors in a cluster are 
measured in terms of PE. PE is calculated for every 
descriptor (D) in set I, and descriptors are arranged 
in ascending order of their PE. In the third stage 
pattern is formulated by conjunction of descriptors 
with less PE such that PE for the pattern equals 
zero.  
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Flowchart of proposed approach: 

Step 2
Computation of Reduct 
set and set of Significant 

Attributes

Step 3
Pattern Generation

Step 1
Cluster Finding

Input 
dataset

Apply 
Clustering 

algorithm to 
obtain clusters

While j ≤ k

Compute RC, 
where RC is 
reduct set for 

cluster C

Compute I,
where I=A-RC

i=1

While i ≤ n

i =1
P← Di

If PE (Di)=0

While i ≤ n

P←  P ^ D i+1

Compute PE(P)

If PE (P) = 0

Output 
P

K is the number of 
clusters

j=1

Compute PE(Di)

I is set of descriptors Di: i=1..n, 
where n is number of descriptors

     Yes

  No

Yes

No

Arrange set I of descriptors Di: i=1..n 
in ascending order of their PE  

End While

Start

Stop

End While
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4 EXPERIMENTAL RESULTS 
 

4.1. Data description 
 
We have considered benchmarking mushroom 

dataset from UCI repository for demonstration of 
proposed approach [14]. Dataset consists of large 
number of records that is 8124 records. The number 

of edible and poisonous mushrooms in the data set 
is 4208 and 3916 respectively. Table 1 shows the 22 
categorical attributes that describes the physical 
characteristics of mushrooms. Class attribute 
(edible (e) or poisonous (p)) and attribute stalk root 
with missing values are not considered for 
clustering.   

Table 1: Attribute Information of Mushroom dataset 

1. cap-shape: bell=b, conical=c, convex=x, flat=f, knobbed=k, sunken=s  
2. cap-surface: fibrous=f, grooves=g, scaly=y, smooth=s  
3. cap-color: brown=n, buff=b, cinnamon=c, gray=g, green=r, pink=p, 

purple=u, red=e, white=w, yellow=y  
4. bruises: bruises=t, no=f  
5. odor: almond=a, anise=l, creosote=c, fishy=y, foul=f, musty=m, none=n, 

pungent=p, spicy=s  
6. gill-attachment: attached=a, descending=d, free=f, notched=n  
7. gill-spacing: close=c, crowded=w, distant=d  
8. gill-size: broad=b, narrow=n  
9. gill-color: black=k, brown=n, buff=b, chocolate=h, gray=g, green=r, 

orange=o, pink=p, purple=u, red=e, white=w, yellow=y  
10. stalk-shape: enlarging=e, tapering=t  
11. stalk-root: bulbous=b, club=c, cup=u, equal=e, rhizomorphs=z, rooted=r, 

missing=?  
12. stalk-surface-above-ring: ibrous=f, scaly=y, silky=k, smooth=s 
13. stalk-surface-below-ring: ibrous=f, scaly=y, silky=k, smooth=s 
14. stalk-color-above-ring: brown=n ,buff=b, cinnamon=c, gray=g, orange=o, 

pink=p, red=e, white=w, yellow=y  
15. stalk-color-below-ring: brown=n, buff=b, cinnamon=c, gray=g, orange=o, 

pink=p, red=e, white=w, yellow=y  
16. veil-type: partial=p, universal=u  
17. veil-color: brown=n, orange=o, white=w, yellow=y 
18. ring-number: none=n, one=o, two=t  
19. ring-type: cobwebby=c, evanescent=e, flaring=f, large=l, none=n, 

pendant=p, sheathing=s, zone=z  
20. spore-print-color: black=k, brown=n, buff=b, chocolate=h, green=r, 

orange=o, purple=u, white=w, yellow=y  
21. population: abundant=a, clustered=c, numerous=n, scattered=s, several=v, 

solitary=y  
22. habitat: grasses=g, leaves=l, meadows=m, paths=p, urban=u, waste=w, 

woods=d  
 

4.2. Data Clustering  
 
We have used Weka implementation [15] of EM 

algorithm for cluster finding. EM is a mixture based 
algorithm that attempts to maximize the likelihood 
of the model [9]. EM models the distribution of the 
entities probabilistically, so that an entity belongs to 
a cluster with certain probability. The first step, 
calculation of the cluster probabilities, which are 
the expected class value, is “expectation”; the 
second step is calculation of the distribution 
parameter is “maximization” of the likelihood of 

the distribution given the data. By default, EM 
selects the number of clusters automatically by 
maximizing the logarithm of the likelihood of 
future data, estimated using cross-validation. 
Beginning with one cluster, it continues to add 
clusters until the estimated log-likelihood decreases. 

When EM clustering algorithm is applied on 
mushroom dataset, it learned 14 numbers of clusters 
from the data. Table 2 shows the result obtained 
with EM algorithm. There is wide variance among 
the size of the clusters that range from 96 entities to 
1728 entities. As shown in Table 2, except clusters 
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3, 11 and 13 which are mix clusters, all other 
clusters are pure clusters. Pure clusters in the sense 
that mushrooms in every cluster are either all 
poisonous or all edible. 

Table 2: Clustering results with EM algorithm 

Cluster 
Number 

poisonous(p) edible(e) 

1 288 0 
2 1728 0 
3 84 112 
4 0 192 
5 0 768 
6 0 96 
7 0 1728 
8 256 0 
9 1296 0 
10 1 511 
11 192 96 
12 0 192 
13 72 224 
14 0 288 

 
4.3. Reduct Computation 

 
We have used Genetic Algorithm (GA) based 

method [15] for reduct computation for our 
experiments in this paper using Rosetta software 
[12]. To study the characteristics of poisonous 
mushrooms, reduct analysis is carried out on 
individual pure poisonous clusters (1, 2, 8, and 9) 
without considering the decision information. Table 
3 shows the reduct attributes in pure poisonous 
clusters. 

Table 3: Reduct attribute in poisonous clusters 

Cluste
r1 

cap-shape, cap-color, gill-color, stalk-
surface-above-ring, stalk-surface-
below-ring, population, habitat 

Cluste
r2 

cap-shape, cap-surface, cap-color, 
odor, stalk-surface-above-ring, stalk-
surface-below-ring, stalk-color-above-
ring, stalk-color-below-ring, habitat 

Cluste
r8 

cap-shape, cap-surface, cap-color, gill-
color, spore-print-color, population, 
habitat 

Cluste
r9 

cap-shape, cap-surface, cap-color, gill-
color, stalk-color-above-ring, stalk-
color-below-ring, population, habitat 

 
Although all the four clusters are poisonous, yet 

reduct attributes are not common among these 
clusters. Some attributes may be playing role in one 
cluster and may not significant in other clusters. 

Similarly to study the characteristics of edible 
mushrooms, reduct analysis is carried out on 
individual pure edible clusters (4, 5, 6, 7, 10, 12 and 
14). Table 4 shows the reduct attributes in pure 
edible clusters.  

Table 4: Reduct attributes in edible clusters 

Cluster4 cap-shape, gill-color, veil-color, 
spore-print-color, population 

Cluster5 cap-shape, cap-surface, cap-color, 
gill-color, stalk-surface-above-ring, 
stalk-surface-below-ring, spore-
print-color, population 

Cluster6 cap-shape, cap-surface, cap-color, 
odor, gill-color, spore-print-color 

Cluster7 cap-shape, cap-surface, cap-color, 
gill-color, stalk-color-above-ring, 
stalk-color-below-ring, spore-print-
color, population 

Cluster1
0 

cap-shape, cap-surface, cap-color, 
odor, gill-color, spore-print-color, 
population, habitat 

Cluster1
2 

cap-shape, cap-color, odor, gill-
color, spore-print-color, population, 
habitat 

Cluster1
4 

cap-shape, cap-surface, cap-color, 
gill-color, stalk-surface-above-ring, 
stalk-surface-below-ring, population 

 
4.4. Cluster Description 

 
Let us consider Cluster1 for pattern generation. As 
a cluster is defined as set of similar data entities and 
reduct attributes accounts for discerning entities 
with in cluster, therefore these can be clear cut 
removed from the cluster. When we remove the 
reduct attributes (Table 3) of cluster1, remaining 
descriptors in cluster1 are cap-surface=s, bruises=t, 
odor=f, gill-attachment=f, gill-spacing=c, gill-
size=b, stalk-shape=t, stalk-color-above-ring=w, 
stalk-color-below-ring=w, veil-color=w, ring-
number=o, ring-type=p, spore-print-color=h. All 
these descriptors have same value for all the entities 
within this cluster, therefore these are the 
contributing descriptors for this cluster. We then 
calculated PE for these descriptors to find out the 
major contributing descriptors. Let us consider 
calculation of PE for cap-surface=s and bruises=t in 
cluster1 which contains 288 entities.  Descriptors 
cap-surface=s has support of 2556 entities and 
bruises=t has support of 3376 entities in the dataset. 
PE is defined as number of false positive for that 
descriptor divided by the total number of entities 
outside that cluster.  
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Therefore PE (cap-surface=s) = (2556-288)/ 
(8124-288) = .2894 

Similarly PE (bruises=t) = (3376-288)/ (8124-
288) =.3940.  

In the similar way PE is computed for descriptors 
of every cluster. Table 5 and Table 6 show the 
descriptors along with value of PE for pure 
poisonous and edible clusters respectively.   

 

 

 

 

 

 

 

Table 5: PE for descriptors in poisonous clusters 

Cluster
1 

spore-print-color=h(.1715), odor=f(.2390), cap-surface=s(.2894), bruises=t(.3940), 
ring-type=p(.4696), stalk-color-below-ring=w(.5227), stalk-color-above-
ring=w(.5329), stalk-shape=t(.5513), gill-size=b(.6794), gill-spacing=c(.8325), ring-
number=o(.9188), gill-attachment=f(.9732),   veil-color=w(.9744) 

Cluster
2 

gill-color=b(0), spore-print-color=w(.1031), gill-size=n(.1225), ring-type=e(.1638), 
population=v(.3614), stalk-shape=t(.4502), bruises=f(.4721), gill-spacing=c(.7948), 
ring-number=o(.9005), gill-attachment=f(.9671), veil-color=w(.9687)  

Cluster
8 

odor=p(0), gill-size=n(.2867),  bruises=t(.3965), stalk-shape=e(.4143), ring-
type=p(.4717) stalk-color-below-ring=w(.5246), stalk-color-above-ring=w(.5348), 
stalk-surface-below-ring=s(.5948), stalk-surface-above-ring=s(.6253),  gill-
spacing=c(.8332), ring-number=o(.9191), veil-color=w(.9745), gill-
attachment=f(.9733)  

Cluster
9 

ring-type=l(0), spore-print-color=h(.0492), odor=f(.1266), stalk-surface-below-
ring=k(.1476), stalk-surface-above-ring=k(.1575), stalk-shape=e(.3251), 
bruises=f(.5055), gill-size=b(.6321), gill-spacing=c(.8078), ring-number=o(.9068), 
gill-attachment=f(.9692), veil-color=w(.9707)  
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Table 6: PE for descriptors in edible clusters 

Cluster4 
(192 entities) 

stalk-color-above-ring=o(0), stalk-color-below-ring=o(0), gill-
attachment=a(.0022), habitat=l(.0806), cap-color=n(.2637), cap-
surface=s(.2980), stalk-shape=e(.4190), odor=n(.4205), ring-type=p(.4760), 
bruises=f(.5743), stalk-surface-below-ring=s(.5980), stalk-surface-above-
ring=s(.6283), gill-size=b(.6833), gill-spacing=c(.8345),  ring-
number=o(.9198) 

Cluster5 
(768 entities ) 

gill-spacing=w(.0739), habitat=g(.1876), ring-type=e(.2729), odor=n(.3752), 
stalk-color-below-ring=w(.4915), stalk-color-above-ring=w(.5024), stalk-
shape=t(.5220), bruises=f(.5410), gill-size=b(.6585), ring-number=o(.9135), 
gill-attachment=f(.9714), veil-color=w(.9728) 

Cluster6 
 (96 entities) 

gill-spacing=w(.1514), habitat=d(.3801), gill-size=n(.3009), bruises=t(.4085), 
ring-type=p(.4823), population=v(.4912), stalk-color-below-ring=w(.5341), 
stalk-color-above-ring=w(.5440), stalk-shape=t(.5620), stalk-surface-below-
ring=s(.6028), stalk-surface-above-ring=s(.6327),  veil-color=w(.9750), ring-
number=o(.9207), gill-attachment=f(.9738). 

Cluster7 
 (1728 entities)  

habitat=d(.2220), bruises=t(.2576), odor=n(.2814), ring-type=p(.3502), stalk-
shape=t(.4502), gill-attachment=f(.9671), stalk-surface-below-ring=s(.5015), 
stalk-surface-above-ring=s(.5390), gill-size=b(.6072), gill-spacing=c(.7948), 
ring-number=o(.9005), veil-color=w(.9687)  

Cluster10  
(511 entities)  

bruises=t(.3763), stalk-shape=e(.3947), ring-type=p(.4540), stalk-color-below-
ring=w(.5087), stalk-color-above-ring=w(.5192), stalk-surface-below-
ring=s(.5812), stalk-surface-above-ring=s(.6127), gill-size=b(.6700), gill-
spacing=c(.8276), ring-number=o(.9164), gill-attachment=f(.9724), veil-
color=w(.9737) 

Cluster12  
(192 entities)  

stalk-surface-below-ring=y(.0115), cap-surface=y(.3847), bruises=t(.4014), 
stalk-shape=e(.4190), ring-type=p(.4760), stalk-color-below-ring=w(.5284), 
stalk-color-above-ring=w(.5385), stalk-surface-above-ring=s(.6283), gill-
size=b(.6833),  gill-spacing=c(.8345), ring-number=o(.9198), gill-
attachment=f(.9735), veil-color=w(.9747)  

Cluster14  
(288 entities)  

ring-number=t(.0398), gill-spacing=w(.1306), habitat=g(.2373), spore-print-
color=w(.2679), stalk-shape=e(.4119), odor=n(.4134), ring-type=p(.4696), 
stalk-color-below-ring=w(.5227), stalk-color-above-ring=w(.5329), 
bruises=f(.5691), gill-size=b(.6794), gill-attachment=f(.9732), veil-
color=w(.9744)   

 
For pattern generation we look for descriptors 

with zero or less PE. If PE for any descriptor in the 
cluster is not equal to zero then pattern is formed 
with conjunction of descriptors with less PE such 
that PE for pattern equals zero. For example pattern 
generation for Cluster1 involves conjunction of 
descriptors spore-print-color=h with odor=f and 
cap-surface=s such that this pattern describes the 
Cluster1 with no errors. Similarly, in Cluster2, 
descriptor gill-color=b has zero PE therefore this 
alone describes the cluster with no errors.  

 
4.5. Results 

 
Cluster description with proposed approach 

resulted in following patterns for the poisonous 
clusters.  

Cluster1 (288 entities): spore-print-color=h ^ 
odor=f ^ cap-surface=s.  

Cluster2 (1728 entities): gill-color=b. 

Cluster8 (256 entities):   odor=p. 

Cluster9 (1296 entities):  ring-type=l 

Pattern obtained with proposed approach for 
edible clusters are: 

Cluster4 (192 entities): stalk-color-above-ring=o or 
stalk-color-below-ring=o. 

Cluster5 (768 entities): gill-spacing =w ^ habitat=g 
^ ring-type=e 

Cluster6 (96 entities): gill-spacing=w ^ gill-size=n 
^ habitat=d ^ bruises=t. 
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Cluster7 (1728 entities): habitat=d ^ bruises=t ^ 
odor=n. 

Cluster10 (511 entities): bruises=t ^ stalk-shape=e ^ 
ring-type=p ^ stalk-surface-below-ring=y ^ gill-
size=b ^ ring-number=o. 

Cluster12 (192 entities): stalk-surface-below-
ring=y^ cap-surface=y ^ bruises=t. 

Cluster14 (288 entities):  ring-number=t ^ gill-
spacing=w. 

 
5 CONCLUSION 

 
Reduct driven approach for pattern generation 

from clusters is presented in this paper on 
benchmarking dataset. Reduct is computed for 
individual clusters for filtering non-significant 
attributes. Precision error is then computed on 
remaining significant attributes. Pattern is then 
formulated from most contributing attributes. It is 
observed that patterns obtained with this approach, 
distinctively described the clusters with no errors. 
To confirm the existence of relation, future research 
will be focused on applying the same approach on 
more benchmarking datasets. 
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