
Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

663

WATERMARKING USING NEURAL NETWORK AND
HIDING THE TRAINED NETWORK WITHIN THE COVER

IMAGE

1 Er. Ashish Bansal , 2 Dr. Sarita Singh Bhadauria
1Reader,Department of Information Technology,MIT,Ujjain,India

2Professor,Department of Electronics,MITS,Gwalior,India
 E-mail: ashssi@rediffmail.com , saritamits61@yahoo.co.in

ABSTRACT

The major source of communication in present world is digital media. As it is quite easy to manipulate a
digital media, it becomes essential to protect the digital information by legitimate means. Digital
Watermarking has evolved as one of the latest technologies for digital media protection. Many techniques
based on spatial and frequency domain have been developed in the recent past and are being used for
effective watermarking. However, there is always a tradeoff between robustness and imperceptibility
features of watermarking offered by these techniques. This paper offers a technique based on
Backpropagation Neural Network to train a given cover image to produce a desired watermark image. At
the end of the training, the entire trained neural network weights has been successfully hidden within the
cover image itself. This makes it possible to supply only the cover image without any external weight files.
By extraction techniques, the weights can be derived from the cover image and used to reconstruct the
trained Neural Network again which in turn converts the cover image into desired watermark image. The
technique for hiding the weights into the cover image has been designed in such a way that it does not
produce visual deterioration of the original cover image. This method is extra secure as it leads to
watermarking indirectly.

Keywords : Digital Watermarking, Information Hiding, Digital Media Protection, Neural Network

1. INTRODUCTION

Digital watermarking should provide the
qualities like imperceptibility, robustness, security
of cover image.. A large number of techniques have
been developed based on manipulating the bit plane
of Least Significant Bit (LSB)[1], linear addition of
watermark to cover image[1], using mid band
coefficients of DCT transformed blocks to hide
watermark[2], maximizing strength of watermark
using Discrete Wavelet Transform(DWT)
techniques[3], Using radial basis function
(RBF)neural network to achieve maximum strength
watermark[4], transforming color space of cover
image and embedding watermark into saturation
channel [5],Embedding watermark in the DC
components of transformed blocks[6] etc.
Principles of neurocomputing, and their usage in
science and technology is well explained in [7] .
Cox et al. [8] pointed that, in order for a watermark
to be robust to attack, it must be placed in
perceptually significant areas of the image.

Schyndel et al. [9] generated a watermark using a
m-sequence generator. Bas et al . [9] introduced a
watermarking scheme using fractal codes. Bartolini
et al. [10] utilized the properties of human visual
system and generated watermark from DCT
coefficients. Kundur and Hatzinakos [11]
embedded the watermark in the wavelet domain
where the strength of watermark was decided by
the contrast sensitivity of the original image.
Delaigle et el. [12] generated binary m-sequences
and then modulated on a random carrier. A method
for casting digital watermarks on images and
analyzing its effectiveness was given by I.Pitas[13]
and immunity to subsampling was examined. Cox
and Kilan [14] presented a secure algorithm for
watermarking images using spread-spectrum
techniques. Craver and Memon [15] proposed
digital watermarks to resolve the copyright
ownership. However, these techniques suffer from
the problems of unsatisfactory value of
imperceptibility and robustness to various attacks
as discussed in these papers. These techniques also

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

664

have the problems related to security.
 The use of Neural Network for successful
watermarking was effectively done in [16] , where
Full Counterpropagation Network (FCNN) was
used to insert the watermark into synapses of
FCNN rather than the cover image. Chun –Yu-
Chang [16] proposed a wonderful technique of
embedding the watermarks into synapses of FCNN
rather than cover image. This helped to increase
robustness and reduce imperceptibility problems to
a great extent. This paper has described the use of
a Backpropagation Neural Network to hide the
cover image. After the neural network is trained,
the trained network weights have been inserted into
the cover image itself by using a special technique
which preserves the visual quality of the original
cover image.

Section 2 discusses the approach for using
Backpropagation with the help of broad outline of
the technique of embedding and extraction.

Section 3 provides the detailed algorithm for

embedding and extraction . Section IV gives
experimental results . Conclusion is given in
Section 4 followed by references.

2. APPROACH FOR USING
BACKPROPAGATION NEURAL NETWORK
WITH COVER IMAGE AND GIVEN TARGET
WATERMARK IMAGE

The approach followed for the proposed work is
described as follows:

2.1 Embedding:

1) The target watermark image is taken to serve as
output to a Backpropagation Neural Network.
2) A Backpropagation Neural Network is chosen
with 1 input, 1 hidden and 1 output layer.
3) The cover image is supplied as input to the input
layer of the network, and weights are adjusted to
produce the corresponding target watermark image
at the output layer using Backpropagation
algorithm.
4) The trained weight matrix is hidden within the
cover image itself by using special technique
described in algorithm given in section III.

2.2 Extraction:

1) The watermarked image is taken and the hidden
neural network weights are extracted from the

cover image by using a special techniquedescribed
in algorithm given in section III and the trained
neural network is reconstructed.

2) The watermarked image is supplied at the input
layer neurons and the final output watermark
image is produced at the output layer.
3) The output watermark image is correlated with
the target output watermark to determined PSNR of
the obtained watermark image.

 3. ALGORITHM

The following conventions apply to the
embedding algorithm as well as extraction
algorithms given below.

1) M= rand(m,c) generates a random matrix M
containing m rows and n columns .
2) M =zeros(m,c) generates a matrix of m rows and
c columns containing all zeros.
M(i,j) = 0 for 1<=i<=m,1<=j<=c.
3)M = binsig(M) generates a matrix containing
binary sigmoid values of each value of the matrix
M.
4)M = binsigl(M) generates:
binsig(M)(1-binsig(M))
5) min_threshold_error puts a lower bar on the
acceptable value of error generated.

3.1 Embedding

Step 1: Let the target watermark image be given as
:
timage=[t11,t12,….tij,……tmc× nc]
 for 1<=i<=mc , 1<=j<=nc (1)
 where, mc=number of rows in the target image.
 and nc= number of columns in the target image.

The cover image used to produce the target
watermark image be given as:
cimage=[c11,c12,….cij,……cmc× nc]
 for 1<=i<=mc , 1<=j<=nc (2)
 where, mc=number of rows in the cover image.
 and nc= number of columns in the cover image.

Step 2: Now, timage is reshaped as a row vector
containing mc×nc number of columns.
timage[(i-1) ×nc+j]=t[i,j] for 1<=i<=mc,
1<=j<=nc (3)
This produces a row vector timage[t1,t2,….tmc×nc].

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

665

Step 3: Now, cimage is reshaped as a row vector
containing mc×nc number of columns.
cimage[(i-1) ×nc+j]=c[i,j] for 1<=i<=mc,
1<=j<=nc (4)

This produces a row vector
cimage[c1,c2,….cmc×nc].

Step 4: A Backpropagation algorithm based on a
neural network with 1 input layer, 1 hidden layer
and 1 output layer
is used. The initial configuration of the
backpropagation network is chosen.

Let,

n= Number of input layer neurons.
m= Number of output layer neurons.
h=Number of hidden layer neurons.
The weight matrix representing the weights
connecting from input layer to hidden layer is
represented by:
v=rand(n,h) – 0.5 (5)
The weight matrix representing the weights
connecting the hidden layer neurons to the output
layer is represented by:
w= rand(h,m) – 0.5 (6)
The initial bias of hidden layer neurons is set as:
b1 = rand[1,h] – 0.5 (7)
The initial bias of output layer neurons is set as :
b2=rand[1,m]- 0.5 (8)
Let v1 and w1 are the matrices containing all zeros.
v1 and w1 shall be used to record previous values
of v and w matrix to calculate the momentum factor
to speed up the learning process.
v1= zeros(n,h) (9)
w1= zeros(h,m) (10)
The learning rate is represented by alpha and the
momentum factor is represented by mf.
The controlling variable for the training of the
image fragment con is initially set to 1.
con =1 (11)
The total number of epochs to be used in training
shall be stored in epoch and set to an initial value
of 0.
epoch = 0 (12)
Now, the following section starts the training of the
Backpropagation Neural Network.

Step 5: Repeat the steps from 6 to 12 while con=1
Step 6: The error e is is used to find difference
between the target output and the output obtained

and initialized to a value of 0.
e=0 (13)

Step 7: Now to pick up each row of cimage for
training, repeat the steps from 8 to 10 for each
value of I from 1 to mc.(representing mc rows of
the image section each with nc elements).

Now, the output of the hidden layer and output
layer neurons are calculated in the following steps.

Step 8: Let Zin represents the net input to hidden
layer neurons.
Zin is initialized with bias b1.
Zin(j) = b1(j) for 1<=j<= h (14)
The net input Zin is calculated as:
Zin(j) = Zin(j) + cimage(I,i) ×v(i,j) for 1<=j<=h,
1<=i<=n (15)
The output of the hidden layer neurons is calculated
by finding the binary sigmoid function of Zin.
Z(j) = binsig(Zin(j)) (16)
Let, Yin represents the net input to the output layer.
Yin is initialized with a bias b2.
Yin(k) = b2(k) for 1<=k<=m (17)
The net input Yin is calculated as:
Yin(k) = Yin(k) + Z(j) × w(j,k) for
1<=j<=h,1<=k<=m (18)
The output Y from the output layer neurons is given
by:
Y(k) = binsig(Yin(k)) for 1<=k<=m (19)
This output is stored in a matrix ty.
ty(I,k) = Y(k) for 1<=k<=m (20)

Step 9: Now, the backpropagation of error is done.
The delta values at the output layer is given by:
delk(k)= (timage(I,k) – Y(k)) × binsigl(Yin(k)) for
1<=k<=m,
where, timage(I,k) – Y(k) is the error at the kth
neuron in the output layer.

The weights at the output layer are adjusted by :
delw(j,k) = alpha× delk(k) × z(j) + mf× (w(j,k)-
w1(j,k))
for 1<=k<=m, 1<=j<=h (21)
The modifications in the bias of the output layer is
calculated as: delb2(k)=alpha× delk(k) , for
1<=k<=m (22)

To calculate the delta values at the hidden layer ,
first, delinj is calculated and initialized to a value of
0.
delinj(j) = 0 for 1<=j<=h (23)

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

666

delinj is modified with the help of delk.

delinj(j) = delinj(j)+delk(k) × w(j,k) for 1<=k<=m,
1<=j<=h (24)

Now, delta value at the hidden layer neurons is
calculated using delinj.

delj(j)= delinj[j] × binsigl(zin[j]),
for 1<=j<=h (25)
(This is used to calculate the modifications in the
weight matrix v).

The modifications in the weight matrix v is given
by:
delv[i,j] = alpha× delj[j] × X[I,i] + mf × (v[i,j]-
v1[i,j]),
for 1<=i<=n, 1<=j<=h (26)

The modifications in the biases of the input layer
neurons is given by: delb1[j] = alpha×delj[j] ,
for 1<=j<=h (27)

Now, initial weights w and v are stored in w1 and
v1 respectively. This is necessary to find the
momentum factor during later stages to speed up
training process.

w1[i,j]=w[i,j] for 1<=i<=n, 1<=j<=m
 and
v1[i,j]=v[i,j] for 1<=i<=n, 1<=j<=h (28)

Now, weight matrix w is updated.
w[i,j]= w[i,j]+delw[i,j] , for 1<=i<=h,
1<=j<=m (29)
The weight matrix v is updated.
v[i,j] = v[i,j] + delv[i,j], for 1<=i<=m,
1<=j<=h (30)
The bias at the output layer is updated.
b2[k] = b2[k]+ delb2[k], for 1<=k<=m (31)
The bias at the input layer is updated.
b1[j] = b1[j] + delb1[j], for 1<=j<=h (32)

The error e between the desired output and the
output obtained is calculated by repeating equation
33 for each value of k from 1 to m.

e=e+(t[I,k]-Y[k])^2 for 1<=k<=m (33)

Step 10: I=I+1 , goto step 7 if I< mc (34)

Step 11: Modify the value of the controlling

variable depending on total cumulative error e for
the current image section.

If e<min_threshold_error , con= 0 (35)
Increment the current no. of epochs.
epochs=epochs+1 (36)

Step 12: If con=1 then goto step 5, else follow step
13.

Step 13: Now, the trained Neural Network weights
are hidden in the cover image using the following
scheme.

Long format of double precision value has to be
used for using this technique.

a) Pickup an image pixel intensity value of the

given cover image and convert into string
type.

b) At the end of the pixel value add ‘.0000’.

Choose the weight value to be inserted after
this. This does not affect the original pixel
intensity value to a significant extent, as very
least significant bits of the fractional part of the
pixel value has been used.

c) Now, place the sign of the weight to be

inserted as per following code. If weight value
is negative, place 1 , otherwise place 0, thus,
the modified value becomes ‘.00001’ of
‘.00000’

d) Now, the numeric position just before the

decimal point in the weight value is inserted.
For. Ex. If the weight value if 256.78 , the
position just before the decimal point is 3.
So , the string becomes ‘.000013’

e) Now, the actual weight value excluding the

decimal point is inserted. For ex. If the weight
value is 256.78, we add 25678 at the end of the
modified string.

f) The final string becomes ‘.00001425678’

g) This string is appended to the original pixel

intensity value. For ex. If original pixel value
is 234 , it becomes ‘234.00001425678’. The
weight value inserted into this pixel value is ‘-
256.78’.

h) Repeat steps from a) to g) for all pixel values of

the cover image.

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

667

Now, the watermarked image with hidden trained
network weights is supplied as input to the
watermark extraction algorithm.
.

3.2 Extraction

Step 1: The watermarked image is taken and the
following scheme is used to extract the trained
Neural Network weights from this image.

The scheme works as given below.

a) Get the modified pixel value from the
watermarked image and convert into string type.

b) If the string is in scientific format, convert into
floating point format.

c) Separate the original number and the embedded
values as two separate strings.

The string part before decimal point is the original
pixel value and the string part starting from the
decimal part is the embedded weight value. Thus,
the original pixel value is obtained in this step.

d) From the embedded part, the sixth character is
used to decode the sign of the weight value
inserted. If this value is 1 , the weight value is
negative, if it is 0 the weight value is positive.

e) The seventh character of the embedded part is
used to find the numerical position of the decimal
point of the weight value.

f) The embedded part from eight character to the
end of the string gives the weight value inserted
without any decimal point. (value after removal of
the decimal point from the weight value).
g) Now, the actual decimal point is inserted into the
value derived in (f) as per the position found in (e)

h)Now, the original sign is inserted as derived in
(d) and applied to the actual weight value. Thus the
original weight value from the cover image pixel
value is obtained.

i) Repeat steps from to a) to h) for all the pixels of
the watermarked image.

Thus, the original weights matrices are extracted
and reconstructed from the cover image. The
derived weight matrices are used to reconstruct the

Backpropagation Neural Network to be used in
later steps of the algorithm. In the process, the
original cover image is also obtained in step c)
described above..

Step 2: For each value of I from 1 to mc, perform
the steps from 3 to 10.

Step 3: Initialize Zin with the bias b1.
Zin(j)= b1(j), for 1<=j<=h (37)

Step 4: Find the input Zin to hidden layer neurons.
Zin(j)= Zin(j) + cimage(I,I) × v(I,j), for
1<=i<=n, 1<=j<=h (38)

Step 5: The output of the hidden layer neuron is
calculated as:
Z(j) = binsig(Zin(j)), for 1<=j<=h (39)

Step 6:Initialise Yin with the bias b2.
Yin[k]=b2[k] for 1<=k<=m (40)

Step 7: Now, the net input to the output layer
neuron Yin is calculated as:
Yin[k] = Yin[k] + Z[j] × w[j,k], for
1<=j<=h,1<=k<=m (41)

Step 8: The output from the output layer neuron is
calculated as : Y[k] = binsig(Yin[k]),
for 1<=k<=m (42)

Step 9: This output is stored in ty.
ty[I,k] = Y[k], for 1<=k<=m (43)

Open a file tyfile in “write” mode to store ty matrix.
Step 10: I=I+1
If I<mc goto step 2 else goto step 11.

Step 11: Now, open the tyfile in “read” mode.
Read tyfile into ty matrix.

Step 12: Now ty is reshaped into a row vector of
dimension (1× (mc×nc)).
ty[(i-1) ×4+j]=t[i,j] for 1<=i<=mc,1<=j<=nc (44)
This provides a row vector ty=[ty1,ty2,….tymc*nc]

Step 13: Now display the image represented by ty

4. EXPERIMENTS CONDUCTED WITH AND THE
RESULTS:

4.1 Variation of PSNR with threshold value

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

668

In the first experiment , the variation of PSNR
values with respect to change in threshold value is
clearly visible. The threshold is varied from 0.4 to
0.0001 as shown in table – I . With the reduction in
the threshold value, the PSNR goes on increasing.
There is also an increment seen in training time and
number of epochs required for training. The values
of α is kept at 4 and the value of mf is also kept
constant at 0.8. The PSNR varies from 16.11 to
41.64. The best PSNR value is obtained at
threshold value of 0.0001 with a training time of
2567.98 seconds. Fig. 1 to Fig. 4 show the
extracted watermark image corresponding to
threshold values of 0.1,0.01,0.001 and 0.0001
respectively. The chart 1 shows the variation of
PSNR values with respect to threshold values in a
graphical way.

TABLE 1. Variation of PSNR with threshold
(α =4 , mf= 0.8)

α mf Threshold PSNR Trainining
time(sec)

4 0.8 0.4 16.11 321.90
4 0.8 0.3 17.98 352.48
4 0.8 0.2 19.92 415.98
4 0.8 0.1 23.78 554.45
4 0.8 0.01 32.66 698.87
4 0.8 0.001 38.83 1254.56
4 0.8 0.0001 41.64 2567.98
 CHART 1. PSNR with threshold

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
15

20

25

30

35

40

45
Variation of PSNR with threshold for alpha=4,mf=0.8

Threshold

P
S

N
R

THRESHOLD

Figure 1. threshold=0.1

Figure 2.Threshold=0.11

Figure 3.Threshold = 0.001

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

669

Figure 4.Threshold = 0.0001

4.2 Robustness test

 In this experiment, the robustness of the
watermarking scheme is shown. The cover image
of Lena shown in fig. 5 contains only the random
number embedded in the higher precision bits of
the intensity value of the first pixel of the image.
As the information was embedded in the weights of
the neural network derived from the files, there was
no visual deterioration of the watermark image
obtained. The various attacks used were blurring,
cropping, sharpening, rotation, scaling and JPEG
compression. In each case, PSNR value of the
watermark image was obtained for the threshold
values varying from 0.1 to 0.0001 respectively. The
table II shows the obtained values of PSNR for
each of these attacks. It is seen that these values are
exactly same as shown in table I. This is possible
only because the watermarked image of Lena does
not contain the actual information. In fact, the
actual information is derived from the weights of
the neural network already saved in files during the
training step. Only, the random number was
embedded in the cover image of Lena and it was
also saved with the files. This number is also
embedded in the cover image mainly for the
purpose of authentication as discussed in later
experiments.

TABLE – 2. Robustness Test

Attack Threshold values

0.1 0.01 0.001 0.0001
 (PSNR) (PSNR) (PSNR) (PSNR)
Blurred 23.78 32.66 38.83 41.64
Cropped 23.78 32.66 38.83 41.64
Sharpen 23.78 32.66 38.83 41.64

Rotation 23.78 32.66 38.83 41.64
Scaling 23.78 32.66 38.83 41.64
JPEG 23.78 32.66 38.83 41.64

4.3 Imperceptibility test

In this experiment, the test of imperceptibility is
done. The cover image taken was Lena’s image .
The trained Neural Network weights were hidden
inside this cover image only. The PSNR value of
the watermarked image of Lena after the insertion
of the weight values with respect to the original
picture of Lena is calculated as 112.3324.
This high value of PSNR indicates, that , there is a
very little deterioration in the quality of cover
image by insertion of the trained network weight
values. This has become possible, since the weight
values were hidden in the extremely least
significant bits of the fractional part of the pixel
values of the cover image. Thus, the property of
imperceptibility is highly preserved under this
scheme.

 Figure 5. Original Lena’s image

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

670

Figure .6. Lena’s image after weight values insertion

4.4 Authenticity test:

As the hidden weight matrix is inside the
watermarked image, and the Neural Network can
be reconstructed only after successfully deriving
the weight matrix from the watermarked image,
Non authentic watermarked images fail to
reconstruct the Neural Network and produce the
watermark image. Thus, Authenticity feature is
preserved in this scheme.

5. CONCLUSIONS:
This paper describes the algorithm to use a
Backpropagation Neural Network with an
additional advantage of hiding the trained network
weights within the original cover image. The
watermarked image has a good robustness and the
imperceptibility of the cover image is also highly
preserved. For the extraction, only cover image is
required and no external weights files need to be
supplied with the watermarked image. Thus, this
work leads to a successful watermarking scheme.

REFERENCES
[1] R.G.Van Schyndel,A.Z.Tirkel and

CF.Osborene, “A Digital Watermark” in Proc.
IEEE International Conf. Image
processing,1994,vol.2 pp 86-92.

[2] Ahmidi N. Safabaksh R. “A Novel DCT
Based Approach for Secure Color Image
Watermarking “ in Proc. ITCC 2004
International Conference Information
Technology:Coding and computing,2004,vol
2,pp 709-713.

[3] K.J.Davis and K.Najarian “ Maximizing
Strength of Digital Watermarks Using Neural
Networks”, in Proc. International Joint Conf.
Neural Network ,2001,vol 4, pp. 2893-2898.

[4] Zhang Zhi Ming,Li Rong-Yan,Wang
Lei,”Adaptive Watermark Scheme with RBF
Neural Networks, in Proc. 2003 International
Conf. Neural Networks and Signal
Processing,2003,vol 2. pp.1517-1520.

[5] Ren –Junn Hwand,Chuan-Ho Kao and Rong-
Chi Chang, “Watermark in Color Image” in
Proc. First International symposium on cyber
worlds,2002 ,pp 225-229.

[6] Fengsen Deng and Bingxi Wang,”A Novel
Technique for Robust Image Watermarking in
the DCT Domain” in Proc. Of the 2003
International Conf. Neural Networks and
Signal Processing,2003,vol.2,pp.1525-1528.

[7] Fredric M.Ham and Ivica Kostanic,
“Principles of Neurocomputing for Science
& Engineering”, Mc.GrawHill,
Singapore,2001, pp,136-140.

[8] J.Cox,J.Kilian , “A Secure Robust Watermark
for Multimedia” in Proc. First International
Workshop, vol 1174 of Lecture notes in
computer science ,pp. 185-206.

[9] R.Schyndel, A.Tirkel, and C.Osborne, “A
Digital Watermark” in Proc.IEEE Int. Conf.
on Image Processing,Nov. 1994 ,Vol II,pp.86-
90.

 [10] F.Bartolini,M.Barni,V.Cappellini ad A.Piva,
“Mask Building for Perceptually Hiding
Frequency Embedded Watermarks”, in Proc.
Int.Conference on Image Processing ,Oct.
1998,vol. I,pp. 450-454.

[11] D.Kundur and D. Hatzinakos, “ A Robust
Digital Image Watermarking Method using
Wavelet – Based Fusion”,in Proc,IEEE Int.
Conf. on Image Processing , Oct. 1997, vol. I,
pp. 544-547.

[12] J.Delaigle,C.De Vleeschouwer, and B. Macq,
“Psychovisual Approach to Digital Picture
Watermarking”, Journal of Electronic
Imaging,vol.7,No.3,pp.628-640,July 1998.

[13] I.Pitas , “A Method for Signature Casting on
Digital Images”,in Proc,IEEE Int. Conf. on
Image Processing ,Sept 1996,vol.III,pp.215-
218.

[14] I.Cox,J Kilan, “ Secure Spread Spectrum
Watermarking for Images,Audio and Video” ,
in Proc. IEEE International Conference on
Image Processing ,1996,vol 3,pp. 243-246.

[15] S.Craver ,N. Memon , “Resolving Rightful
Ownership with Invisible Watermarking
Techniques:Limitations,Attacks and
Implications”,IEEE Trans.,Vol 16,No. 4,pp.
573-586,1998.

[16] Chun-Yu-Chang,”The Application of a Full
Counterpropagation Neural Network to
Image Watermarking”, 2005, IEEE

