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ABSTRACT 
 

The major source of communication in present world is digital media. As it is quite easy to manipulate a 
digital media, it becomes essential to protect the digital information by legitimate   means. Digital 
Watermarking has evolved as one of the latest technologies for digital media protection. Many techniques 
based on spatial and frequency domain have been developed in the recent past and are being used for 
effective watermarking. However, there is always a tradeoff between robustness and imperceptibility 
features of watermarking offered by these techniques. This paper offers a technique based on 
Backpropagation Neural  Network to train a given cover image to produce a desired watermark image. At 
the end of the training, the entire trained neural network weights has been successfully hidden within the 
cover image itself. This makes it possible to supply only the cover image without any external weight files. 
By extraction techniques, the weights can be derived from the cover image and used to reconstruct the 
trained Neural Network again which in turn converts the cover image into desired watermark image. The 
technique for hiding the weights into the cover image has been designed in such a way that it does not 
produce visual deterioration of the original cover image. This method is extra secure as it leads to 
watermarking indirectly. 
 
Keywords :   Digital Watermarking, Information Hiding, Digital Media Protection, Neural Network 
 
1. INTRODUCTION 
 

Digital watermarking should provide the 
qualities like imperceptibility, robustness, security 
of cover image.. A large number of techniques have 
been developed based on manipulating the bit plane 
of Least Significant Bit (LSB)[1], linear addition of 
watermark to cover image[1], using mid band 
coefficients of DCT transformed blocks to hide 
watermark[2], maximizing strength of watermark 
using Discrete Wavelet Transform(DWT) 
techniques[3], Using radial basis function 
(RBF)neural network to achieve maximum strength 
watermark[4], transforming color space of cover 
image and embedding watermark into saturation 
channel [5],Embedding watermark in the DC 
components of transformed blocks[6] etc. 
Principles of neurocomputing, and their usage in 
science and technology  is well explained in [7] . 
Cox et al. [8] pointed that, in order for a watermark 
to be robust to attack, it must be placed in 
perceptually significant areas of the image. 

Schyndel et al. [9] generated a watermark using a 
m-sequence generator. Bas et al .  [9] introduced a 
watermarking scheme using fractal codes. Bartolini 
et al. [10] utilized the properties of human visual 
system and generated watermark from DCT 
coefficients. Kundur and Hatzinakos [11] 
embedded the watermark in the wavelet domain 
where the strength of watermark was decided by 
the contrast sensitivity of the original image. 
Delaigle et el. [12] generated binary m-sequences 
and then modulated on a random carrier. A method 
for casting digital watermarks on images and 
analyzing its effectiveness was given by I.Pitas[13] 
and immunity to subsampling was examined. Cox 
and Kilan [14] presented a secure algorithm for 
watermarking images using spread-spectrum 
techniques. Craver and Memon [15] proposed 
digital watermarks to resolve the copyright 
ownership. However, these techniques suffer from 
the problems of unsatisfactory value of 
imperceptibility and robustness to various attacks 
as discussed in these papers. These techniques also 
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have the problems related to security. 
  The use of Neural Network for successful 
watermarking was effectively done in [16] , where 
Full Counterpropagation Network (FCNN) was 
used to insert the watermark into synapses of 
FCNN rather than the cover image. Chun –Yu-
Chang [16] proposed a wonderful technique of  
embedding the watermarks into synapses of FCNN 
rather than cover image. This helped to increase 
robustness and reduce imperceptibility problems to 
a great extent. This paper has described the use  of 
a Backpropagation Neural Network to hide the 
cover image. After the neural network is trained, 
the trained network weights have been inserted into 
the cover image itself by using a special technique 
which preserves the visual quality of the original 
cover image. 
 

Section 2 discusses the approach for using 
Backpropagation with the help of  broad outline of 
the technique of embedding and extraction. 

 
Section 3 provides the detailed  algorithm for 

embedding and  extraction .  Section  IV  gives   
experimental      results . Conclusion is given in 
Section 4  followed by references. 

2. APPROACH FOR USING 
BACKPROPAGATION NEURAL NETWORK 
WITH COVER IMAGE AND GIVEN TARGET 
WATERMARK IMAGE 
 
The approach followed for the proposed work is 
described as follows: 

 
2.1 Embedding: 
 
1) The target watermark image is taken to serve as 
output to a Backpropagation Neural Network. 
2) A Backpropagation Neural Network is chosen 
with 1 input, 1 hidden and 1 output layer. 
3) The cover image is  supplied as input to the input 
layer of the network, and weights are adjusted to 
produce the corresponding target watermark image  
at the output layer using Backpropagation 
algorithm. 
4) The trained weight matrix is hidden within the 
cover image itself by using special technique 
described in algorithm given in section III.   
   
2.2 Extraction: 
 
1) The watermarked image is taken and the hidden 
neural network weights are extracted from the 

cover image by using a special techniquedescribed 
in algorithm given in  section III and the trained 
neural network is reconstructed. 
 
2) The watermarked image is supplied at the input 
layer neurons and  the final output watermark 
image is produced at the output layer. 
3) The output watermark image is correlated with 
the target output watermark to determined PSNR of 
the obtained watermark image. 

 3. ALGORITHM 

The following conventions apply to the 
embedding algorithm as well as extraction 
algorithms given below. 
 
1) M= rand(m,c) generates a random matrix M 
containing m rows and n columns . 
2) M =zeros(m,c) generates a matrix of m rows and  
c columns containing all zeros. 
M(i,j) = 0 for 1<=i<=m,1<=j<=c. 
3)M = binsig(M) generates a matrix containing 
binary sigmoid values of each value of the matrix 
M. 
4)M = binsigl(M) generates: 
binsig(M)(1-binsig(M)) 
5) min_threshold_error puts a lower bar on the 
acceptable value of error generated. 
 

3.1 Embedding 
 
Step 1: Let the target watermark image be given as 
: 
timage=[t11,t12,….tij,……tmc× nc]  
 for 1<=i<=mc , 1<=j<=nc  (1) 
 where, mc=number of rows in the target image. 
 and nc= number of columns in the target image. 
 
The cover image used to produce the target 
watermark image be given as: 
cimage=[c11,c12,….cij,……cmc× nc]  
 for 1<=i<=mc , 1<=j<=nc  (2) 
 where, mc=number of rows in the cover image. 
 and nc= number of columns in the cover image. 
 
Step 2: Now, timage is reshaped as a row vector 
containing mc×nc number of columns. 
timage[(i-1) ×nc+j]=t[i,j] for 1<=i<=mc, 
1<=j<=nc                                                      (3) 
This produces a row vector timage[t1,t2,….tmc×nc]. 
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Step 3: Now, cimage is reshaped as a row vector 
containing mc×nc number of columns. 
cimage[(i-1) ×nc+j]=c[i,j] for 1<=i<=mc, 
1<=j<=nc  (4) 
 
This produces a row vector 
cimage[c1,c2,….cmc×nc]. 
 
Step 4: A Backpropagation algorithm based on a 
neural network with 1 input layer, 1 hidden layer 
and 1 output layer 
is used. The initial configuration of the 
backpropagation network is chosen. 
 
Let, 
 
n= Number of input layer neurons. 
m= Number of output layer neurons. 
h=Number of hidden layer neurons. 
The weight matrix representing the weights 
connecting from input  layer to hidden layer is 
represented by: 
v=rand(n,h) – 0.5 (5)  
The weight matrix representing the weights 
connecting the hidden layer neurons to the output 
layer is represented by: 
w= rand(h,m) – 0.5  (6) 
The initial bias of hidden layer neurons is set as: 
b1 = rand[1,h] – 0.5  (7) 
The initial bias of output layer neurons is set as : 
b2=rand[1,m]- 0.5     (8)  
Let v1 and w1 are the matrices containing all zeros. 
v1 and w1 shall be used to record previous values 
of v and w matrix to calculate the momentum factor 
to speed up the learning process. 
v1= zeros(n,h)                                                   (9) 
w1= zeros(h,m)                                               (10) 
The learning rate is represented by  alpha and the 
momentum factor is represented by mf.  
The controlling variable for the training of the 
image fragment con is initially set to 1. 
con =1  (11) 
The total number of epochs to be used in training 
shall be stored  in epoch and set  to an initial value 
of 0. 
epoch = 0  (12) 
Now, the following section starts the training of the 
Backpropagation Neural Network. 
 
Step 5: Repeat the steps from 6 to 12 while con=1 
Step 6: The error e is is used to find difference 
between the target output and the output obtained 

and initialized to a value of 0. 
e=0                       (13) 
 
Step 7: Now to pick up each row of cimage for 
training, repeat the steps from 8 to 10 for each 
value of I from 1 to mc.(representing mc rows of 
the image section each with nc elements). 
 
Now, the output of the hidden layer and output 
layer neurons are calculated in the following steps. 
 
Step 8: Let Zin represents the net input to hidden 
layer neurons.  
Zin is initialized with bias b1. 
Zin(j) = b1(j) for 1<=j<= h  (14) 
The net input Zin is calculated as: 
Zin(j) = Zin(j) + cimage(I,i) ×v(i,j) for 1<=j<=h, 
1<=i<=n          (15) 
The output of the hidden layer neurons is calculated 
by finding the binary sigmoid function of Zin. 
Z(j) = binsig(Zin(j))  (16) 
Let, Yin represents the net input to the output layer. 
Yin is initialized with  a bias  b2. 
Yin(k) = b2(k) for 1<=k<=m  (17) 
The net input Yin is calculated as: 
Yin(k) = Yin(k) + Z(j) × w(j,k) for 
1<=j<=h,1<=k<=m   (18) 
The output Y from the output layer neurons is given 
by: 
Y(k) = binsig(Yin(k)) for 1<=k<=m                  (19) 
This output is stored in a matrix ty. 
ty(I,k) = Y(k) for 1<=k<=m         (20) 
 
Step 9: Now, the backpropagation of error is done. 
The delta values at the output layer is given  by: 
delk(k)= (timage(I,k) – Y(k)) × binsigl(Yin(k)) for 
1<=k<=m, 
where, timage(I,k) – Y(k) is the error at the kth 
neuron in the output layer. 
 
The weights at the output layer are adjusted by : 
delw(j,k) = alpha× delk(k) × z(j) + mf× (w(j,k)-
w1(j,k)) 
for 1<=k<=m, 1<=j<=h        (21) 
The modifications in the bias of the output layer is 
calculated as: delb2(k)=alpha×  delk(k) , for 
1<=k<=m                     (22) 
 
To calculate  the delta values at the hidden layer ,  
first, delinj is calculated and initialized to a value of 
0. 
delinj(j) = 0 for 1<=j<=h  (23) 
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delinj is modified with the help of delk. 
 
delinj(j) = delinj(j)+delk(k) × w(j,k) for 1<=k<=m, 
1<=j<=h  (24) 
 
Now, delta value at the hidden layer neurons is 
calculated using delinj. 
 
delj(j)= delinj[j] × binsigl(zin[j]),  
for 1<=j<=h  (25) 
(This is used to calculate the modifications in the 
weight matrix v). 
 
The modifications in the weight matrix v is given  
by: 
delv[i,j] = alpha× delj[j] × X[I,i] + mf × (v[i,j]-
v1[i,j]), 
for  1<=i<=n, 1<=j<=h   (26) 
 
The modifications in the biases of the input layer 
neurons is given by: delb1[j] = alpha×delj[j] ,  
for 1<=j<=h              (27) 
 
Now, initial weights w and v are stored in w1 and 
v1 respectively. This is necessary to find the 
momentum factor during later stages to speed up 
training process. 
 
w1[i,j]=w[i,j] for 1<=i<=n, 1<=j<=m  
 and 
v1[i,j]=v[i,j]  for 1<=i<=n, 1<=j<=h               (28) 
 
Now, weight matrix w is updated. 
w[i,j]= w[i,j]+delw[i,j] , for 1<=i<=h,  
1<=j<=m                (29) 
The weight matrix v is updated. 
v[i,j] = v[i,j] + delv[i,j], for 1<=i<=m,  
1<=j<=h (30) 
The bias at the output layer is updated. 
b2[k] = b2[k]+ delb2[k], for 1<=k<=m            (31) 
The bias at the input layer is updated. 
b1[j] = b1[j] + delb1[j], for 1<=j<=h              (32) 
 
The error e between the desired output and the 
output obtained is calculated by repeating equation 
33 for each value of k from 1 to m. 
 
e=e+(t[I,k]-Y[k])^2  for 1<=k<=m               (33) 
 
Step 10: I=I+1 , goto step 7  if I< mc               (34) 
 
Step 11: Modify the value of the controlling 

variable depending on total cumulative error e for 
the current image section. 
 
If e<min_threshold_error , con= 0  (35) 
Increment the current no. of epochs. 
epochs=epochs+1                                          (36) 
 
Step 12: If con=1 then goto step 5, else follow step 
13. 
 
Step 13: Now, the trained Neural Network weights 
are hidden in the cover image using the following 
scheme. 

 
Long format of double precision value has to be 
used for using this technique. 

 
a) Pickup an image pixel intensity value of the 

given cover image   and convert into string 
type. 

 
b) At the end of the pixel value add ‘.0000’. 

Choose the weight value to be inserted after 
this. This does not affect the original pixel 
intensity value to a significant extent, as very 
least significant bits of the fractional part of the 
pixel value has been used. 

 
c) Now, place the sign of the weight to be 

inserted as per following code. If weight value 
is negative, place 1 , otherwise place  0, thus, 
the modified value becomes ‘.00001’ of 
‘.00000’ 

 
d) Now, the numeric position just before the 

decimal point in the weight value is inserted. 
For. Ex. If the weight value if 256.78 , the 
position just before the decimal point is 3. 
So , the string becomes ‘.000013’ 

 
e) Now, the actual weight value excluding the 

decimal point is inserted. For ex. If the weight 
value is 256.78, we add 25678 at the end of the 
modified string. 

 
f)  The final string becomes ‘.00001425678’ 
 
g) This string is appended to the original pixel 

intensity value. For ex. If original pixel value 
is 234 , it becomes ‘234.00001425678’. The 
weight value inserted into this pixel value is ‘-
256.78’. 

 
h)   Repeat steps from a) to g) for all pixel values of 

the  cover image. 
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Now, the  watermarked  image with hidden trained 
network weights is supplied as input to the 
watermark extraction algorithm. 
. 

3.2 Extraction 
 
Step 1:  The watermarked image is taken and the 
following scheme is used to extract the trained 
Neural Network weights from this image. 
 
The scheme works as given below. 
 
a) Get the modified pixel value from the 
watermarked image and convert into string type. 
 
b) If the string is in scientific format, convert into 
floating point format. 
 
c) Separate the original number and the embedded 
values as two separate strings. 
 
The string part before decimal point is the original 
pixel value and the string part starting from the  
decimal part is the embedded weight value. Thus, 
the original pixel value is obtained in this step. 
 
d) From the embedded part, the sixth character is 
used to decode the sign of the weight  value 
inserted. If this value is 1 , the weight value is 
negative, if it is 0 the weight value is positive. 
 
e) The seventh character of the embedded part is 
used to find the numerical position of the decimal 
point of the weight value. 
 
f) The embedded part from eight character to the 
end of the string gives the weight  value inserted 
without any decimal point. (value after removal of 
the decimal point from the weight value). 
g) Now, the actual decimal point is inserted into the 
value derived in (f) as per the position found in (e) 
 
h)Now, the original sign is inserted as derived in 
(d) and applied to the actual weight value. Thus the 
original weight value from the cover image pixel 
value is obtained. 
 
i) Repeat steps from to a)  to h) for all the pixels of 
the watermarked image. 
 
Thus, the original weights matrices are extracted 
and reconstructed from the cover image. The 
derived weight matrices are used to reconstruct the 

Backpropagation Neural Network to be used in 
later steps of the algorithm. In the process, the 
original cover image is also obtained in step c) 
described above.. 
 
Step 2: For each value of I from 1 to mc, perform 
the steps from 3 to  10. 
 
Step 3: Initialize Zin with the bias b1. 
Zin(j)= b1(j), for 1<=j<=h        (37) 
 
Step 4: Find the input Zin to hidden layer neurons. 
Zin(j)= Zin(j) + cimage(I,I) × v(I,j), for 
1<=i<=n, 1<=j<=h                               (38) 
 
Step 5: The output of the hidden layer neuron is 
calculated as: 
Z(j) = binsig(Zin(j)), for  1<=j<=h  (39) 
 
Step 6:Initialise Yin with the bias b2. 
Yin[k]=b2[k]  for 1<=k<=m  (40) 
 
Step 7: Now, the net input to the output layer 
neuron Yin is calculated as: 
Yin[k] = Yin[k] + Z[j] × w[j,k], for 
1<=j<=h,1<=k<=m    (41) 
 
Step 8: The output from the output layer neuron is 
calculated as : Y[k] = binsig(Yin[k]),  
for 1<=k<=m                           (42) 
 
Step 9: This output is stored in ty. 
ty[I,k] = Y[k], for 1<=k<=m  (43) 
 
Open a file tyfile in “write” mode to store ty matrix. 
Step 10: I=I+1 
If  I<mc goto step 2 else goto step 11. 
 
Step 11: Now, open the tyfile  in “read” mode. 
Read tyfile into ty matrix. 
 
Step 12: Now ty is reshaped into a row vector of 
dimension (1× (mc×nc)). 
ty[(i-1) ×4+j]=t[i,j] for 1<=i<=mc,1<=j<=nc   (44) 
This provides a row vector ty=[ty1,ty2,….tymc*nc] 
 
Step 13: Now display the image represented by ty 

4. EXPERIMENTS CONDUCTED WITH  AND  THE 
RESULTS: 
 
4.1 Variation of PSNR with threshold value 
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In the first experiment , the variation of  PSNR 
values with respect to change in threshold value is 
clearly visible. The threshold is varied from 0.4 to 
0.0001 as shown in table – I . With the reduction in 
the threshold value, the PSNR goes on increasing. 
There is also an increment seen in training time and 
number of epochs required for training. The values 
of  α is kept at 4 and the value of mf  is also kept 
constant at 0.8. The PSNR varies from 16.11 to 
41.64. The best PSNR value is obtained at 
threshold value of 0.0001 with a training time of 
2567.98 seconds. Fig. 1 to Fig. 4 show the 
extracted watermark image corresponding to 
threshold values of 0.1,0.01,0.001 and 0.0001 
respectively. The chart 1 shows the variation of 
PSNR values with respect to  threshold values in a 
graphical way. 

 
 
 

TABLE 1. Variation of PSNR with threshold 
(α =4 , mf= 0.8) 

α  mf Threshold PSNR Trainining 
time(sec) 

4 0.8 0.4 16.11 321.90 
4 0.8 0.3 17.98 352.48 
4 0.8 0.2 19.92 415.98 
4 0.8 0.1 23.78 554.45 
4 0.8 0.01 32.66 698.87 
4 0.8 0.001 38.83 1254.56 
4 0.8 0.0001 41.64 2567.98 
           CHART 1. PSNR with threshold 
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Figure 1. threshold=0.1 

 
Figure 2.Threshold=0.11 

 
 
 
 

 
Figure 3.Threshold = 0.001 
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Figure 4.Threshold = 0.0001 

 
4.2 Robustness test 
 
 In this experiment, the robustness of the 
watermarking scheme is shown. The cover image 
of Lena shown in fig. 5 contains only the random 
number embedded in the higher precision bits of 
the intensity value of the first pixel of the image.  
As the information was embedded in the weights of 
the neural network derived from the files, there was 
no visual deterioration of the watermark image 
obtained. The various attacks used were blurring, 
cropping, sharpening, rotation, scaling and JPEG 
compression. In each case,  PSNR value of the 
watermark image was obtained for the threshold 
values varying from 0.1 to 0.0001 respectively. The 
table II shows the obtained values of PSNR for 
each of these attacks. It is seen that these values are 
exactly same as shown in table I. This is possible 
only because the watermarked image of Lena does 
not contain the actual information. In fact, the 
actual information is derived from the weights of 
the neural network already saved in files during the 
training step. Only, the random number was 
embedded in the cover image of Lena and it was 
also saved with the files. This number is also 
embedded in the cover image mainly for the 
purpose of authentication as discussed in later 
experiments. 

 
TABLE – 2. Robustness Test 
 
Attack Threshold values 

0.1 0.01 0.001 0.0001 
 (PSNR) (PSNR) (PSNR) (PSNR) 
Blurred 23.78 32.66 38.83 41.64 
Cropped 23.78 32.66 38.83 41.64 
Sharpen 23.78 32.66 38.83 41.64 

Rotation 23.78 32.66 38.83 41.64 
Scaling 23.78 32.66 38.83 41.64 
JPEG 23.78 32.66 38.83 41.64 

 
4.3 Imperceptibility test 
 
In this experiment, the test of imperceptibility is 
done. The cover  image taken was Lena’s  image . 
The trained Neural Network weights  were hidden 
inside this cover image only. The PSNR value of 
the watermarked image of Lena after the insertion 
of the weight values with respect to the original 
picture of Lena is calculated as 112.3324. 
This high value of PSNR indicates, that , there is a 
very little deterioration in the quality of cover 
image by insertion of the trained network weight 
values. This has become possible, since the weight 
values were hidden in the extremely least 
significant bits of the fractional part of  the pixel 
values of the cover image. Thus, the property of 
imperceptibility is highly preserved under this 
scheme. 

 
                    Figure 5. Original Lena’s image 
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Figure .6. Lena’s image after weight values insertion  
 

4.4 Authenticity test: 
 
As the hidden weight matrix is inside the 
watermarked image, and the Neural Network can 
be reconstructed only after successfully deriving 
the weight matrix from the watermarked  image, 
Non authentic watermarked images fail to 
reconstruct the Neural Network and produce the 
watermark image. Thus, Authenticity feature is 
preserved in this scheme.                      

5.    CONCLUSIONS: 
This paper describes the algorithm to use a 
Backpropagation Neural Network with an 
additional advantage of hiding the trained network 
weights within the original cover image. The 
watermarked image has a good robustness and the 
imperceptibility of the cover image is also highly 
preserved. For the extraction, only cover image is 
required and no external weights files need to be 
supplied with the watermarked image. Thus, this 
work leads to a successful watermarking scheme. 
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