
Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

760

VOICE BASED HARDWARE CONTROLLER

1G. Krishna Reddy ,2 Shaik Meeravali,3 G. Muralidhar
1Associate Professor ,Dept. of ETM ,GNITS ,Hyderabad ,AP , India.
2Professor & HOD, Dept. of ECE , DVRCET, Hyderabad, AP, India.

3 JTO, BSNL. Hyderabad, AP, India.

E-mail: 1pmlreedy@yahoo.co.in , 2shaikmeeravali_ayesha@yahoo.co.in, 3mdganta@rediffmail.com .

ABSTRACT

The day is not far away, where, computer’s peripherals performing tasks by taking commands from the
most natural form of communication: THE HUMAN VOICE. Yes, this idea of developing a voice
operable hardware device by using the speech recognition technology is to develop a basic application
which demonstrates a hardware chip responding to the commands given by voice along with a
GUI.Several years of research has already been done on the speech recognition technology and in our
exploration we found that all the speech-recognizing engines were based on the HMM concepts although
they may be written in different programming languages. HMM is the “Hidden Markov Model”. This
concept aims at building and manipulating Hidden Markov Model (HMM). HMM is primarily used for
speech recognition applications. After exploring the options available for selecting a speech engine, which
recognizes words, the best results were observed in a program written in Java. To show the hardware
operation we have made use of the 8051 micro controller and embedded “C” code for its operation. So by
using this as foundation we can build many applications like for ex: operating a printer through voice and
any other output device connected to the computer. The advantage of our work in this paper is that our
application is speaker-independent that can recognize continuous human speech regardless of the speaker
and that can continually improve their vocabulary size and recognition accuracy.

Keywords: Hidden Markov Model(HMM) , Voice Activated Kit(VAK), Pulse Code Modulation(PCM),
Micro Controller Unit(MCU), Light Emitting Diode(LED), Graphical User Interface(GUI).

1. INTRODUCTION

In this paper, we have created a basic application
of a speech recognition system, which can operate
hardware connected to the communication port of
the computer through speech. Although a lot of
research has been going on over the years on this
technology there is not yet a successful package to
implement it in a day-to-day regular basis because
of the following problems with this technology:
No Applications
 There are no such applications readily
available yet which can operate peripherals
connected to a computer by voice that too
independent of speaker, therefore, our paper is a
first step in doing that.
Some systems could only detect isolated words

 The main problem in speech
recognition is that no two voices produce their
sounds alike and that an individual voice varies in
different conditions. Because voices do vary and
words blend in a continuous stream in natural
speech[2], most recognition systems require that
each speaker train the machine to his or her voice

and that words have at least one-tenth of a second
pause between them. Such a system is called an
isolated word recognition system.[2][8].
Platform dependency
 In our exploration stage of our project,
we found that even the available speech engines
were mostly dependent on the operating system
like the IBM’s via voice, and Microsoft’s voice
command could work only on the windows
platform as there application was developed in
languages like Visual C++ or others, which were
only compatible only with the windows operating
system.
Accuracy
 Last but not the least issue is accuracy.
It is a major problem when we are trying to build a
SPEAKER INDEPENDENT application because
different speakers have different pronunciations,
pitch, intensity and frequency in saying the
words[2].
 Therefore, for us the challenge was to
develop an application, which is first of its kind,
and which could minimize the above problems to
the maximum extent possible. We started looking
for engines based on this concept and we realized

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

761

during the study on the speech engines that to
develop a platform independent application we
needed to develop our code in languages like C++
or Java, which can run on any OS. This is the
reason to write our code in Java and for increasing
the accuracy of the system[4][5], we took the
following measures. The accuracy depends
significantly on the training of the number of
samples. Therefore, we increased the number of
samples to be trained.

• The accuracy can be improved if a
standard training device does the
training.

• However even after taking measures our
system does not function
 properly in a noisy environment then it
is necessary that we have a good
 quality microphone and a soundcard
installed in the computer.

 Therefore, in our application what we
can see is that when a speaker gives a command
then that command is displayed on the screen and
also we can see the hardware chip responding to
this command simultaneously.
 To demonstrate the results we used
LED’s, which are glowed for their corresponding
commands and these commands and their
corresponding colors are displayed on the
graphical user interface, which we have developed.
For glowing the LED’s we have embedded a C
program into the 8051 micro controller.

 2. WORKING OF SPEECH ENGINES:

 Speech recognition fundamentally
functions as a pipeline that converts PCM (Pulse
Code Modulation) digital audio from a sound card
into recognized speech. The elements of the
pipeline are:

1) Transform the PCM digital audio into a
better acoustic representation

2) Apply a "grammar" so the speech
recognizer knows what phonemes to
expect. A grammar could be anything
from a context-free grammar to full-
blown English.

3) Figure out which phonemes are spoken.
4) Convert the phonemes into words.

 The input sound is taken from the
microphone and then the soundcard converts it into
digital audio and this digital audio is a stream of
amplitudes, sampled at about 16,000 times per

second. If you visualize the incoming data, it looks
just like the output of an oscilloscope. A wavy line
periodically repeats while the user is speaking.
While in this form, the data is not useful to speech
recognition because it is too difficult to identify
any patterns that correlate to what was actually
said.

 To make pattern recognition easier, the
PCM digital audio is transformed into the
"frequency domain." Transformations are done
using a windowed fast-Fourier transform.

 From the frequency components, it is
possible to approximate how the human ear
perceives the sound.

 The Fast Fourier transform analyzes every
1/100th of a second and converts the audio data
into the frequency domain. Each 1/100th of a
second result is a graph of the amplitudes of
frequency components, describing the sound heard
for that 1/100th of a second.

 The speech recognizer has a database of
several thousand such graphs (called a codebook)
that identify different types of sounds the human
voice can make. The sound is "identified" by
matching it to its closest entry in the codebook,
producing a number that describes the sound. This
number is called the "feature number."

 The input to the speech recognizer began
as a stream of 16,000 PCM values per second. By
using fast Fourier transforms and the codebook, it
is boiled down into essential information,
producing 100 feature numbers per second.

3. HMM CONCEPTS

HMM is primarily designed for building
speech-processing tools, in particular recognizers.
Thus, much of the infrastructure support in HMM
is dedicated to this task. There are two major
processing stages involved. Firstly, the training
tools are used to estimate the parameters of a set of
HMMs using training utterances and their
associated transcriptions. Unknown utterances are
transcribed using the recognition tools. The main
body of this project is mostly concerned with the
mechanics of these two processes.[2][6][7].
 Before the problem of parameter
estimation can be discussed in more detail, the
form of the output distributions fbj(ot)g needs to be

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

762

made explicit. Our program is designed primarily
for modeling continuous parameters using
continuous density multivariate output
distributions. It can also handle observation
sequences consisting of discrete symbols in which
case, the output distributions are discrete
probabilities. For simplicity. In common with most
other continuous density HMM systems, our
software represents output distributions by Gauss
Ian Mixture Densities. In our project, however, a
further generalization is made. It allows each
observation vector at time t to be split into a
number of S independent data streams ost. The
formula for computing bj(ot) is then

bj(ot)=YSs=1 "XMsm=1cjsmN(ost;¹jsm;§jsm)#°s

Where Ms is the number of mixture components in
stream s, cjsm is the weight of the mth component
and N (¢;¹;§) is a multivariate Gauss Ian with mean
vector and covariance matrix §, that’s where n is
the dimensionality of o. The exponent °s is a
stream weight. It can be used to give a particular
stream more emphasis; however, it can only be set
manually. No current VAK training tools can
estimate values for it. Multiple data streams are
used to enable separate modeling of multiple
information sources. In VAK, the processing of
streams is completely general. However, the
speech input modules assume that the source data
is split into at most four streams. Default streams
are the basic parameter vector, first (delta) and
second (acceleration) difference coefficients and
log energy.

 Baum-Welch Re-Estimation to determine
the parameters of a HMM it is first necessary to
make a rough guess at what they might be. Once
this is done, parameters that are more accurate (in
the maximum likelihood sense) can be found by
applying the so-called Baum-Welch re-estimation
formulae.

 Continuous Speech Recognition is
computed simply by summing the log transition
probabilities and the log output probabilities along
that path. The paths are grown from left-to-right
column-by-column. At time t, each partial path
Ãi(t ¡ 1) is known for all states i, hence equation
can be used to compute Ãj(t) thereby extending
the partial paths by one time frame.
 Returning now to the conceptual model of
speech production and recognition exemplified it
should be clear that the extension to continuous
speech simply involves connecting HMMs
together in sequence. Each model in the sequence

corresponds directly to the assumed underlying
symbol. These could be either whole words for so-
called connected speech recognition or sub-words
such as phonemes for continuous speech
recognition. The reason for including the non-
emitting entry and exit states should now be
evident; these states provide the glue needed to
join models together. There are, however, some
practical difficulties to overcome. The training data
for continuous speech must consist of continuous
utterances and, in general, the boundaries dividing
the segments of speech corresponding to each
underlying sub-word model in the sequence will
not be known. In practice, it is usually feasible to
mark the boundaries of a small amount of data by
hand. All of the segments corresponding to a given
model can then be extracted and the isolated word
style of training described above can be used.
However, the amount of data obtainable in this
way is usually very limited and the resultant
models will be poor estimates. Furthermore, even
if there was a large amount of data, the boundaries
imposed by hand marking may not be optimal as
far as the HMMs are concerned. The main training
phase involves the use of a tool called HE Rest,
which does embedded training.

 Embedded training uses the same Baum-
Welch procedure as for the isolated case but rather
than training each model individually, all models
are trained in parallel. It works in the following
steps:[2][8][9].

1) Allocate and zero accumulators for all
parameters of all HMMs.

2) Get the next training utterance.
3) Construct a composite HMM by joining

in sequence the HMMs corresponding to
the symbol transcription of the training
utterance.

4) Calculate the forward and backward
probabilities for the composite HMM.
The inclusion of intermediate non-
emitting states in the composite model
requires some changes to the computation
of the forward and backward probabilities
but these are only minor.

5) Use the forward and backward
probabilities to compute the probabilities
of state occupation at each period and
update the accumulators in the usual way.

6) Repeat from ‘2’ until all training
utterances have been processed.

7) Use the accumulators to calculate new
parameter estimates for all of the
HMMs.So based on the process on this

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

763

process code for the engine has been
developed.

 4. GUI SCREEN SHOTS:

Figure 1: Splash Screen

Login Window

Con
firm

ation Dialog

Figure 2 : Confirmation Dialogue Box

Main Window

 Figure 3 : Main Window

This is the GUI we have created for our
application.

 The above code successfully recognizes
the trained words and writes these words to the
serial communication port of the computer.

 5. THE MICRO CONTROLLER C8051F020

5.1 SYSTEM OVERVIEW
 Our next task is to download these
recognized words into a hardware device and show
a appropriate action for each command, In our
project we are using a Microcontroller c8051f020
as hardware device and glowing different
combination of LED’s for different commands.

 This microcontroller is the programmed
using “c” language for the operation of the above-
mentioned tasks and in this project; we are using a
microcontroller from CYGNAL Company, which
also provides software to burn the code into the
microcontroller. To operate the chip-using program
we need to study the architecture and functioning
of the microcontroller, stated below:

• The C8051F020/1/2/3 devices are fully
integrated mixed-signal System-on-a-
Chip MCUs with 64 digital I/O pins
(C8051F020/2) or 32 digital I/O pins
(C8051F021/3).

• High-Speed pipelined 8051-compatible
CIP-51 microcontroller core (up to 25
MIPS)

• In-system, full-speed, non-intrusive debug
interface (on-chip)

• True 12-bit (C8051F020/1) or 10-bit
(C8051F022/3) 100 ksps 8-channel ADC
with PGA and analog multiplexer

• True 8-bit ADC 500 ksps 8-channel ADC
with PGA and analog multiplexer

• Two 12-bit DACs with programmable
update scheduling

• 64k bytes of in-system programmable
FLASH memory

• 4352 (4096 + 256) bytes of on-chip RAM
• External Data Memory Interface with 64k

byte address space
• SPI, SMBus/I2C, and (2) UART serial

interfaces implemented in hardware
• Five general purpose 16-bit Timers
• Programmable Counter/Timer Array with

five capture/compare modules
• On-chip Watchdog Timer, VDD Monitor,

and Temperature Sensor

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

764

 With on-chip VDD monitor, Watchdog
Timer, and clock oscillator, the C8051F020/1/2/3
devices are truly standalone System-on-a-Chip
solutions. All analog and digital peripherals are
enabled/disabled and configured by user firmware.
The FLASH memory can be reprogrammed even
in-circuit, providing non-volatile data storage, and
allowing field upgrades of the 8051 firmware.

 On-board JTAG debug circuitry allows
non-intrusive (uses no on-chip resources), full
speed, in-circuit debugging using the production
MCU installed in the final application. This debug
system out ports inspection and modification of
memory and registers, setting breakpoints, watch
points, single stepping, run and halt commands. All
analog and digital peripherals are fully functional
while debugging using JTAG.

 Each MCU is specified for 2.7 V-to-3.6 V
operation over the industrial temperature range (-
45°C to +85°C). The Port I/Os, /RST, and JTAG
pins are tolerant for input signals up to 5 V. The
C8051F020/2 is available in a 100-pin TQFP
package (see block diagrams). The C8051F021/3 is
available in a 64-pin TQFP package.

Figure 4 : Microcontroller C8051F020

5.2 JTAG DEBUG AND BOUNDARY SCAN
 The C8051F020 family has on-chip JTAG
boundary scan and debug circuitry that provides
non-intrusive, full speed, in-circuit debugging
using the production part installed in the end
application, via the four-pin JTAG interface. The
JTAG port is fully compliant to IEEE 1149.1,
providing full boundary scan for test and
manufacturing purposes. Cygnal's debugging
system supports inspection and modification of
memory and registers, breakpoints, watch points, a
stack monitor, and single stepping. No additional
target RAM, program memory, timers, or
communications channels are required. All the
digital and analog peripherals are functional and
work correctly while debugging. All the
peripherals (except for the ADC and SMBus) are
stalled when the MCU is halted, during single
stepping, or at a breakpoint in order to keep them
synchronized. The C8051F020DK development kit
provides all the hardware and software necessary
to develop application code and perform in-circuit
debugging with the C8051F020/1/2/3 MCUs.

 The kit includes software with a
developer's studio and debugger, an integrated
8051 assembler, and an RS-232 to JTAG serial
adapter. It also has a target application board with
the associated MCU installed, plus the RS-232 and
JTAG cables, and wall-mount power supply. The
Development Kit requires a Windows
95/98/NT/ME/2000 computer with one available
RS-232 serial port. As shown in Figure 1.8, the PC
is connected via RS-232 to the Serial Adapter. A
six-inch ribbon cable connects the Serial Adapter
to the user's application board, picking up the four
JTAG pins and VDD and GND. The Serial
Adapter takes its power from the application
board; it requires roughly 20mA at 2.7-3.6 V. For
applications where there is not sufficient power
available from the target system, the provided
power supply can be connected directly to the
Serial Adapter.[1][3].

 Cygnal’s debug environment is a vastly
superior configuration for developing and
debugging embedded applications compared to
standard MCU emulators, which use on-board
"ICE Chips" and target cables and require the
MCU in the application board to be socketed.
Cygnal's debug environment both increases ease of
use and preserves the performance of the precision
analog peripherals

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

765

 Figure 5: JTAG Debug and Boundary Scan

6. FUTURE POSSIBILITIES

 There can be many areas into which this
technology can be further developed and used like:

1) If the voice commands can be sent to the
physical layer of the system i.e. is the LAN
card and then transmitted through the cables
or optical fibers then the whole organization
or institute which are connected in a LAN
can be conducted by giving voice
commands, like consider the following
example:

Consider a classroom connected in a LAN
and a professor addressing the students now
if the above system comes into application
then the complete lecture of the professor
can be stored in the computers dynamically
of all the students without typing it
manually.

2) The next stage of the speech technology
systems would be the development of
systems, which would recognize not just the
commands but also the voice of a specific
user so that we can use the voice of the user
itself as the password for the application.

FUTURE IMPROVEMENT

• An application, which automatically adapts to
the acoustic environment, and dynamically
updates its estimate of noise levels. The

adaptive algorithm enables to reduce the
effects of noise.

• To enhance a efficient Voice Activity
Detection (VAD) feature which is also
referred to as barge-in and/or End-Of-Speech
(EOS) detection, identifies when a person
begins speaking, finishes speaking, or pauses
while speaking.

• It should be able to deliver high performance
despite challenging conditions: hisses, pops
and abrupt changes in background noise. The
Voice Activity Detection module is highly
configurable and useful feature.

7. CONCLUSION

 Our Paper VAK –THE VOICE BASED

HARDWARE CONTROLLER is a
foundation step for the futuristic technology of
voice-based systems where in manual
operation of the devices connected to the
computer is replaced by voice commands
enabling more convenience and user-friendly
applications.

 Although we made use of the in depth reports
and speech engines which have been
developed after a research of many years the
project was challenging and exciting as there
are no models or prototypes of such systems
where in a hardware chip is operated which
shows specific results for its corresponding
voice commands.

 In our application we have made
improvements like attaining better efficiency
in accuracy ,configuring continuous speech
recognition, a provision of login for some
specific users for security purpose and a very
user friendly Graphical interface.

 Even after considering many reports on
accuracy of the engines and taking all the
measures for better efficiency in recognizing
words our application still lacks the
100%accuracy and also it suffers from a
drawback where in it cannot work under to
noisy environment.

 Therefore, for this type of systems to come
into daily use we need to work and rectify
these shortcomings.

 Software Requirements: 1)Java jdk 1.6.0_10 or
Higher 2) JavaXcomm package 3) Cygnal
Micro controller software

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

766

REFERENCES

[1]. Micro controller 8051 by Mazdi & Mazdi.
[2]. Digital Processing of speech signals – L.R.

Rabiner & R.W. Shaffer.
[3]. Microcntrollers – Rajkamal,Pearson

Education,2005.
[4]. Internet and Java Programming by Rajaraman
[5]. The Complete Reference Java by Patrick

Naughton and Herbert Schildt
[6]. W.Reichl &W.Chou “Robust Decision tree

state tying for continuous speech recognition“
IEEE Trans.Speech Audio Process..Vol.8, no.
5.PP.555-566.Sep_2000

[7]. S.wang and Y.zhao “online Bayesian tree
structured transformation of HMMs with
optimal model selection for speaker
adoption. ’IEEE Trans. Speech audio
process..vol.9,no.6.pp.663-667.sep.2001

[8]. J.T.chien and s.furui ” Predictive Hidden
Markov model selection for speech
recognition,” IEEE Trans.speech audio
process.vol.13.no.3.pp.377-387.may 2005.

[9]. T.G.Dietterich.” Ensemble methods in
machine learning,” in proc 1st int.work shop
multiple classifier syst.,2000,pp.1-15.

