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ABSTRACT 
 

Principal Component Analysis (PCA) and Independent Component Analysis (ICA) are the techniques 
that deal with extracting the independent components from linear mixtures of Gaussian and non-Gaussian 
data at the input respectively. PCA is a classical method that deals with the second order statistics of data. 
It is also known as Karhunen-Loeve Transform or the Hotelling Transform in some application areas. 
ICA is a generalization of PCA that takes into account the higher order statistics also.  This paper presents 
a simplified view of information theoretic approaches to the problem of Principal Component and 
Independent Component Analysis. With the help of these techniques we find a linear representation of 
multivariate data so that the components are as statistically independent as possible. Such representations 
capture essential features of the data in many applications. This paper summarizes major approaches that 
are based on information theoretic concepts and includes the applications of ICA. 
 
Keywords: Information Theory, Principal Component Analysis, Independent Component Analysis 
 
1. INTRODUCTION 
 
Information theory has been used and developed 
extensively by the communication engineers ever 
since Shannon first formulated his ‘Mathematical 
Theory of Computation’ [9]. The information 
theory provides a framework for the study of 
fundamental issues such as efficiency of 
information representation and the limitations 
involved in the reliable transmission of 
information over a communication channel. It has 
proved particularly useful in the development of 
unsupervised learning algorithms. 
 
 One of the basic problems in Information 
Theory is the measurement of degree of 
independence or interdependence. This is the 
reason that the concepts of Information Theory 
are widely used whenever we talk of Principal 
and Independent Component Analysis. 
 
 Principal Component Analysis (PCA), a 
statistical method, has widely been used in signal 

processing and neural computing to find a set of 
basis vectors by rotating the data such that 
maximum variabilities are projected onto the 
axes. The principal components are orthogonal 
and projections of data onto them are linearly 
decorrelated and consider only second order 
characteristics of data. Whereas ICA seeks a 
transformation to coordinates in which data are 
statistically independent to a maximum possible 
extent rather than merely decorrelated. 
Independent Component Analysis (ICA) is a 
computational method for finding the components 
from multivariate statistical data. ICA was 
originally developed to deal with problems that 
are closely related to the cocktail party problem 
most commonly known as Blind Source 
Separation (BSS). Due to the recent increase of 
interest in ICA, it is widely being used in variety 
of other applications also such as signal 
processing, pattern recognition, 
telecommunications and medical signal 
processing. ICA not only decorrelates the signals 
(second order statistics) but also reduces higher 
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order statistical dependencies, with an attempt to 
make the signals as independent as possible. The 
analysis of independent components constituted 
the study of separating mixed sources observed in 
an array of sensors [10-13]. A cost function 
related to the approximate minimization of 
mutual information between the sensors was 
proposed by Comon [14]. Linsker [15] proposed 
unsupervised learning rules based on information 
theory with the goal to maximize the mutual 
information between the inputs and the outputs of 
a neural network. Bell and Sejnowski [6] also put 
the blind source separation problem into 
information theoretic framework and 
demonstrated the separation and deconvolution of 
mixed sources. A similar adaptive method for 
source separation was proposed by Cardoso and 
Laheld [17]. Hyvärinen proposed a measure of 
non-Gaussianity as Negentropy, which is based 
on the information theoretic quantity of 
(differential) entropy for independent component 
analysis [7, 8, 20, 21]. Section 2 includes basics 
of PCA , ICA and information theoretic concepts. 
Section 3 reviews different information theoretic 
approaches followed by some potential 
applications in section 4. 
 
2. PCA, ICA AND INFORMATION THEORY 
 
2.1. PCA 
 
In many real world problems, reducing 
dimensionality of a problem is an essential step 
before any analysis of data is performed. The 
general criterion for reducing the dimensions is 
the desire to preserve most of the relevant 
information of the original data according to some 
optimality criteria. PCA is concerned with 
explaining the variance-covariance structure of a 
set variable through linear combinations of these 
variables. Consider a random vector 

1 2( , ,..., )pX x x x=
.The covariance matrix of X 

is C and the eigenvalues are 1 2, ,..., pλ λ λ such 

that 1 2 ,..., pλ λ λ≥ ≥ ≥ and the eigenvector-
eigenvalue pairs 
are 1 1 2 2( , ), ( , ),..., ( , )p pV V Vλ λ λ .Then Principal 
Components (PCs) are linear 
combinations 1 2, ,..., py y y , with the changed 
coordinate system, of the p number of random 
variables 1 2, ,..., px x x .  The first principal 

component, 1y  is a linear combination 

of 1 2, ,..., px x x , that is 

1 11 1 12 2 1 1 1
1

...
p

p p i i
i

y b x b x b x b x b X
=

′= + + + = =∑   (1) 

The first principal component 1y  is such that its 
variance is maximized given the constraint 

that 1 1 1b b′ = . Principal components analysis 
finds the optimal weights 
vectors 11 12 1( , ,..., )pb b b  and associated variance 

of 1y  which is usually denoted by 1λ . The second 
principal component, involves finding a second 
weights vectors 21 22 2( , ,..., )pb b b  such that the 

variance of 2y  is maximized subject to the 

constraints that 2 2 1b b′ =  and the associated 

variance value is denoted by 2λ . This process can 
be continued until as many components as 
variables have been calculated. The sum of 
variance of principal components is equal to the 
sum of the variance of original variables such that 

∑∑
==

=
p

i
i

p

i
i

1

2

1
σλ  where iλ  is the variance of the 

ith principal component. This way there are p 
linear transformations (PCs) of the original p 
variables. These 

are 1 1
1 1

, ,
p p

i i p pi i
i i

y b x y b x
= =

= =∑ ∑K . These can 

be expressed as Y B X′=  
where 1 2( , ,..., )pY y y y= . B′ is p p×  matrix. 
Using the eigenvector-eigenvalue pair, the ith 
principal component may be written as 

1 1 , 1,2,i i i ip py V X v x v x i p′= = + + =L K  (2) 

So ( ) ( , ) 0,i i i i i kVar y V CV Cov y y i kλ′= = = ≠ , 
we have 

1 2( , , )pY VX V V V X′= = K  (3) 

1 2( ) ( , , )pVar Y VCV diag λ λ λ′= = K  (4) 
We can retain the maximum information by 
retaining the coordinate axes that have largest 
eigenvalues and delete those that have less 
information. The success of PCA is due to the 
following important properties 
1. Principal components sequentially capture the 
maximum variability among the data, thus 
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guaranteeing minimal information loss when 
lesser components are discarded. 
2. Principal components are uncorrelated, so one 
can talk about each of the Principal components 
without referring to the others, each one makes an 
independent contribution to accounting for the 
variance of the original variables.  
 
2.2. Basic ICA Model 
 
Consider a random vector 

( )Tmxxx ,,, 21 L=x and the components as the 

random vector as ( )Tnsss ,,, 21 L=s . The aim 

is to find the components is  as independent as 
possible in the sense of maximizing some 

function ( )nsssF ,,, 21 L that measures 
independence. The independent component 
analysis of the observed data x  consists of 
finding a linear transformation  

=s Wx  (5) 
so as to get the components is  as independent as 
possible. This is the most general definition of 
independent component analysis. There are two 
more definitions for ICA, noisy and noiseless 
ICA. The noisy ICA model is 

= +x As n  (6) 
where is  in s  are assumed independent. The 

matrix A  is a constant nm×  mixing matrix and 
n is a m -dimensional random noise vector. In 
order to make (6) and hence the model more 
simple, we consider another simplified model in 
which n is zero and the model is known as noise 
free model and it is given as  

=x As  (7) 
where A and s  are as defined above. The linear 
form of ICA has been considered, though 
nonlinear forms of ICA also exit. The linear 
functions make the interpretation and the 
computation of the representation much simpler. 
 
 So the basic ICA model consists of observing 
n  number of random variables 

nxxx ,,, 21 L and these are modeled as linear 
combination of n  random variables 

nsss ,,, 21 L  

1 1 2 2 1, ,i i i in nx a s a s a s for all i n= + + + =L L  (8) 

where njiaij L,1,, =  are some real 

coefficients. This model is termed as generative 
model due to the fact that it describes how the 
observed data are generated by the process of 
mixing the components is . The independent 

components is (statistically mutually 
independent) are latent variables, meaning that 
they cannot be directly observed. 
 
 For the basic ICA model the independent 
components are assumed to be statistically 
independent and the components must have non-
Gaussian distribution. This is due to the fact that 
Gaussian distribution gives us information up to 
second order only whereas all higher order 
cumulants ate zero. It is further assumed that the 
unknown mixing matrix is square meaning 
thereby that the number of independent 
components is equal to the number of observed 
mixtures. The only reason behind it is that it 
simplifies the estimation to a larger extent. 
 
2.3. Information Theoretic Concepts  
 
Consider a discrete random variable X whose 
k possible values are 1 2, , , kx x xK . The 

probability of each value is 1 2, , , kp p pK .The 
probability space can be expressed as follows 

1 2 1 2X ( , , , ) ( , , , )k kx x x P p p p= =K K  (9) 

where ( )i iP x p= is the probability of 

occurrence of an event iX x=  with the 

requirement that 0 1ip≤ ≤ and 
1

1
k

i
i

p
=

=∑ .Suppose 

that the event iX x= occurs with the probability 

1ip = ,means that 0ip = for all except the one 
for which it is equal to one. It means that there is 
no surprise or uncertainty and therefore no 
“information” conveyed by the occurrence of the 
event iX x= .On the other hand, if the 
probability of occurrence is low, then there is 
more surprise and hence the more information. 
The amount of information is related to the 
inverse of the probability of occurrence. 
 
 In general, the amount of information gained 
after the occurrence of the event iX x=  with 
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probability ip is defined as the logarithmic 
function 

1( ) log( ) log
ii ipI x p= = −  (10) 

( )iI x is called information function. It is also 
known as self information  
 
 For a random vector x  consisting of n  
number of random variables nxxx ,,, 21 L , the 
(differential) entropy of x  is 

( ) ( ) log ( )

[log ( )]

H p p d

E p

∞

−∞
= −

= −
∫x x x x

x
 (11) 

where )(xp is the probability density function 

(pdf) of x . The joint entropy ),( yxH of two 
random vectors x and y  is defined as  

( ), ( , ) log ( , )H p p d d
∞ ∞

−∞ −∞
= −∫ ∫x y x y x y x y  (12) 

and the conditional entropy of x and y  is 

( | ) ( , ) log ( | )H p p d d
∞ ∞

−∞ −∞
= −∫ ∫x y x y x y x y  (13) 

)|( yxH can also be written as[24] 

( | ) ( , ) ( )H H H= −x y x y y  (14) 
with the property that 

0 ( | ) ( )H H≤ ≤x y x  (15) 

The conditional entropy )|( yxH represents the 
amount of uncertainty remaining about the system 
input x after the system output y has been 
observed. 
 
 Since the entropy )(xH represents our 
uncertainty about the system input before 
observing the system output and the conditional 
entropy )|( yxH represents our uncertainty 
about the system input after observing the system 
output, the difference )|()( yxx HH − must 
represent our uncertainty about the system input 
that is resolved by observing the system output. 
This quantity is called mutual information 
between x and y and is denoted as );( yxI and 
has the following properties 

( ; ) ( ) ( | )
( ) ( | )
( ) ( ) ( , )

I H H
H H
H H H

= −
= −
= + −

x y x x y
y y x
x y x y

 (16) 

( ; ) ( ; )I I=x y y x  (17) 

( ; ) 0I ≥x y  (18) 

);( yxI may also be written as 

( | )( ; ) ( , ) log
( )

pI p d d
p

∞ ∞

−∞ −∞

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫ ∫

x yx y x y x y
x

 (19) 

Consider that x and y are independent, then 

( , ) ( ) ( )p p p=x y x y  (20) 

And we may write )()|( xyx pp =  which 
means that the knowledge of outcome of y does 
not affect the distribution of x .If we apply this to 
(19), we get 

( ; ) 0I =x y  (21) 
This shows that the mutual information is zero if 
and only if x and y are independent. 
 
 The basic idea of ICA is to minimize the 
dependency among the output components. The 
dependency is measured by Kulback-Leibler (KL) 
divergence between the joint and the product of 
the marginal distributions of the outputs. The KL 
divergence between the two different probability 
density functions )(xf  and )(xg of a random 
vector x  is as follows 

||
( )( ) log
( )f g

fD f d
g

∞

−∞

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫

xx x
x

 (22) 

It can be considered as a kind of distance between 
the two probability distributions, though it is not a 
real distance measure because it is not symmetric. 
If we have a perfect match between the two 
distributions i.e., if )()( xx gf = , then gfD ||  is 
exactly zero. 
We know that  

( , ) ( | ) ( ) ( | ) ( )p p p p p= =x y x y y y x x  (23) 
The (19) can be rewritten as  

( , )( ; ) ( , ) log
( ) ( )
pI p d d

p p
∞ ∞

−∞ −∞

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫ ∫

x yx y x y x y
x y

 (24) 

Comparing the two (22) and (24) we deduce that 

( , )|| ( ) ( )( ; ) p p pI D= x y x yx y  (25) 
In other words, the mutual information 

);( yxI between x and y is equal to the KL 
divergence between the joint probability density 
function );( yxp and the product of probability 

density functions ( )p x and ( )p y . 
 
3. INFORMATION THEORETIC 
APPROACHES 
 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2008 JATIT. All rights reserved.                                                                         
 

www.jatit.org 

 
735 

 

3.1. PCA Using Information 
 
For performing the dimensionality reduction on 
input data, we need to compute the eigenvalues 
and eigenvectors of the covariance matrix of the 
input data vector and then project the data 
orthogonally onto the subspace spanned by the 
eigenvectors belonging to the dominant 
eigenvalues and leaving those that possess less 
information. From the discussion as above, it has 
become very clear that the information can be 
compressed using Principal Component Analysis 
by selecting only a few large eigenvalues and 
ignoring the other. The large eigenvaues are 
selected with the understanding that they 
contribute more information In order to estimate 
the degree of information compression, the 
authors [45] made full use of the concept of 
Shannon information theory and gave the new 
concept called possibility information function 
(PIF)  
 
 For the n-dimensional random variable 

1 2( , , , )T
nx x x= Kx composed of n features and 

TC = E[( - )( - ) ]x x x x being the covariance 
matrix of x . All eigenvalues 1 2[ ]nλ λ λ, , ,L  of 

C were obtained and transformation of iλ was 
carried out and written as follows [45] 

1
1 /

n

i i i
i

ρ λ λ
=

= − ∑  (26) 

From the above formula it is clear that 
0 1iρ≤ ≤ and therefore iρ has the numerical 
properties of probability. Similar to the definition 
of information function, the possibility 
information function (PIF) and possibility 
information entropy (PIE) were defined as [45]  

1( ) log( ) log ( 1,2, )
ii iI i nρλ ρ= = − = K  (27) 

1 2
1

( ) ( , , , ) log
n

n i i
i

H T H ρ ρ ρ ρ ρ
=

= = −∑K  (28) 

Based upon PIF two new concepts information 
rate (IR) and accumulated information rate (AIR) 
were defined that are as follows 

1

( )( ) , 1, 2,
( )

i
i n

i
i

IIR i n
I

λλ
λ

=

= =

∑
K  (29) 

1
1, 2

1

( )
( , )

( )

m

i
i

m n

i
i

I
AIR

I

λ
λ λ λ

λ

=

=

=
∑

∑
K  (30) 

These two concepts are in accordance with 
variance contribution rate (CR) and total variance 
contribution rate (TCR) for standard PCA method. 
CR and TCR are defined as  

1

( ) , 1, 2,
( )

i
i n

i
i

CR i nλλ
λ

=

= =

∑
K  (31) 

1
1, 2

1

( )
( , )

( )

m

i
i

m n

i
i

TCR
λ

λ λ λ
λ

=

=

=
∑

∑
K  (32) 

 
3.2. ICA Using Negentropy 
 
Nongaussianity is the parameter to estimate 
Independent Component Analysis. Kurtosis also 
known as fourth order cummulant gives us the 
measure of nongaussianity. The kurtosis of 
random variable say y is defined as   

( ) { } { }( )24 23kurt y E y E y= −  (33) 

If we assume that y has been normalized so as to 
have its variance equal to one i.e., ( ) 12 =yE  
then 

( ) { }4 3kurt y E y= −  (34) 

From the above equation we can say that kurtosis 
is simply normalized version of the fourth 
moment. For a Gaussian random variable y the 

fourth order moment is equal to { }( )223 yE , 
making kurtosis of the variable equal to zero and 
for most of the nongaussian random variables it is 
nonzero. This is the reason kurtosis is most 
widely used a measure of nongaussianity in 
Independent Component Analysis. Theoretically 
it is quite simple and it has computational 
simplicity also. It has drawback also. It is quite 
sensitive to outliers. Its value may depend on only 
a few observations in the tails of the distribution, 
which may be erroneous or irrelevant 
observations. So we can say that it is not the 
robust measure of nongaussianity. Another 
important measure is negentropy, which is robust 
but computationally complicated. It is based on 
information theoretic quantity of differential 
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entropy or simply entropy. The (differential) 
entropy of a random variable y is  

( ) ( ) ( )logH y p y p y dy= ∫  (35) 

A fundamental result of information theory is that 
a Gaussian variable has the largest entropy among 
all random variables of equal variance meaning 
thereby that entropy could be used as a measure 
of nongaussianity. The value of the entropy being 
largest implies that the Gaussian distribution is 
the most random or least structured of all 
distributions.  
 
 To obtain a measure of nongaussianity that is 
zero for a Gaussian random variable and always 
nonnegative, a slightly modified version of 
definition of differential entropy called 
Negentropy is used. The Negentropy is defined as 
follows 

( ) ( ) ( )gaussJ y H y H y= −  (36) 

Negentropy is also defined as the KL divergence 
between probability density function )( yp  and 

the Gaussian distribution )( ypgauss with the 

same mean and covariance as )( yp [24] and 
written as 

( ) ( ( ) || ( ))gaussJ y D p y p y=  (37) 

where gaussy a Gaussian random variable of same 
covariance matrix as y. Negentropy is always has 
nonnegative value and it is zero if and only if y 
has Gaussian distribution. Because of 
computational difficulty, Negentropy would 
require an estimate (possibly nonparametric) of 
the probability density function. Therefore the 
simple approximations of Negentropy are used 
and the classical method of approximating 
Negentropy is using higher order moments.  

( ) { } ( )2 231 1
12 48J y E y kurt y≈ +  (38) 

The random variable is assumed to be of zero 
mean and unit variance. But these approximations 
also suffer from non-robustness. To avoid this, 
new approximations were developed and 
proposed by [20,21]. In general 

( ) ( ){ } ( ){ } 2
J y E G y E G υ⎡ ⎤∝ −⎣ ⎦  (39) 

where G is any non-quadratic function. By 
choosing G carefully, we can obtain the 
approximations of Negentropy that are better than 
the one given by (38). The following choices of G 
have proved very useful 

( ) ( ) ( )2expcoshlog1 2
21

1
1 yyGya

a
yG −−==  

where 21 1 ≤≤ a  is some suitable constant. υ  
is a standardized (zero mean and unit variance) 
Gaussian random variable.  
 
 A method for maximizing the negentropy can 
be found using a fixed-point algorithm. The 
algorithm is known as FastICA algorithm [25] 
that finds a direction i.e. a unit vector w , such 
that projection zwT maximizes nongaussianity, 
which is measured by the approximation of 
negentropy )( zwTJ where Vxz = is a new 
vector that is white and V is the whitening 

transformation matrix and TEEDV 2
1−= where 

E is the orthogonal matrix of eigenvectors of 
}{ TE xx and D is the diagonal matrix of its 

eigenvalues  ),,,( 21 nddddiag K=D .The 
basic fixed point iteration in FastICA is given as 
[25] 

{ ( )} { ( )}T TE zg E g′← −w w z w z w  (40) 
Iteration in (40) is used and is followed by 
normalization. Here the nonlinearity g is chosen, 
which is the derivative of the nonquadratic 
function G. Thus we can use the derivatives of the 
functions  

( ) ( ) ( )2expcoshlog1 2
21

1
1 yyGya

a
yG −−==  

that gives robust approximation of negentropy. 
We can choose 

2 2

2
1 1 1 1 1

22 2
2 2

3 2
3 3

( ) tanh( ) ( ) (1 tanh ( ))

( ) ( ) (1 )

( ) ( ) 3

y y

g y a y g y a a y

g y y e g y y e

g y y g y y

− −

′= = −

′= = −
′= =

 (41) 

 
The above-mentioned algorithm estimates only 
one independent component. To estimate more 
independent components either Deflationary 
orthogonolization (one by one estimation) or 
Symmetric orthogonolization (estimation in 
parallel) method is used. 
 
3.3. ICA Using Minimization of Mutual 
Information 
 
The KL divergence between the pdf )(xp of 
random vector x  and the product of its marginal 
pdfs and hence the mutual information )(xI of 
the observed vector, is 
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1

( )|| ( )

1

( )

( )( ) log
( )

n

i
i

p p x

n

i
i

I D

pp d
p x

=

∞

−∞

=

=
∏

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∫
∏

x
x

xx x

 (42) 

It may also be written as 

1
( ) log ( ) ( ) log ( )

n

i
i

p p d p p x d
∞ ∞

−∞ −∞
=

−∑∫ ∫x x x x x  (43) 

Since i
i dxdd )(xx =  we may write  

( ) log ( ) log ( ) ( ) i
i i ip p x d p x p d dx

∞ ∞ ∞

−∞ −∞ −∞
=∫ ∫ ∫x x x x  (44) 

where the inner integral is with respect to 
)1( −n -by-1 vector )(ix and the outer integral is 

with respect to the scalar integral ix . Let )( ixp  

denotes the ith marginal pdf of element ix , which 
is defined as 

( ) ( ) 1, 2, ,i
ip x p d i n

∞

−∞
= =∫ x x K  (45) 

where )(ix  is the )1( −n -by-1 vector left after 

removing the ith element from vector x . 
Equation (44) becomes 

( ) log ( ) log ( ) ( )i i i ip p x d p x p x dx
∞ ∞

−∞ −∞
=∫ ∫x x  (46) 

log ( ) ( ) ( )i i i mar ip x p x dx H x
∞

−∞
= −∫  (47) 

where )( imar xH  is the marginal entropy based 
on the marginal probability density 
function )( ixp . Using (43) and (47) we may 
write 

1
( ) ( )

n

mar i
i

D H H x
=

= − +∑x  (48) 

where 

( ) ( ) log ( )H p p d
∞

−∞
= −∫x x x x  (49) 

( ) ( ) log ( )mar i i i iH x p x p x dx
∞

−∞
= −∫  (50) 

Assume that the ICA model is given by (7), 
which is reproduced as  

Asx =  
without knowing the source signals and the 
mixing matrix, we want to recover the original 
signals from the observations x  by the following 
linear transformation 

=y Wx  (51) 

where ( )Tnyyy ,,, 21 L=y and W is a 
demixing matrix. It is impossible to obtain 
original sources is because they are not 
identifiable in the statistical sense. However 
except for a permutation of indices, it is possible 
to obtain ii sc where the constants ic are nonzero 
scalar functions. The source signals are 
identifiable in this sense. So here the aim is to 
find the matrix W such that 

( )nyyy ,,, 21 L coincides with a permutation of 

),,,( 21 nsss L except for the scalar functions. 
The solution W is the matrix, which finds all 
independent components in the output. 
 
 Here the aim is to have components of output 
vector y  as statistically independent as possible. 
We have chosen the mutual information 

);( ji yyI  between the random variables iy  and 

jy  constituting any two components of the 

output vector y . Ideally  );( ji yyI  is zero when 

the components iy  and jy  are statistically 
independent. So, this suggests minimizing the 
mutual information between every pair of the 
random variables constituting the output vector y . 
This objective is equivalent to minimizing the KL 
divergence between the two distributions, one the 
probability density function 

),( Wyp parameterized by W and second the 
corresponding factorial distributions defined by  

1

( , ) ( , )
n

mar i
i

p p y
=

=∏y W W  (52) 

where ),( Wiyp  is the marginal probability 

density function of iy . So the problem statement 
is 
 
 Given an n -by-1 vector x  representing a 
linear combination of n  independent source 
signals, the transformation of the observation 
vector x  by a neural system into a new vector y  
should be carried out in such a way that the KL 
divergence between the parameterized probability 
denoting function ),( Wyp  and the 

corresponding factorial distribution ),( Wymarp  
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is minimized with respect to the unknown 
parameter matrix W . 
So 

1
( ) ( ) ( )

n

mar i
i

D H H y
=

= − +∑W y  (53) 

Since Wxy = , we may write )()( Wxy HH =  
and in case of linear transformation, we have 

( ) ( ) log | det( ) |H H= +y x W  (54) 
where )det(W  is the determinant of W . To 

determine marginal entropy )( imar yH  we 
require the knowledge of marginal distribution 
of iy . For a vector of high dimensionality it is 

usually more difficult to calculate )( imar yH  

than )(yH . This difficulty is overcome by 
deriving an approximate formula for 

)( imar yH in terms of higher order moments of 

random variable iy . This as accomplished by 
properly truncating one of the two expansions, 
Edgeworth series or Gram-Charlier series. 
 
3.3.1. Edgeworth Series  
 
If the observed vector has a covariance 
matrix { }TT E xxxx = then the mutual 

information in (42) can be expressed as [14] 
2

1

1

1( ) ( ) ( ) log
2 det( { })

n

in
i

i T
i

x
I J J x

E
=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠= − +
∏

∑x x
xx

 (55) 

where 2
ix are the diagonal elements of the 

covariance matrix. )(xJ is the multivariate 

negentropy as in (37)and )( ixJ are the marginal 
negentropies. 

( )( ) ( ) log
( )
i

i i i
gauss i

p xJ x p x dx
p x

= ∫  (56) 

There is standardization of x  by using whitening 
transformation, which results in removal of 
second order redundancy. The observed vector 
x is transformed linearly so that a new vector 
x~ is obtained which is white i.e. its components 
are uncorrelated and their variances equal unity. 
In other words Ixx =}~~{ TE , I being identity 

matrix, and 1})~~{det( =TE xx  thus making the 
third term of (55) always equal to zero and 

=x Vx%  (57) 

where V is the whitening transformation matrix. 
The mutual information of the spatially white data 
can be written as 

1

( ) ( ) ( )
n

i
i

I J J x
=

= −∑x x% % %  (58) 

A further transformation xWy ~=  using higher 
order correlations is required to reduce the 
remaining redundancy within the vector for non 
Gaussian sources. This transformation seeks an 
orthogonal matrix that accounts for the correct 
rotation of data. The first term in the above 
equation is constant because of orthogonal 
transform. We only need to minimize the second 
term, the sum of marginal negentropies. Comon 
[14] minimized the degree of dependence among 
outputs using contrast functions in terms of higher 
order moments using the Edgeworth expansion. 
The key advantage of using the Edgeworth 
expansion over Gram-Charlier expansion lies in 
the ordering of terms according to their 
decreasing significance as a function of 

21−m where y is modeled as being made up of 
sum of m independent random variables. The 
truncated Edgeworth expansion upto order 4, of 

)( iyp in terms of thn order cumulant and 

Hermite polynomial, denoted as nk and 

nh respectively is (zero mean and unit variance) 

3 3 4 4

2
4 6 5 5 3 4 7

3
3 9 6 6 3 5 8

2 2
4 8 3 4 10

4
3 12

( ) 1 11 ( ) ( )
( ) 3! 4!

10 1 35( ) ( ) ( )
6! 5! 7!

280 1 56( ) ( ) ( )
9! 6! 8!

35 2100( ) ( )
8! 10!
15400 ( )

12!

i
i i

gauss i

i i i

i i i

i i

i

p y k h y k h y
p y

k h y k h y k k h y

k h y k h y k k h y

k h y k k h y

k h y

= + +

+ + +

+ + +

+ +

+

(59) 

The cumulants nk are the coefficients and they 
can be expressed in terms of moments. The terms 

)( in yh are the orthogonal Hermite polynomials 
defined as 

( )
( 1) ( ) ( )

k
gauss ik

k i gauss ik

p y
h y p y

y
∂

− =
∂

 (60) 

Using (56) and (59) we can write [14] 
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2 2 4
3 4 3

2
3 4

1 1 7( ) ( ) ( ) ( )
12 48 48

1 ( ) ( )
8

iJ y k i k i k i

k i k i

≅ + +

−

 (61) 

Here an assumption has been made that the pdf of 
the signals under consideration are approximately 
symmetric, then the third order cumulants will 
have negligible contribution in the above 
equation. The mutual information in (55) of the 
transformed data y is now approximated by 

2
4

1

1( ) ( ) ( )
48

n

i

I J k i
=

≅ − ∑y y  (62) 

)(yJ is invariant under an orthogonal 
transformation 

( )( ) ( ) log
( )

1( ) log((2 ) det( { }))
2

( ) log | det( ) |
1 log((2 ) det( { } ))
2

1( ) log((2 ) det( { }))
2

( ) ( ) ( )

gauss

N T

N T T

N T

G

pJ p d
p

H e E

H

e E

H e E

H H J

π

π

π

=

= −

= +

−

= −

= − =

∫
yy y y

y

y yy

x W

W xx W

x xx

x x x

%

% %

%

% % %

 (63) 

where )~(xGH is the entropy of a normal density 
and 

)det(}){det()det()}~~{det( TTTT EE WxxWWxxW =

)det()det( WW =T  
So the approximation can be written as 

2
4

1

1( ) ( ) ( )
48

n

i

I J k i
=

≅ − ∑y x%  (64) 

Thus maximizing the contrast function is 
approximately equivalent to maximizing the 
marginal negentropies and maximizing the 
marginal negentropies with respect to 
W minimizes the mutual information. 

2
4

1

1( ) ( ( ))
48

n

i

I k i
=

∂ ∂
≅ −

∂ ∂ ∑y
W W

 (65) 

Therefore the following contrast function was 
proposed [14] 

2
4

1
( )

n

i
k iϕ

=

=∑  (66) 

 
3.3.2. Gram-Charlier Series  
 
The Gram-Charlier expansion of the 
parameterized marginal pdf ),( Wiyp  is 

3
( ) 1 ( )i k k i

k
y c H yα

∞

=

⎡ ⎤= +⎢ ⎥⎣ ⎦
∑  (67) 

where )( iyα , the multiplying factor, is the pdf of 
a normalized Gaussian random variable with zero 
mean and unit variance i.e., 

2
2
1 2

)( iy
i ey −=

π
α  

and )( ik yH  are Hermite polynomials. The 

coefficients of   expansion K,4,3, =kck  are 
defined in terms of the cumulants of the random 
variable iy . The natural order of the terms is not 
best for the Gram-Charlier series. Rather, the 
terms are listed in groups as given below 

K),9,7,5(),6,4(),3(),0(=k  
So, truncating the series we may write,  

,3 ,4
3( ) ( ) 1 ( )

3! 4!
i i

i i i

k k
p y y H yα

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 (68) 

 

!4
,

!3
,0,0 4

4
3

321
k

c
k

ccc ====  

where kik ,  is the thk order cumulant of iy . Let 

kim ,  denote the thk order moment of iy  

defined by [ ] ⎥
⎦

⎤
⎢
⎣

⎡
== ∑

=

n

k

k
iki

k
iki xwEyEm

1
,, )(  

where ix  is the thi element of observation 

vector x  and kiw , is the thki element of weight 

matrix W . We further assume that iy has zero 

mean value and 2,
2

ii m=σ with 
2

2,4,4,3,3, 3 iiiii mmkandmk −==  
Taking log of (68), we get 

,3 ,4
3

log ( ) log ( )

log 1 ( )
3 2 1 4 3 2 1

i i

i i
i

p y y
k k

H y

α=

⎛ ⎞
+ + +⎜ ⎟⋅ ⋅ ⋅ ⋅ ⋅⎝ ⎠

 (69) 

We use the expansion of a logarithm  
2

log(1 )
2
yy y+ ≅ −  (70) 

where all the terms of order three and higher are 
ignored. The Chebyshev –Hermite polynomials 
are defined by the identity 
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∫
∫

=

=

=−

33
4

3
4

2
3

)12())()((

)!3()()())()((

)()()()1(

dyyHy

dyyyHyHy

yyH
dy

yd
kk

k
k

α

αα

αα

 

and  

∫
∫
∫

=−

−⋅⋅⋅=

=+

)2log()(log)(

)12(31)(

0)(

2
1

2

12

edyyy

kdyyy

dyyy
k

k

παα

α

α

K  

Using (47), (69), (70) and the above identities, we 
may write [22] 

2 2
,3 ,4

2 3
,3 ,4 ,4

1( ) log(2 )
2 12 48

5 1
8 16

i i
mar i

i i i

k k
H y e

k k k

π= − −

+ +

 (71) 

Equation (53) may now be written as 

2 2
,3 ,4 2 3

,3 ,4 ,4
1

( ) ( ) log | det( ) | log(2 )
2

5 1
12 48 8 16

n
i i

i i i
i

nD H e

k k
k k k

π

=

≈ − − +

− + − −∑

W x W
 (72) 

The derivation for )(WD is based on Gram-
Charlier expansion, assuming that random 
variable iy  has zero mean and unit variance. In 
order to develop a learning algorithm for 
computing W , we need to differentiate )(WD  

with respect to W . Let ikA  denote the thki  
cofactor of matrix W . Using Laplacian expansion 
of )det(W  by the thi  row, we may write 

1

det( ) 1,2, ,
n

ik ik
k

w A i n
=

= =∑W K  (73) 

ikw  is the thki element of matrix W .  
1log(det( )) det( )

det( )

det( )
( )

ik ik

ik

T
ik

w w
A

−

∂ ∂
=

∂ ∂

=

=

W W
W

W
W

 (74) 

where T−W  is the inverse of transposed matrix 
TW .The partial derivatives of other terms that 

depend on W with respect to ikw  are 

,3 ,42 33 [ ] 4 [ ]i i
i k i k

ik ik

k k
E y x E y x

w w
∂ ∂

= =
∂ ∂

 (75) 

In deriving an adaptive algorithm, we usually 
replace expectations with their instantaneous 
values. So the above values can be written as  

,3 ,42 33 4i i
i k i k

ik ik

k k
y x y x

w w
∂ ∂

≅ ≅
∂ ∂

 (76) 

Substituting (74) and (76) in the (72) we get  

( ) ( ) ( )T
ik i k

ik

D y x
w

ψ−∂
= − +

∂
W W  (77) 

where )( iyψ is the activation function of the 
learning algorithm, defined by [22] 

11 9 7

5 3

3 25 14( )
4 4 3
47 29
4 4

iy y y y

y y

ψ = + −

− +

 (78) 

The objective of the learning algorithm is to 
minimize KL divergence between the probability 
density function of y  and the factorial 

distribution of niyi ,,2,1 K= . This 
minimization may be implemented using the 
method of gradient descent whereby the 
adjustment applied to the weight ikw is defined 
by  

( )ik
ik

w D
w

η ∂
Δ = −

∂
W  (79) 

( )( ) ( )T
ik ik i kw y xη ψ−Δ = −W  (80) 

where η  is learning rate parameter. The formula 
of (80) can be extended to the entire weight 
matrix W  and the adjustment WΔ applied to 
W may be expressed as follows 

( )( )T Tη −Δ = −W W ψ y x  (81) 

where Tx is the transpose of n -by-1 observation 
vector x and 

)](,),(),([)( 21 nyyy ψψψ L=yψ  
Equation (81) can be rewritten as 

( )( ) T T Tη −Δ = −W I ψ y x W W  (82) 

where I is the identity matrix. 
Since TTT Wxy = , we may write the above 
equation as 

( )( ) T Tη −Δ = −W I ψ y y W  (83) 

It is better to replace the above algorithm by the 
natural gradient of the objective function )(WD . 
The natural gradient of the objective 
function )(WD , defined in terms of usual gradient 

D∇  is as  
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( ) ( ( )) T
nat D D∇ = ∇W W W W  (84) 

The gradient )(WD∇ is the optimum direction 
for descent only when the parameter space {W} 
is Euclidean with an orthonormal coordinate 
system. In neural networks, however, the 
parameter space has a coordinate system that is 
nonorthonormal. In such situations, the natural 
gradient )(WDnat∇ will provide the steepest 
descent. For the natural gradient space the 
parameter space must be Riemannian and the 
matrix W  must be nonsingular (i.e., invertible) 
Using natural gradient we get 

( )
( )

( )

( )

T T T

T

η

η

−Δ = −

= −

W I ψ y y WW W

I ψ y y W
 (85) 

Hence we may write the weight update as 
( 1) ( )

( )[ ( ( )) ( )] ( )T

n n
n n n nη

+ =

+ −

W W
I ψ y y W

 (86) 

 
3.4. Maximum Entropy Method 
 
Consider the following figure. The (differential) 
entropy of the random vector z at the output of 
the nonlinearirty G is 
 

Mixer 
A 

Demixer 
W 

Nonlinearity
G (.) 

u x y z

 
 
Figure 1. Block diagram of maximum entropy method 
for Independent Component Analysis. 

( ) ( )logH E p= − ⎡ ⎤⎣ ⎦z z  (87) 

)()()( WAuGWxGyGz ===  
and the original source vector may be expressed 
as 

)(111 zGWAu −−−=  
where )(⋅G is invertible. 
The probability density function of the output 
vector z in terms of source vector u is defined as 
[23] 
 

( ) ( )
( )( )| det |

f
p =

u
z

J u
 (88) 

 
where ( )( )uJdet  is the determinant of the 
Jacobian matrix  

( )uJ  and  

1 1

1

1

n

n n

n

z z
u u

z z
u u

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥

= ⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

J

L

M M

L

 (89) 

The ij-th element of the matrix is defined as  

i
ij

j

zJ
u
∂

=
∂

 (90) 

Putting (88) into(87), we get 
 

( ) ( )
( )( )log

| det
f

H E
⎡ ⎤⎛ ⎞

= − ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

u
z

J u
 (91) 

Using chain rule of calculus, (90) can be rewritten 
as 

1

1

n
i i k

ij
k i k j

n
i

ik kj
k i

z y xJ
y x u

z w
y

α

=

=

∂ ∂ ∂
=

∂ ∂ ∂

∂
=

∂

∑

∑
 (92) 

The Jacobian matrix can therefore be written as 
=J DWA  (93) 

where D is the diagonal matrix 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

=
n

n

y
z

y
z

y
zdiagD ,,,

2

2

1

1 L  

Hence  

( ) ( )
1

| det | | det |
n

i

i i

zJ
y=

∂
=

∂∏WA  (94) 

The maximization of entropy ( )zH  requires the 
maximization of expectation of the denominator 
term in (91) that is ( )( ) |det|log uJ  with respect 
to the weight matrix W . So we may consider the 
objective function as 

( )log | det |Φ = J  (95) 
Putting (94) into (95) yields 

( ) ( )
1

log | det | log | det | log
n

i

i i

z
y=

⎛ ⎞∂
Φ = + + ⎜ ⎟∂⎝ ⎠

∑A W  (96) 

Differentiating Φ  with respect to the weight 
matrix W gives  

1
log

n
i

i i

z
y

−

=

⎛ ⎞∂∂Φ ∂
= + ⎜ ⎟∂ ∂ ∂⎝ ⎠

∑TW
W W

 (97) 

The nonlinearity used was the logistic function 
given as 
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( )
1 1,2,

1 i

i i

i y

z g y

z i n
e−

=

= =
+

K
 (98) 

Substituting (98) into (97), we get 

( )2−∂Φ
= + −

∂
T TW z x

W
1  (99) 

The objective of learning algorithm is to 
maximize the entropy ( )zH . Using the method of 
steepest ascent, the change applied to the weight 
matrix W  is [6] 

( )( )2

η

η −

∂Φ
Δ =

∂
= + −T T

W
W
W z x1

 (100) 

where η is the learning rate parameter. Using 
natural gradient we get 
 

( )( )
( ) ( )( )
( )( )

2

1 2

1 2

T

T

T

η

η

η

−Δ = + −

= + −

= + −

T TW W z x W W

I z Wx W

I z y W

1
 (101) 

Hence the weight update rule is  
( )( )1 2ηΔ = + − TW I z y W  (102) 

 
3.5. Maximum Likelihood Estimation 
 
Maximum likelihood is a well-established 
procedure for statistical estimation with some 
nice properties. In this we first formulate a log-
likelihood function and then optimize it with 
respect to the parameter vector of the probabilistic 
model under consideration. The likelihood 
function is the probability density function of a 
data set in a given model, but viewed as a 
function of the unknown parameters of the model. 

Mixer 
A 

Demixer 
W 

u(n) x(n) y(n)

 
Figure 2. Block diagram of maximum likelihood 
estimation method for independent component analysis. 
 
Let )(⋅f denote the probability density function 
of the random source vector u . Then the pdf of 
the observation vector Aux = at the output of 
the mixer is defined by [23] 

1 1( , ) | det( ) | ( )q f− −=x A A A x  (103) 
where )det(A is the determinant of the mixing 
matrix A .Let us assume that we have 

N samples of  x  denoted by 
)(,),2(),1( Nxxx L , and N

kk 1)}({ ==Γ x . We 
may write  

1

( , ) ( ( ), )
N

k

q q k
=

Γ =∏A x A  (104) 

The log-likelihood function is written as 

1
log ( , ) log( ( ( ), )

N

k
q q k

=

Γ =∑A x A  (105) 

It is convenient to work with normalized version 
of the log-likelihood function 

∑

∑ ∑

∑

∑

=

−

= =

−−

=

−−

=

+−=

+=

=

=Γ

N

k

N

k

N

k

N

k

N

k

kf
N

kf
NN

kf
N

kq
N

q
N

1

1

1 1

11

1

11

1

)))((log(1|)det(|log

)))((log(1|))det(log(|1

)))((|)det(log(|1

)),((log(1),(log1

xAA

xAA

xAA

AxA

 

Let xAy 1−=  be a realization of the random 
vector y  at the demixer output, thus we may 
write  

1

1 log ( , ) log | det( ) |

1 log( ( ( )))
N

k

q
N

f k
N =

Γ = −

+ ∑

A A

y
 (106) 

Let WA =−1  and let ),( Wyp  denote the pdf 
of y  parameterized by W . Since 

∑
=

N

k
kf

N 1
)))((log(1 y is the sample average of 

))((log kf y and as ∞→N , we may write 

1

1( ) lim log( ( ( ))) log | det( ) |

[log( ( ( )))] log | det( ) |

( , ) log ( ) log | det( ) |

N

N k

L f k
N

E f k

p f d

→∞
=

∞

−∞

= +

= +

= +

∑

∫

W y W

y W

y W y y W

 (107) 

The quantity )(WL is the desired log-likelihood 
function. 

We know that ),(
),(

)()( Wy
Wy
yy p

p
ff ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= , we 

may express the above equation as 
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|)det(|log),(log),(

),(
)(log),()(

WyWyWy

y
Wy
yWyW

++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∫

∫
∞

∞−

∞

∞−

dpp

d
p

fpL

 

||( ) ( , ) log | det( ) |p fL D H= − − +W y W W  (108) 

where ),( WyH is the (differential) entropy of 
random vector y parameterized by W  and 

fpD || is the KL divergence between ),( Wyp  

and )(yf . Since 
|)det(|log)()()( WxWxy +== HHH  

We may write [19] 

||( ) ( )p fL D H= − −W x  (109) 

where )(xH is the (differential) entropy of the 
vector x  at the demixer input. From the above 
equation it is clear that the KL divergence 

fpD || is the only quantity that depends upon W , 
the weight vector. From (109), we can, therefore, 
conclude that maximizing the log-likelihood 
function )(WL  is equivalent to minimizing the 

KL divergence fpD || , which is, matching the 
probability distribution of the demixer output 
y to that of the original source vector u . 
 
 Let )( imar xp denote the marginal 

probability density function of each ix . Then 
using Pythagorean decomposition we may write  

|| || ||mar marp f p p p fD D D= +  (110) 

Since 
marppD ||  does not depend on f , the pdf of 

input source vectoru , the above equation shows 
that fpD || is minimized in f  by minimizing its 

second term i.e. fpmar
D || . This is simply achieved 

by taking marpf =  for which 0|| =fpmar
D , so 

that 
marppfpf DD ||||min = . So the objective 

now is to minimize
marppD || , which is the KL 

divergence between a distribution and the closest 
distribution with independent entries and is called 
as mutual information between the entries of y . It 

satisfies 0|| ≥
marppD  and is equal if and only if 

y  is distributed as marp . By the definition 

of marp , this happens when the entries of y  are 

independent. In other words 
marppD ||  measures 

the independence between the entries of y . Thus, 
the mutual information appears as the quantitative 
measure of independence associated to the 
maximum likelihood principle. 
 
 The first KL divergence 

marppD ||  in (110) is a 
measure of structural mismatch that characterizes 
the method of independent component analysis. 
The second KL divergence fpmar

D ||  is a measure 
of marginal mismatch between the marginal 
distributions of the demixer output y  and the 
distribution of original source vectoru . The 
global distribution-matching criterion for 
maximum likelihood may be expressed as [19] 
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Structural
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Total arg  

 
Structural Mismatch refers to the structure of a 
distribution pertaining to a set of independent 
variables whereas Marginal Mismatch refers to 
the mismatch between the individual marginal 
distributions. Therefore, maximizing the 
likelihood with fixed assumptions about the 
distributions of the sources amounts to minimize 
a sum of two terms: the first one is the true 
objective i.e. mutual information as a measure of 
independence while the second term measures 
how far the (marginal) distributions of the outputs 

nyyy ,,, 21 L are from the assumed 
distributions. Under the ideal 
conditions 1−= AW , both the structural 
mismatch and marginal mismatch vanish. At that 
point, maximum likelihood and independent 
component analysis yield exactly the same 
solution.  
 
4. APPLICATIONS 
 
ICA has many potential applications and a few of 
these are mentioned here 
 
4.1. ICA in Biomedical Signal Analysis 
 
The information theoretic methods were used in 
multi feature analysis of human chromosome 
images. The architectures based on information 
theory were proposed for the prediction of 
metastases in early breast cancer patients. These 
algorithms were also applied to real world 
problems such as analyzing 
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electroencephalographic (EEG) data, functional 
magnetic resonance imaging (fMRI) data etc [26-
29] 
 
4.2. ICA for Feature Extraction 
 
In multispectral/hyperspectral imagery the 
independent components can be associated with 
features present in the image. Algorithms based 
on information theory can separate these features 
[30, 31]. 
 
4.3. ICA for Signal and Speech Processing 
 
Neural networks are being used in signal and 
speech processing for design and implementation 
of filters for noise reduction and separation of 
signals. Independent Component Analysis and 
Blind Source Separation techniques based on 
information theoretic approaches are being 
successfully used for this purpose [32-34]. 
 
4.4. ICA in Communications 
 
Signal mixing occurs in radio channels. Such type 
of problem exists in mobile communication 
applications such as Code Division Multiple 
Access (CDMA) systems. Blind source separation   
techniques have been used to unmix radio signals 
in fading channels [35, 36]. 
 
4.5. ICA for Image Processing 
 
The ICA algorithms based on information 
theoretic approaches are well suited for image 
processing where the objective is the discovery of 
properties of a noisy sensory input exhibiting 
coherence across both space and time and in 
applications such as dual image processing where 
the objective is to maximize the spatial 
differentiation between the corresponding regions 
of two separate images (views) of an environment 
of interest. These techniques also find 
applications in satellite image analysis, radar 
images etc. ICA based filters have also been 
proposed for removing noise from images 
corrupted with additive Gaussian noise [37-42]. 
 
4.6. ICA in Financial Market Data Analysis 
and Data Mining  
 
In such types of applications the input consists of 
a set of different stock market data and the 
requirement is to extract the underlying set of 
dominant independent components. Data mining, 
the extraction of hidden predictive information 

from large databases, is a powerful new 
technology with a great potential for helping 
companies focus on the most important 
information in their data warehouse. ICA has 
been explored for financial data modeling and 
ICA based projection pursuit networks have been 
suggested for data clustering and data mining 
[43,44].  
 
4.7. ICA for Face Recognition 
 
Face recognition has always been a fascinating 
research area because of its various potential 
applications. ICA has successfully been used to 
extract local features for face recognition systems 
[1-4]. 
 
5. CONCLUSIONS 
 
Principal Component Analysis is a classical 
second order unsupervised statistical method. It is 
widely used in signal processing, statistics and 
neural computing. Independent Component 
Analysis, an extension of PCA, is a general-
purpose statistical technique that deals with 
higher order statistics of observed random data 
and transforms the data linearly into components 
that are as independent as possible from each 
other. In this paper a brief overview of 
information theory based prominent techniques 
such as ICA based on maximum entropy method, 
minimization of mutual information, 
maximization of negentropy, maximum 
likelihood estimation has been covered. In 
addition a number of potential applications such 
as biomedical signal processing, audio signal 
processing, image processing, pattern recognition 
and telecommunications etc. have also been 
described. 
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