
Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

608

MINING CLASSIFICATION RULES IN THE PRESENCE OF
CONCEPT DRIFT WITH AN INCREMENTAL GENETIC

ALGORITHM

1,2I-Hui Li, 1 *I-En Liao, 3Wei-Zhi Pang
1Department of Computer Science and Engineering, National Chung Hsing University, Taichung 402,

Taiwan

2Department of Information Management, Ling Tung University, Taichung 408, Taiwan
3Department of Applied Mathematics, National Chung Hsing University, Taichung 408, Taiwan

E-mail: phd9301@cs.nchu.edu.tw, ieliao@nchu.edu.tw, eijyle@ms.chgsh.chc.edu.tw

ABSTRACT

Traditional classification algorithms are ideally suited to the processing of small datasets with a stationary
distribution, and therefore yield significant errors when applied to real-world datasets subject to concept
drift. In the current study, this problem is resolved using an incremental genetic algorithm (IGA). An
assumption is made that new training data are generated at a steady rate and pass through a fixed-size
window. In the initialization process, training samples are accumulated until the window is full, and a
genetic algorithm (GA) is then applied to determine the set of classification rules. As new training samples
arrive in the window, old instances are forgotten. Once all the original samples have been replaced by new
samples, the GA is re-executed to determine the new set of best classification rules. This procedure is
repeated sequentially for as long as a learning function is required. To account for concept drift, the GA
utilizes a memory-based random immigrant module, in which the initial population pool of the GA applied
at each stage of the incremental learning process comprises a mix of best solutions obtained in the previous
stage and an appropriate number of random immigrants. The feasibility of the proposed approach is
confirmed by performing a series of classification rules mining simulations using two standard datasets,
namely Mushroom and Zoo. The results demonstrate that IGA achieves a comparable classification
performance to that obtained using existing incremental and non-incremental methods, but incurs a
significantly lower computational overhead.

Keywords: Classification, Genetic Algorithm, Incremental Learning

1. INTRODUCTION

The term “data mining” describes the process of
analyzing large volumes of data from different
perspectives in order to discover knowledge which
is highly accurate, comprehensible, and
“interesting” (i.e. surprising or novel) [1]. The
objective of classification rules mining is to search
a dataset for a small number of rules to serve as
classifiers for predicting the class of any new
instance. Given the huge volumes of data stored in
modern databases, the data mining and
classification rules mining tasks are invariably
performed using some form of automated approach,
such as statistical-based algorithms, machine-
learning schemes, neural networks, and so forth.

For example, Liu [2] demonstrated the use of an
enhanced ant colony optimization algorithm in
performing classification rules discovery for two
standard problems. Tan [3] argued that all
classification algorithms should be characterized by
a high degree of accuracy, simplicity and efficiency.
However, traditional algorithms are generally based
on the assumption that the input data are drawn
randomly from a stationary distribution, i.e. they
are all generated by the same concept. Therefore,
such schemes perform poorly when used to infer
classification rules for large real-world datasets
with a time-varying characteristic [4][5]. Such
datasets are liable to a concept-drifting effect [6],
i.e. the properties of the target concept change over
time as a result of changes in the underlying context,

* Corresponding author.

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

609

and thus the classification rules become “out of
date”. For example, consider the case shown in
Figure 1 in which the black circles represent
‘positive instances’, the white circles denote
‘negative instances’, and the objective is to locate
the position of the optimum boundary between
them. The three images illustrate the time-varying
distributions of the positive and negative instances
and clearly show that the position of the boundary
must be dynamically adjusted in accordance with
changes in the dataset distribution in order to
maintain its optimality.

Zhang [7] argued that since snapshots of
dynamic datasets whose contents vary over time are
almost certain to overlap to a greater or lesser
extent, a certain degree of commonality inevitably
exists in the mining results obtained at different
moments in times. For example, as shown in Figure
2, the mining results obtained at moment D’ differ
from those obtained at the previous moment (D) via
the addition of Δ+ and the loss of Δ-, but have the
contents D’ in common. Therefore, in attempting to
infer suitable classification rules for such databases,
it is necessary to apply some form of adaptive
scheme capable of detecting and reacting to the
changes which take place in the database over time.

In the present study, the problem of classification
rules mining in the presence of concept drift is
solved using an IGA. The GA is a particular form
of evolutionary scheme designed to derive exact or
approximate solutions to search or optimization
problems. In the GA procedure, candidate solutions
are represented as chromosomes, typically in the
form of a binary data string, and the chromosome
population is processed iteratively using
biologically-inspired selection, crossover and
mutation operations. The overall objective of these
operations is to ensure the “survival of the fittest”
such that the optimality of the chromosomes is
progressively improved from one generation (i.e.
iteration) to the next. GAs are widely applied in a
diverse range of fields, including computer science,
economics, manufacturing, physics, and so forth,
and represent an ideal solution for the learning of
classification rules [8]. In the IGA scheme proposed
in this study, an assumption is made that new
training instances become available at a constant
rate and pass through a static window capable of
storing W training samples. During the initialization
phase, training instances are accumulated within
this window until it become full and a GA with a
randomly created chromosome population and a
local heuristic search scheme is then activated to
determine the best classification rules. These

classification rules (i.e. chromosomes) are then
mapped to memory. Since the window has a fixed
size and the samples arrive at a constant rate, each
time a new sample enters the window, an old
sample is dropped from the window. After a certain
elapsed time (the length of which depends on the
arrival rate of the training instances), all of the old
samples within the window are forgotten and are
replaced by new samples. At this point, the GA is
re-executed to determine the new best set of
classification rules. To enable the GA to react to
concept drift, the initial population is generated
using a memory-based random immigrant scheme.
That is, the population comprises a mixture of the
best of the solutions obtained using the data within
the previous window and an appropriate number of
randomly generated new chromosomes. The
number of new chromosomes is determined in
accordance with the extent of the concept drift.
Having created the population pool, conventional
crossover, mutation and selection operations are
performed iteratively until a new best set of
solutions has been obtained. These solutions are
then mapped to memory in place of those
determined in the previous stage. This sequential
process continues for as long as an incremental
rules learning function is required. The performance
of the IGA algorithm is benchmarked against that
of the incremental decision tree algorithm presented
in [9] and a conventional non-incremental GA
classifier using the standard Mushroom and Zoo
datasets for illustration purposes.

The remainder of this paper is organized as
follows. Section 2 reviews the related literature in
the data mining and incremental rules inference
field, while Section 3 formulates the classification
problem considered in this study, describes the
basic architecture of the IGA system, and discusses
the sequential operation of IGA. Section 4
introduces the major genetic operations performed
in executing the IGA scheme and describes the
fitness function applied to evaluate the quality of
the emerging solutions. Section 5 presents the
performance evaluation results. Finally, Section 6
presents some brief concluding remarks and
indicates the intended direction of future research.

2. RELATED WORK

This section reviews some of the major
classification schemes and techniques, namely
incremental decision tree algorithms [9][10][11]
[12][13][14], incremental GAs [15], and GA-based
multiagent environments [16].

2.1. Incremental Decision Tree Algorithms

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

610

Decision trees are commonly used in data mining
and machine learning applications to map
observations about a particular item of interest to
conclusions regarding its value in order to support a
decision making process. Broadly speaking,
decision tree algorithms can be classified as either
non-incremental or incremental. In the former case,
the algorithm is essentially a one-shot process in
which the underlying concept of the data within the
database is inferred just once in accordance with all
the training instances available at that time.
However, this method is clearly unsuitable for the
classification of dynamic datasets whose contents
and structures vary over time. Thus, various
researchers have developed incremental decision
tree algorithms for the classification of datasets in
which new instances arrive sequentially in time
[9][10][11][12][13][14]. The underlying principle
of these algorithms is to map new arrivals to the
existing tree structure wherever the attributes of this
arrival make this possible, or to modify the relevant
sub-tree within the decision tree if a direct mapping
cannot be achieved. Thus, incremental decision tree
algorithms avoid the requirement to reconstruct the
tree from scratch each time a new instance arrives
and are therefore ideally suited to the classification
of dynamic datasets. As described in the following
sections, incremental decision tree algorithms use
either a fixed window size method or an adaptive
window size method[9].

Fixed window size methods
As implied by their name, fixed window size

methods infer the classifiers of the decision tree in
accordance with the training data contained within
a window of a fixed size, i.e. as new data instances
enter the window, an equivalent number of the
oldest examples within the window are
automatically forgotten and excluded from the
inference process. In practice, defining an
appropriate window size involves obtaining an
acceptable compromise between a more rapid
adaptability to environmental change afforded by a
small window and a more stable performance
(given negligible concept drift) achieved using a
larger window. Typical examples of fixed window
size methods include the VFDT (Very Fast
Decision Tree Learner) scheme [11][17] and the
CVFDT (Concept-adapting Very Fast Decision
Tree Learner) scheme [12][17]. In developing the
VFDT scheme, Domingos [11] contended that the
best attribute to test at any given node within the
decision tree could be determined on the basis of a
small number of training examples passing through
that node, i.e. it was unnecessary to consider the
entire training set. The problem of determining an

appropriate number of instances for testing
purposes at each node was evaluated statistically
using a Hoeffding bound method designed to
ensure that the attribute chosen for a node on the
basis of a small number of samples was identical to
that which would otherwise be chosen if the entire
training set was considered. This was achieved by
accumulating data instances from the training
stream until the Hoeffding bound reduced to a
value less than the difference between the observed
values of the two attributes with the highest and
second highest heuristic values, respectively.

In common with most traditional clustering and
mining algorithms, VFDT assumes that the training
samples used to infer the underlying structure of the
dataset are drawn at random from a stationary
distribution. In practice, however, the contents and
structure of modern datasets invariably vary over
time, and thus this assumption does not hold.
Accordingly, in a later study [12], Domingos
developed the CVFDT scheme in which the original
VFDT method was extended by sliding a fixed-size
window over the training dataset. Rather than
reconstructing a new decision tree each time a new
sample arrived, CVFDT simply updated the
statistics associated with each node within the
existing tree by incrementing the counts
corresponding to the new sample and decrementing
those relating to the oldest. In dynamic datasets,
this updating procedure has the effect that some of
the splits in the decision tree which previously
satisfied the Hoeffding bound now fail to do so, and
thus the CVFDT scheme constructs an alternative
sub-tree using the new best attribute as the root.
When the classification accuracy of this sub-tree is
determined to be more accurate than that of the
original sub-tree, the original sub-tree is pruned
from the tree and its place is taken by the new sub-
tree. As a result, CVFDT not only avoids the
requirement to rebuild the entire decision tree each
time a context change is detected, but also
maintains a high level of classification accuracy.

Adaptive window size methods
The basic concept of adaptive window size

strategies is to scale the size of the window
dynamically in response to changes in the perceived
level of concept drift within the dataset.
Specifically, the window size is decreased in the
event of concept drift, but is increased (or
maintained) in the event of a stable concept. Two of
the most well known adaptive window size methods
are the WAH (Window-Adjustment-Heuristic) used
in the FLORA family of algorithms developed by
Wider [13] and the DNWS (Determine New

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

611

Window Size) heuristic developed by Klinkenberg
[9].

WAH was first proposed as a means of
combining robustness to noise with a sensitivity to
concept drift in rough set analysis applications, but
was later applied by Maloof [10] to create an
effective rules learner for datasets characterized by
changing concepts. In WAH, concept changes are
detected by monitoring the system’s predictive
performance over time and analyzing the syntactic
properties of the evolving hypotheses [13]. In the
event that concept drift is discerned, WAH
automatically responds by reducing the window
size by 20%. However, if the concept is deemed to
be extremely stable, WAH adds one new example
to the window and deletes two old examples,
thereby reducing the window size by 1 unit. If the
concept appears to be sufficiently stable, the
window size is neither increased nor decreased, but
remains unchanged. Finally, in the event that none
of these concept stability conditions apply, WAH
assumes that more information is required and
increases the window size by 1 unit by accepting a
new sample into the window whilst simultaneously
retaining the oldest sample.

Although WAH solves the problem of concept-
drift inherent in real-world datasets, it is
computationally intensive, and is therefore only
really practical for the classification of small
datasets. Accordingly, Klinkenberg [9] developed
an adaptive window size adjustment heuristic
(designated for convenience hereafter as DNWS) in
which a filtering process was applied to determine
the extent of the concept change and to adjust the
window size accordingly. In DNWS, concept
change is detected by monitoring the performance
of a classifier in terms of its accuracy, recall and
precision. For each of these three indicators, the
average value and standard sample error are
computed on the basis of M batches at the last time
step and are then compared to a specified
confidence interval. In the event that the value of
one of the indicators falls below this confidence
interval, an assumption is made that the concept has
changed, and a further test is performed to
determine the extent of this change, i.e. a small and
gradual change (indicating concept drift) or a large
and sudden change (indicating concept shift). If the
test reveals the occurrence of concept shift, the
window is immediately reduced to its smallest size.
By contrast, in the event of concept drift, the
window is reduced more gradually at a user-
specified rate. If the indicator values reveal that the
existing concept is relatively stable, the window
size remains unchanged and all the current

examples are stored for future reference in order to
improve the performance of the classifier.

2.2. Incremental Genetic Algorithms

GAs are used in a diverse range of fields to solve
a variety of search and optimization problems.
Whilst GAs were originally intended for the
analysis of static datasets, in more recent years they
have also been applied to the problem of classifying
large, time-varying datasets. However, traditional
GAs often fail to converge properly when applied
to dynamic datasets since they lack a suitable
mechanism with which to respond to changes in
their environment [9]. Thus, a new class of GA
known as Incremental GAs has emerged in recent
years [15]. As described in the sections below,
these algorithms typically use random immigrant
models [18], memory-based schemes [19] or multi-
population methods [20] to enable their application
to search and optimization problems characterized
by changing fitness landscapes.

Random immigrant schemes
In GA schemes of this type, the problem of a

dynamically changing dataset is resolved by
replacing an individual (or individuals) within the
population by a randomly generated individual (or
individuals) in each evolutionary generation (i.e. in
each iteration of the algorithm). In general, one of
two different strategies may be applied in selecting
the existing individual(s) for substitution, namely a
purely random approach or a selective procedure in
which the individual(s) with the poorest fit(s)
amongst all the solutions within the population pool
is(are) replaced. In introducing random immigrants
into the population pool, the aim is to increase the
level of diversity within the population, thereby
expanding the search space and enhancing the
likelihood of the GA converging to the global
optimal solution rather than becoming trapped at a
local sub-optimal solution.

Memory-enhanced schemes
In memory-enhanced schemes, previous optimal

solutions are retained in memory and are
reactivated as appropriate in response to changes in
the environment. Such schemes are particularly
well suited to dynamic datasets with a periodic
characteristic. However, they perform less well
when applied to problems with a rapidly changing
fitness landscape since the probability of previous
solutions being exactly applicable to the new
landscape is inevitably reduced. Furthermore,
significant memory resources are required to store
the chromosome information, and thus appropriate
strategies must be devised to partially replace the
contents of the memory when it becomes full.

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

612

Memory-based immigrant schemes
Memory-based immigrant schemes combine the

respective advantages of memory schemes and
random immigrant schemes by storing the best
chromosomes in memory for future reuse and then
retrieving these chromosomes and using them to
create random immigrants to replace the worst
individuals in the population.

Multi-population schemes
Traditional GAs operate upon a single population

of candidate solutions and have a proven ability to
solve a wide variety of search and optimization
problems. However, even better results can be
achieved by partitioning the search space into
multiple sub-populations and then solving the
problem using a multi-population GA (MGA). In
an MGA, each sub-population is allowed to evolve
independently for a specified number of
generations, and then one or more individuals are
migrated between the sub-populations before
allowing the solution procedure to continue. MGAs
tend to be both quicker and more accurate than
conventional single-population GAs. However,
their performance is critically dependent upon an
appropriate choice of parameter settings, namely,
the migration method, the migration interval, the
migration rate, the number of sub-populations, and
so on.

2.3. Incremental Approach to GA-based
Classification

Reviewing the literature, it is found that the
problem of incremental learning in the presence of
concept drift is generally addressed using statistical
type algorithms or neural networks rather than GAs.
To address this perceived gap in the literature,
Guan [16] developed a GA-based incremental
learning scheme for classification purposes. The
authors argued that classification problems may
involve three different types of change, namely (1)
the arrival of new data, allowing the existing
solutions to be further improved; (2) the detection
of new attributes, allowing new classification
behaviors to be identified; and (3) the detection of
new classes, allowing the classification structure to
be improved.

Whilst the authors conceded that these changes
could be handled simply by rerunning a GA to
rebuild the classification rules from scratch, they
suggested that an incremental type approach was
better suited to satisfying the time and resource
constraints imposed in typical real-world
applications. Accordingly, they proposed the
multiagent environment, in which multiple
classifier agents, each of which was based on a GA,

collaborated with one another by monitoring
incremental changes in the environment and then
exchanging information regarding newly-detected
training data, attributes and classes, and so on, such
that the system collectively converged toward the
optimal set of classification rules. In responding to
changes in the environment, the GAs were designed
to insert new elements into an old solution (i.e. an
existing chromosome / rule) in order to form a new
rule. Four specific methods were considered for
integrating the old and new elements, namely (1)
choosing the best of the old chromosomes and then
adding randomly created new elements; (2)
choosing the best of the old chromosomes and then
adding elements provided by other classifier agents;
(3) adding randomly-created elements to all of the
old chromosomes, and (4) adding new elements
provided by other classifier agents to all of the old
chromosomes.

The experimental results confirmed the ability of
the proposed scheme to amend the rule set by
integrating the new input attributes with the existing
input space rather than rebuilding the rules from
scratch. Furthermore, it was shown that the scheme
improved both the learning time and the quality of
the classification performance compared to that
achieved by retraining the GA each time a change
occurred in the dataset.

3. INCREMENTAL GENETIC ALGORITHM FOR
CLASSIFICATION RULES MINING

Since in real-world datasets the level of concept-
drift may well vary over time, incremental decision
tree methods based upon the use of a fixed window
size heuristic are liable to generate significant errors
when used for rules inference purposes.
Furthermore, while the problem of concept drift can
be resolved to a certain extent by integrating the
classification system with some form of adaptive
window scaling method, the performance of such
schemes is critically dependent upon the choice of
parameters assigned to the scaling heuristic, and in
practice, these parameter values are not intuitively
obvious to general data mining practitioners. The
multiagent approach proposed by Guan [16] has the
proven ability to accomplish classification rules
mining in the presence of concept drift. However,
the implementation of multiple GA-based
classifiers is somewhat complicated and expensive
for practical applications.

Nonetheless, the results presented in [16]
confirm the ability of GAs to adapt dynamically to
incremental changes of various types in the dataset
(i.e. data, attribute or class changes) and to evolve a
new best rule set for classification purposes without

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

613

the need to rebuild the entire rule set from scratch.
Therefore, as described in Section 1, the current
study proposes a scheme designated as IGA
featuring a memory-based random immigrant GA
and a local heuristic search method for
classification rules mining in the presence of
concept drift. The remainder of this section is
organized as follows: Section 3.1 formulates the
classification problem considered in this study,
Section 3.2 describes the basic architecture of the
IGA system, and Section 3.3 discusses the
sequential operation of IGA.
3.1. Problem Definition

An assumption is made that all the samples are
tuples of the dataset. Let S be the universal set of all
the samples. Furthermore, let each sample be
denoted by X=(x1,x2,…,xn), ∀X∈S, where n is the
total number of attributes associated with the
sample X and xi is the ith attribute in sample X. In
addition, let D=(X1,X2,…,Xk), where k is a positive
integer such that D⊆S is a set of k samples. Given
an assumption that the target attribute has m
possible values, the set of target attribute values is
given by C=(c1,c2,…,cm), where mi ≤≤1 , and ci is
the value of the ith target attribute.

The classification function f is defined as f: D→
C, thus f(D)=(λ1, λ2,…, λk).

where λi denotes the target attribute value of
sample Xi in set D.

In other words, classifier f assigns a target
attribute value λi for each sample Xi within set D.
Having executed the classifier, the result λi∈C
indicates that the sample has been successfully
classified; else Xi cannot be successfully classified
by f.

As described above, ITGA assumes that new
data instances are generated at a constant rate. The
data accumulated at time reference t form a dataset
designated as St, and are used by the GA to infer the
corresponding best classification rules function ft(X).
Similarly, at time point t+1, the data accumulated
in the interval since time t are assigned to a new
dataset St+1 and the GA searches this dataset
iteratively for a new best rule set, i.e. ft+1(X), taking
ft(X), suitably modified by the random immigrant
module, as the initial population pool.

3.2. Basic Architecture of IGA Scheme

According to Darwin’s theory of evolution,
biological species are geared toward the “survival
of the fittest”. That is, a process of natural selection
ensures that advantageous genetic mutations are
accumulated and passed down through the

generations such that the superior members of the
population survive, whilst the inferior members
gradually die out. According to Darwin, individuals
with an adaptive characteristic are more likely to be
selected for reproduction, and thus over a long
period of time, a population becomes well adapted
to a stable environment or adjusts itself in
accordance with changes in the environment,
possibly by breeding with outsiders, such that its
long term survival can be assured, albeit possibly in
a different form.

In GAs, the solution procedure is analogous to
that of natural evolution in the sense that the
potential solutions to the problem of interest are
encoded as chromosomes which are then iteratively
processed using selection, crossover, mutation and
evaluation operations such that best solutions
gradually emerge. In the incremental GA
implemented in the current study, the quality of the
final solutions is improved by utilizing the memory-
based immigrant scheme presented in [12]. In other
words, the best chromosomes obtained in one
execution of the GA (e.g. at time t) are saved to
memory and are used as the basis for the starting
population of the GA executed at time t+1.
Depending on the extent of the change which takes
place in the environment in the interval between
time t and time t+1, an appropriate number of new
chromosomes are randomly generated and used to
replace the chromosome(s) with the poorest fit in
the stored population pool. For example, consider
the case where the stored population contains 10
chromosomes and the environment changes by 30%
(i.e. the training samples change by 30%) Under
these conditions, 3 new chromosomes are randomly
generated and used in place of the 3 chromosomes
with the poorest fit in the stored population. Having
created the new population, the selection, crossover,
mutation and evaluation operations are then
performed once again attain to generate a new
population of best chromosomes.

Figure 3 illustrates the basic architecture of the
IGA scheme. As shown, the system comprises a
total of five different modules, namely (1) the data
pre-processing & population initialization module,
(2) the genetic operations module, (3) the fitness
function calculation and evaluation module, (4) the
heuristic search module, and (5) the memory-based
random immigrant module. Basically, the system
commences by pre-processing the training data and
encoding the new instances in the form of
chromosomes. The genetic operation module,
memory-based immigrant module and heuristic
search module are then employed to generate new
candidate solutions, which are screened using the

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

614

fitness function module to generate a new
population of best solutions which are then mapped
to memory. The details of the data pre-processing,
immigrant migration and heuristic search modules
are described in the sections below, whilst the
genetic operations module and fitness function
module are discussed in Section 4.

(1) Data preprocess & population initialization
module

The data preprocess task commences by
checking the suitability of the attributes of the new
instances. Any attributes which are completely
different are deleted directly, while for those
attributes which are completely the same, the
characteristic attributes are recorded but the
attributes are deleted. Also, for each attribute, the
value which appears the most frequently is recorded
for further use by the later modules in the IGA
scheme. The chromosome population used in the
initialization process is then randomly generated.

In the present GA, each chromosome represents
a classification rule and has the form of a binary
string comprising a notional n+1 partitions
corresponding to n input attributes and one target
attribute to express the outcome of the classification
rule. Assuming that an attribute can take k different
values, then this attribute requires the use of k+1
binary bits for encoding purposes, i.e. k bits to
represent the k different attribute values and an
addition bit to indicate whether or not this attribute
forms part of the classification rule. When encoding
each attribute, the left-most bit is used to indicate
the usage state of the attribute, and is set to “0” if
the attribute is used within the classification rule,
and to “1” if it is not. Clearly, each attribute can
only take one value at any moment in time, and
thus of the remaining k bits, just one bit has a value
of “1”, while the remainder have a value of “0”.
Note that each classification rule inevitably yields a
classification outcome, and thus the target attribute
has no need for a usage bit to indicate whether or
not the attribute is used. In other words, every bit
within the string associated with the target attribute
corresponds to a potential attribute value.

Consider the case of a training sample with three
input attributes A1, A2 and A3. Furthermore,
assume that these three attributes can take 4, 2 and
5 different values, respectively. Finally, assume that
the target attribute has 3 possible values. Table 1
presents a typical chromosome coding for a
possible classification rule for this sample. This
coding shows that the classification rule is based
upon Attributes 1 and 3 only, and is specified in
terms of their first and third possible values,

respectively. Given these particular attribute
conditions, the classification rule assigns the input
sample to the class represented by the third value of
the Target attribute. In other words, this particular
chromosome expresses the following rule: IF
(A1=value1) AND (A2=Empty) AND (A3=value3),
THEN (Target=value3).

(2) Memory-based immigrant module
In the incremental GA implemented in this study,

the best chromosomes generated by the iterative
solution procedure are automatically saved to
memory to provide the basis for the starting
population used by the GA applied to the following
set of training data. Since the aim of IGA is to react
to incremental changes in the environment, the
memory-based scheme used in the GA is integrated
with a random immigrant module in order to
increase the diversity level of the population pool,
thereby expanding the search space and improving
the optimality of the final solution. In the proposed
approach, an assessment is made of the percentage
change in the environment, and a corresponding
number of new chromosomes are then randomly
generated and used to replace an equivalent number
of chromosomes in the stored population pool. Note
that in the substitution process, the algorithm
automatically replaces the stored member(s) with
the lowest fitness value(s).

(3) Heuristic search module
In searching for the solution to a problem, GAs

iteratively apply some form of local heuristic search
technique to gradually reduce the size of the search
space such that the solution procedure converges to
the globally best outcome. As discussed below, the
present GA applies two different heuristic search
strategies.

In the first strategy, the value which appears
most frequently for each attribute is recorded
during the pre-processing stage and is then replaced
within each chromosome generated by the
crossover operation in the GA solution procedure
by a randomly selected value. If the value of the
fitness function is improved, the randomly selected
value is accepted as the new attribute value; else the
original value is restored. In general, if an IF-
THEN classification rule has too many attributes, it
cannot be intuitively understood by the mining
practitioner. Thus, in the second search strategy,
following the crossover operation, one attribute in
the chromosome string is chosen at random and its
first bit is inspected to determine whether or not it
currently forms part of the classification rule. If the
attribute does indeed form part of the classification
rule, it is automatically discarded, i.e. the first bit is

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

615

changed from “0” to “1”. The fitness of the
resulting chromosome is then re-evaluated. If the
fitness value is found to improve, then the attribute
is discarded from the classification rule, else it is
retained.
3.3. Sequential Implementation of IGA

In the present GA, the data stream is processed
using the fixed window size method presented in
[21]. The window is assumed to have a size W, i.e.
it can hold a total of W training instances. When the
rules classification system is initialized at time t0, a
total of W training samples are accumulated, and
the GA is then employed to establish the best
classification rules based upon this particular set of
training samples. An assumption is made that the
new training instances arrive at a constant rate, and
therefore, each time that a new training instance
arrives, an old training sample is forgotten. As a
result, following a time interval governed by the
value of the arrival rate, the original W training
samples within the window are completely replaced
by a new set of W training examples. At this time,
designated as time t1, the GA is re-executed to
determine the new best classification rules. As
shown in Figure 4, this process is repeated
sequentially at regular time intervals for as long as
an incremental learning capability is required.

Figure 5 presents a simple schematic of the ith
stage of the IGA scheme. As shown, the initial
population of the GA applied at this particular stage
of the learning process comprises a subset of the
best classification rules established in the previous
stage of the solution procedure and an appropriate
number of randomly generated classification rules.
The best classification rules determined in this
stage of the leaning process are saved to memory
and are then used as the basis for the population
used in the following stage of the learning
procedure. As stated above, this procedure
continues sequentially until the specified number of
training stages has been completed or a self-
learning capability is no longer required. The use of
the memory-based random immigrant module in
initializing the population of the GA at the
beginning of each stage ensures that the IGA
scheme is both computationally efficient and robust
to concept drift. In the event that the target concept
remains stable, the best solutions obtained at the
previous stage are simply reused as the initial
population for the following stage, i.e. there is no
need to repopulate the search space each time the
GA is run. However, in the event that concept drift
occurs, the system adapts to this change by
automatically replacing an appropriate number of

the original classification rules with new random
rules and then searches for an updated set of best
rules.

4. GENETIC OPERATORS IN IGA SCHEME

This section describes the core operations within
the GA scheme implemented in this study, namely
the genetic operations and the fitness function
calculation. Figure 6 presents a flowchart showing
the iterative GA solution procedure. As shown, the
procedure commences by retrieving the best
solutions from the previous stage and replacing
certain of these solutions with randomly generated
new chromosomes. Having created the initial
population, crossover, heuristic search, mutation
and selection operations are performed to create a
new population. The fitness functions of the
members of this population are then determined to
establish whether or not they satisfy the target
criteria. If these criteria are satisfied, the GA
terminates and the current population is mapped to
memory. However, if the termination criteria are
not satisfied, the crossover, search, mutation and
selection operations are repeated to generate a new
candidate set of classification rules. This procedure
continues iteratively until the chromosomes within
the population pool meet the target requirements, at
which point the GA terminates.

4.1 Genetic Operations Module

In addition to the heuristic search mechanism
(described in Section 3.2), the Genetic Operations
Module executes three standard GA operations,
namely crossover, mutation and selection. The
details of these operations are described in the
sections below.

(1) Crossover
The GA implemented in the IGA scheme uses a

random two-point crossover operation. Two cutting
points are randomly selected in a pair of
chromosomes, and the bit strings between these two
cutting points are simply exchanged between the
two chromosomes.

(2) Mutation
In the mutation operation performed in the

current GA, a single chromosome within the
population is chosen at random and a bit within this
chromosome is then selected (again at random) and
its value flipped. The probability of the mutation
operation being performed is governed by the
mutation rate parameter. To ensure the
responsiveness of the IGA scheme to changes in the
environment, the mutation rate parameter is
assigned a dynamic rather than static characteristic,
i.e. it is assigned a value of 0.5 initially, but is then

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

616

adjusted adaptively in accordance with changes in
the system environment. The value of the mutation
rate parameter is specified in accordance with Eq.
(1), in which AvgFit denotes the average value of
the fitness functions of all the chromosomes within
the population.

)
2

AvgFit-1(Mut_Rate = (1)

(3) Selection
Having completed the crossover and mutation

operations, the chromosomes are ranked in a
descending order of fitness, and the top 90% of the
chromosomes are selected as members of the new
population pool. The remaining members of the
population pool are then selected at random from
the 10% of chromosomes remaining. In other words,
the selection process is performed using a Rank-
based Roulette Wheel Selection (RRWS) scheme
[22]. This scheme ensures that better members of
the population (i.e. solutions with a higher fitness)
have a greater chance of being selected for
reproduction. Moreover, by randomly selecting
poorer members of the population for inclusion in
the reproduction process, the diversity of the
population pool is maintained. Significantly, the
RRWS scheme is more robust that the conventional
RWS method in converging to a best solution since
it prevents good solutions discovered early on from
dominating the population pool.

4.2. Fitness Function Calculation & Evaluation
Module

In the IGA solution procedure, the relative
quality of each of the chromosomes within the
population is evaluated using the fitness function
presented by Tan [3] .As shown in Eq. (2), this
fitness function comprises two components, namely
a sensitivity term (see Eq. (3)) and a specificity
term (see Eq. (4)).

fntp
tp
+

=ySensitivit
(2)

fptn
tn
+

=ySpecificit
(3)

)()(
fptn

tn
fntp

tpfitness
⋅+

+
⋅+

=
βα

12.0 ≤≤ α , 201 ≤≤ β
(4)

Note that in these equations, tp denotes true
positive, fp denotes false positive, tn denotes true
negative, and fn denotes false negative (see Table 2).
Furthermore, α and β are user-defined parameters
which determine the rate of convergence of the
solution procedure and are determined
experimentally in accordance with the requirements

of the particular application. In general, the value of
the fitness function varies in the range 0~1, with a
higher value indicating a better fit, i.e. a higher
solution quality.

Table 2 summarizes the possible outcomes of a
generic classification rule X⇒Y. As shown, four
possibilities exist, namely:

1. True positive (tp): the actual class is Y and
the predicted class is also Y.

2. False positive (fp): the actual class is Y, but
the predicted class is not Y.

3. True negative (tn): the actual class is not Y
and the predicted class is also not Y.

4. False negative (fn): the actual class is not Y,
but the predicted class is Y.

As discussed earlier in relation to Table 1 in
Section 3.2, the classification rules developed using
the IGA scheme are expressed in the form of simple
IF-THEN statements in order to enhance their
meaningfulness to the mining practitioner. In the
iterative GA-based procedure performed at each
stage of the incremental rule inference process, the
fitness function ensures that the best classification
rules (i.e. those rules which are accurate and clear)
survive, whilst those which are not are discarded.
Having completed the mining procedure,
overlapping set theory is applied to the final
population of classification rules to determine the
particular subset of these rules to present to the end
user.

5. SIMULATION

The performance of IGA was evaluated by
performing a series of classification rules mining
simulations using two standard datasets. The
simulations were performed on a 2.4 GHz Intel
Pentium processor with 256 MB RAM and an 80-
Gbyte HDD running under the Windows XP
Professional operating system. The simulation
program was written using Borland C ++ Builder
6.0 and the datasets were managed using Microsoft
Office Access 2003.

5.1. Simulation Procedure

The simulations were performed using two
different datasets downloaded from the University
of California at Irvine - Machine Learning
Repository (UCI) [23], namely Mushroom and Zoo.
The details of these two datasets are summarized in
Table 3.

In designing the simulations, an assumption was
made that the data within these datasets were
supplied to IGA at a constant rate. In addition, the
rule mining process was assumed to involve a total
of n time intervals, and thus IGA performed n+1

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

617

mining operations. In the initial set of simulations,
conducted using the Mushroom dataset, the
performance of IGA was benchmarked against that
of DNWS [9] in terms of the classification accuracy
and the computational load. In the simulations, the
data within the dataset were divided into 8 data
blocks of equal size to represent the data acquired
by the two schemes in 8 sequential stages,
respectively. In the IGA scheme, the population
size was specified as 20 chromosomes, and
parameters α and β in the fitness function (see Eq.
(2)) were specified as 0.5 and 8, respectively.
Finally, in the DNWS heuristic, parameters α, β and
γ were specified as 5.0, 0.25 and 0.50, respectively.

 In the second set of experiments, performed
using the Zoo dataset, the performance of IGA was
compared against that of a traditional GA-based
classifier in which the classification rules were
inferred on a one-shot basis having acquired all the
training instances within the dataset. As shown in
Table 3, Zoo contains 101 training instances each
of which has 18 attributes and is associated with
one of 7 different classes. Of the 18 attributes, 1
attribute indicates the name of the animal, two are
numeric and the remainder are Boolean variables.
In the IGA simulations, the dataset was partitioned
into four blocks of equal size, the population size
was specified as 20 chromosomes and the fitness
function parameters were specified as α=1 and β=1,
respectively. The simulations evaluated the
performance of the two schemes in terms of the
number of iterations required to obtain a convergent
solution, the average fitness function, the average
classification accuracy, the average support, and the
similarity of the classification rules. The similarity
measure was determined at each stage of the IGA
solution procedure by comparing the best
classification rules inferred by IGA at that stage
with the classification rules obtained by the one-
shot GA classifier based upon the entire contents of
the dataset. The similarity measure was computed
in accordance with the formulation:
Overall similarity ratio= identical ratio+similar ratio (5)

The first term on the right-hand side of Eq. (5)
indicates the percentage of the classification rules
generated by IGA which are identical to the
classification rules generated by the non-
incremental GA classifier. Meanwhile, the second
term indicates the percentage of the classification
rules generated by IGA which are similar to (i.e. a
subset of) a classification rule generated by the
non-incremental GA scheme. For example,
consider the following rules generated by the IGA
scheme and the non-incremental GA scheme,
respectively:

IF hair='1' AND milk='1' Then type='1' (Rule 1)
IF hair='1' AND milk='1' AND backbone='1'
Then type='1' (Rule 2)

In this example, Rule 1 is a subset of Rule 2 and
is said to be similar to Rule 2.
5.2. Simulation Results

(1) Mushroom dataset
Table 4 compares the classification performance

of IGA with that of DNWS [9] when applied to the
Mushroom dataset The results show that the two
schemes achieve an average classification accuracy
of 99% and 100%, respectively. The value of 99%
obtained by IGA is judged to be sufficiently close
to 100% that the discrepancy (1%) can be attributed
to statistical errors.

Figure 7 compares the number of training
instances processed by IGA and the DNWS scheme,
respectively, at each stage in the simulation
procedure. It can be seen that the number of
instances increases linearly over the course of the
DNWS simulation, but remains constant in the IGA
simulation since old instances are simply forgotten
when they pass out of the window. In other words,
the results demonstrate that IGA incurs a low and
constant processing overhead.

(2) Zoo Dataset

Figure 8 illustrates the performance of the non-
incremental GA when applied to the Zoo dataset.
As shown, the GA requires a total of 171
generations to classify the dataset and yields a final
average classification accuracy (AvgAccurate) of
100%, a final average fitness (Fit) of 0.949, and a
final average support (AvgSup) of 38.7%. It can be
seen that the three performance measures have
extremely low values (i.e. very close to zero) for the
first 120 iterations, but increase rapidly thereafter.
Thus, it can be inferred that the non-incremental
GA is relatively inefficient in recognizing the better
chromosomes within the population pool, but
rapidly improves the quality of these solutions once
it has done so.

The simulations results obtained when applying
IGA to the Zoo dataset are summarized in Table 5.
Inspecting the first column in the table, it is evident
that the number of iterations required by IGA at
each step in the simulation procedure is
significantly lower than the 171 iterations required
by the non-incremental GA. The reason for this
improvement is two-fold: (1) IGA only processes a
sub-set of the Zoo dataset at each stage, whereas the
non-incremental GA processes the entire dataset;
and (2) the accuracy of the initialization process in
IGA is at least 56% in Steps 1~3, and thus the

%

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

618

classification rules converge more rapidly.
Furthermore, it can be seen that the initialization
accuracy of IGA increases as the simulation process
proceeds and therefore yields a continuous
reduction in the number of iterations required at
each stage. For example, in Step 1 of the simulation
procedure, the initialization accuracy is 0% (i.e. the
population pool is randomly generated), and thus a
total of 65 iterations are required to obtain a
convergent solution. However, in Step 1, the
initialization accuracy improves to 56.3% since the
population pool inherits some of the best solutions
from the previous step, and thus the number of
iterations required reduces to 55. In the final step of
the solution procedure, the initialization accuracy
has a value of 70% and a convergent solution is
obtained after just 25 iterations. Significantly, even
in Step 0 when IGA is applied to a randomly
generated chromosome pool, its performance is still
far better than that of the non-incremental GA in
terms of the number of iterations required, i.e. the
non-incremental GA requires 171 iterations, while
IGA requires just 65; representing a reduction of
around 62%.

From Table 5, it can be seen that the average
accuracy of the classification results obtained using
IGA at Steps 0, 1, 2 and 3 are 99.7%, 92.2%, 100%
and 100%, respectively. Thus, the results show that
IGA consistently achieves a high level of
classification accuracy when applied sequentially to
non-overlapping subsets of the Zoo dataset. It can
also be seen that the average support values
obtained in Steps 0 ~ 3 are all higher than 36%,
which indicates that the classification rules obtained
at each stage of the solution procedure are highly
reliable.

Table 6 summarizes the similarly ratio data
obtained in Steps 0 ~ 3 of the IGA solution
procedure. Given an assumption that the
classification rules obtained by the IGA scheme at
each stage are equal in number and the data in the
dataset are uniformly distributed, one would expect
the identical ratio at each stage (i.e. the percentage
of rules generated by IGA which are identical to
those generated by the non-incremental GA) to
have a value of 25%. However, the results show
that the identical ratio actually has values of 10%,
30%, 45% and 20%, respectively, in Steps 0 ~ 3 of
the solution procedure. In other words, the training
instances processed in the second stage of the
simulation are more representative of all the
samples in the dataset than those processed in the
remaining stages. This is borne out by an inspection
of Table 5, which shows that the average accuracy
(100%) and average support (40.4%) performance

indicators attain their highest values in Step 2.
Table 6 also shows that the overall similarity ratio
between the classification rules obtained using IGA
and those derived using the non-incremental GA is
consistently higher than 60%, which confirms the
reliability of the IGA approach.

The bottom row in Table 6 presents the similarity
ratio data obtained by comparing all of the
classification rules generated by IGA over the four
steps of the simulation procedure with the rules
derived by the non-incremental GA. As shown, the
identical ratio has a value of 45%. This apparently
low value is to be expected since in separating the
original dataset into four discrete data blocks, some
information available to the non-incremental GA is
hidden from IGA, and thus IGA inevitably infers a
different set of rules. The overall similarity ratio,
however, is seen to be 100%, which suggests that
given an identical set of training instances, IGA and
the non-incremental GA will generate the same
classification rules.

6. CONCLUSIONS

Many real-world datasets contain huge volumes
of data and are compiled and maintained over a
period of months if not years. Due to the typical life
spans of such systems, the concepts responsible for
generating their contents may well change over
time, resulting in a phenomenon known as concept
drift. Traditional classification techniques such as
genetic algorithms (GAs) are ideally suited to the
processing of datasets with stationary distributions,
but yield significant errors when applied to datasets
in which the contents are generated by a series of
different concepts rather than one single concept.
Accordingly, this study has presented an
incremental genetic algorithm (IGA) for
classification rules mining in datasets characterized
by concept drift. In the proposed approach, a fixed-
size window is slid over the training data at a
constant rate, and each time the window is
completely filled with new training data, a GA
integrated with a local heuristic search method is
applied to infer the best classification rules. The
robustness of the classification rules to concept drift
is ensured by utilizing a memory-based random
immigrant mechanism, in which the initial
population utilized by the GA when processing the
training data within a window comprises a mix of
the best solutions obtained from the training data in
the previous window and an appropriate number of
randomly generated chromosomes. IGA is applied
sequentially to the training data for as long as an
incremental learning function is required.

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

619

The performance of IGA has been benchmarked
against that of DNWS [9] and a traditional non-
incremental GA classifier using the Mushroom and
Zoo datasets, respectively. The results obtained for
the Mushroom dataset have shown that IGA has a
virtually identical classification performance to the
DNWS scheme, but incurs a significantly lower
computational overhead due to its policy of
forgetting old examples when they drop out of the
window. Meanwhile, the results obtained for the
Zoo dataset have shown that the number of
iterations required by IGA to obtain a convergent
solution reduces as the cumulative number of
processed windows increases. For example, when
processing the training instances in the first window,
IGA requires 65 iterations to obtain convergence,
whereas when processing the data within the fourth
window, it requires just 25. By contrast, the non-
incremental GA requires a total of 171 iterations to
infer the best classification rules, i.e. the rules
which yield a classification accuracy of 100%. The
minimum classification accuracy of IGA is 92%,
while the mean classification performance is 98%.
Therefore, IGA is more computationally efficient
than the non-incremental GA, but achieves a
virtually identical classification performance.
Finally, the average support values obtained at each
stage of the IGA incremental mining process
exceed 36% in every case, and thus the reliability of
the classification rules is confirmed.

Overall, the experimental results confirm the
feasibility and efficiency of IGA for classification
rules mining in the presence of concept drift. In
future studies, the current authors will investigate a
number of potential enhancements to the IGA
scheme. Firstly, in the current version of IGA, the
initial chromosome population (i.e. that used during
the very first stage of the solution procedure at t=0)
is generated randomly. Therefore, future studies
will aim to develop heuristic techniques for
generating a fitter starting population based on the
particular characteristics of the target dataset, the
unique features of the data within the dataset, and
so forth. In this way, it is anticipated that the
number of iterations required to derive the best
solutions will be reduced, and their quality
improved. Secondly, the simulations in this study
have considered only the Mushroom and Zoo
datasets. Accordingly, in future studies, the
feasibility and versatility of IGA will be more
rigorously examined through its application to a
wide range of datasets containing different types of
data. Thirdly, in its present form, IGA features a
single GA, which works alone to solve the
classification rules mining problem. However, in a

future study, an attempt will be made to implement
IGA in a parallel environment, i.e. by using
multiple collaborative agents (classifiers), which
exchange information with one another, migrate
best solutions amongst one another, and so forth,
such that IGA can be applied to the solution of
more complex problems in a rapid and efficient
manner. Finally, in the present study, an
assumption has been made that new training
instances arrive at a constant rate, i.e. the concept
drift has a stable characteristic. Thus, a future study
will investigate the feasibility of adapting IGA to
the classification rules mining of datasets
characterized by unpredictable changes in concept.

7. REFRENCES
[1] E. Noda, A.A. Feritas, and H.S. Lopes,

“Discovering interesting rules with a genetic
algorithm. Evolutionary Computation”,
Proceedings of the 1999 Congress on
(CEC99), Vol. 2, 1999, pp. 1322-1329.

[2] B. Liu, H.A. Abbas, and B. McKay,
“Classification Rule Discovery with Ant
Colony Optimization”, IEEE/WIC
International Conference, 2003, pp. 83-88.

[3] K.C. Tan, A. Tay, T.H. Lee, and C.M. Heng,
“Mining multiple comprehensible
classification rules using genetic
programming”, Evolutionary Computation,
Proceedings of the 2002 Congress on, Vol.
2, 2002, pp. 1302-1307.

[4] M. Aissiou and M. Guerti, “Genetic
Algorithms Application for the Automatic
Recognition of the Arabic Stop Sounds”,
Journal of Applied Sciences Research, Vol. 3,
No.5, 2007, pp. 358-366.

[5] L. Araujo and J.J. Merelo, “A Genetic
Algorithm for Dynamic Modelling and
Prediction of Activity in Document Streams”,
Genetic and Evolutionary Computation
Conference, Proceedings of the 9th Annual
Conference on Genetic and Evolutionary
Computation, London, England, United
Kingdom, 2007, pp. 1896 - 1903.

[6] H. Wang, W. Fan, P.S. Yu, and J. Han,
“Mining concept-drifting data streams using
ensemble classifiers”, Proceedings of 9th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining,
Washington DC, 2003, pp. 226-235.

[7] M. Zhang, B. Kao, D. Cheung, and C.L. Yip,
“Efficient algorithms for incremental updates
of frequent sequences”, Proceedings of
Pacific-Asia Conf. On Knowledge Discovery
and Data Mining (PAKDD’02), 2002, pp.
186-197.

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

620

[8] L. Yang, D.H. Widyantoro, T. Ioerger, and J.
Yen, “An entropy-based adaptive genetic
algorithm for learning classification rules”,
Evolutionary Computation, Proceedings of
the 2001 Congress on, vol. 2, 2001, pp. 790-
796.

[9] R. Klinkenberg and I. Renz, “Adaptive
Information Filtering: Learning in The
Presence of Concept Drifts”, In Sahami, M.,
Craven, M., Joachims, T., McCallum, A.
editors, Workshop Notes of the ICML-98
Workshop on Learning for Text
Categorization, Menlo Park, CA., AAAI
Press, 1998, pp. 33–40.

[10] M. Maloof, “Incremental Rule Learning with
Partial Instance Memory for Changing
Concepts”, Proceedings of the International
Joint Conference on Neural Networks, Los
Alamitos, CA: IEEE Press, 2003.

[11] P. Domingos and G. Hulten, “Mining high-
speed data streams”, Proceedings of 6th ACM
SIGKDD International Conference on
Knowledge Discovery and Data Mining,
KDD’00, Boston, MA, 2000, pp. 71-80.

[12] G. Hulten, L. Spencer, and P. Domingos,
“Mining time-changing data streams”,
Proceedings of 7th ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining, KDD’01, San
Francisco, CA, 2001, pp. 97-106.

[13] G. Widmer and M. Kubat, “Learning in The
Presence of Concept Drift and Hidden
Contexts”, Machine Learning, vol. 23, no. 1,
1996, pp. 69-101.

[14] G.H. Xie, “An efficient approach for mining
concept-drifting data stream”, Master Thesis
of Information Education in National
University of Tainan, 2004.

[15] S. Yang, “Memory-Based Immigrants for
Genetic Algorithms in Dynamic
Environments”, Proceedings of the 2005
conference on Genetic and evolutionary

computation, GECCO’05, Washington, DC,
USA, 2005, pp. 1115-1122.

[16] S.U. Guan and F. ZhuCollard, “An
incremental approach to genetic-algorithms-
based classification. Systems”, Man and
Cybernetics, Part B, IEEE Transactions, vol.
35, no. 2, 2005, pp. 227 – 239.

[17] J. Han and M. Kamber, “Data Mining
Concepts and Techniques”, Morgan
Kaufmann Publishers (2007).

[18] F. Vavak and T.C. Fogarty, “A comparative
study of steady state and generational genetic
algorithms for use in nonstationary
environments” In T. C. Fogarty, editor, AISB
Workshop on Evolutionary Computing,
LNCS, vol. 1143, Springer, 1996, pp. 297–
304.

[19] J. Branke, “Memory enhanced evolutionary
algorithms for changing optimization
problems”, Proceedings of the 1999 Congress
on Evolutionary Computation, vol. 3, 1999,
pp. 1875–1882.

[20] J. Branke, T. Kausler, C. Schmidth, and H.
Schmeck, “A multi-population approach to
dynamic optimization problems”,
Proceedings of the Adaptive Computing in
Design and Manufacturing, 2000, pp. 299–
308.

[21] G. Chen, X. Wu, and X. Zhu, “Mining
sequential patterns across data streams”,
Computer Science Technical Report CS-05-
04, University of Vermont, 2005.

[22] A.J. Omar, R. Lakishmi, and C.R. Rao,
“Improved Selection Operator for GA”,
Journal of Theoretical and Applied
Information Technology, 2008, pp.269-277.

[23] http://www.ics.uci.edu/~mlearn/MLRepositor
y.html

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

621

Figure 3. System architecture.

Figure 4: Time-series based GA learning process.

S0 arrived
during [t0, t1]

S1 arrived
during [t1, t2]

S2 arrived
during [t2, t3]

Figure. 1: Concept drifting phenomenon [6].

Figure 2: Definitions of D, D’, Δ-, D- and Δ+ [7].

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

622

Figure 5: i-th stage in IGA scheme.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0 1 2 3 4 5 6 7 8

Simulation steps

IGA
DNWS

Trainning R
ecord

Figure 7: Number of training instances processed by IGA and DNWS at each stage o f

simulation procedure.

Figure 6: Iterative GA solution procedure.

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

623

Table 6: Similarity ratio data obtained when classifying Zoo dataset with IGA

Simulat
ion

Identical
 Ratio

Simil
ar

Overall
Similarity

0 10% 65% 75%
1 30% 50% 80%
2 45% 25% 65%
3 20% 40% 60%

Total 45% 55% 100%

Table 5: Simulation results obtained when classifying Zoo using IGA.

Simulation
Step

Evolution
Generation

Fitness
Function

Accuracy of
Initialization Accuracy Support

0 65 0.958 0% 99.7% 37.6 %
1 55 0.881 56.3% 92.2% 37.7 %
2 34 1 65 % 100 % 40.4 %
3 25 0.902 70 % 100 % 36.4 %

Table 4: Average classification performance of IGA
and DNWS for Mushroom dataset.

Simulation IGA DNWS
1 100% 100%
2 95% 100%
3 100% 100%
4 100% 100%
5 95% 100%
6 100% 100%
7 100% 100%
8 100% 100%

Average 99% 100%

Table 2: Prediction cases of classification rules.

 Predicted
Yes N

Actual Class Yes tp fp
No fn tn

Table 3: Summary of test data set.

Data Set Records No. Of
Attributes

Values Of
Target Attribute

Mushroom 8124 22 2
Zoo 101 18 7

Table 1: Chromosome Coding.

A1 A2 A3 Target
01000 100 000100 001

Figure 8: Simulation results obtained when classifying Zoo using non-incremental GA

