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ABSTRACT 
 

Traditional classification algorithms are ideally suited to the processing of small datasets with a stationary 
distribution, and therefore yield significant errors when applied to real-world datasets subject to concept 
drift. In the current study, this problem is resolved using an incremental genetic algorithm (IGA). An 
assumption is made that new training data are generated at a steady rate and pass through a fixed-size 
window. In the initialization process, training samples are accumulated until the window is full, and a 
genetic algorithm (GA) is then applied to determine the set of classification rules. As new training samples 
arrive in the window, old instances are forgotten. Once all the original samples have been replaced by new 
samples, the GA is re-executed to determine the new set of best classification rules. This procedure is 
repeated sequentially for as long as a learning function is required. To account for concept drift, the GA 
utilizes a memory-based random immigrant module, in which the initial population pool of the GA applied 
at each stage of the incremental learning process comprises a mix of best solutions obtained in the previous 
stage and an appropriate number of random immigrants. The feasibility of the proposed approach is 
confirmed by performing a series of classification rules mining simulations using two standard datasets, 
namely Mushroom and Zoo. The results demonstrate that IGA achieves a comparable classification 
performance to that obtained using existing incremental and non-incremental methods, but incurs a 
significantly lower computational overhead. 
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1. INTRODUCTION  
 

The term “data mining” describes the process of 
analyzing large volumes of data from different 
perspectives in order to discover knowledge which 
is highly accurate, comprehensible, and 
“interesting” (i.e. surprising or novel) [1]. The 
objective of classification rules mining is to search 
a dataset for a small number of rules to serve as 
classifiers for predicting the class of any new 
instance. Given the huge volumes of data stored in 
modern databases, the data mining and 
classification rules mining tasks are invariably 
performed using some form of automated approach, 
such as statistical-based algorithms, machine-
learning schemes, neural networks, and so forth. 

For example, Liu [2] demonstrated the use of an 
enhanced ant colony optimization algorithm in 
performing classification rules discovery for two 
standard problems. Tan [3] argued that all 
classification algorithms should be characterized by 
a high degree of accuracy, simplicity and efficiency. 
However, traditional algorithms are generally based 
on the assumption that the input data are drawn 
randomly from a stationary distribution, i.e. they 
are all generated by the same concept. Therefore, 
such schemes perform poorly when used to infer 
classification rules for large real-world datasets 
with a time-varying characteristic [4][5]. Such 
datasets are liable to a concept-drifting effect [6], 
i.e. the properties of the target concept change over 
time as a result of changes in the underlying context, 
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and thus the classification rules become “out of 
date”. For example, consider the case shown in 
Figure 1 in which the black circles represent 
‘positive instances’, the white circles denote 
‘negative instances’, and the objective is to locate 
the position of the optimum boundary between 
them. The three images illustrate the time-varying 
distributions of the positive and negative instances 
and clearly show that the position of the boundary 
must be dynamically adjusted in accordance with 
changes in the dataset distribution in order to 
maintain its optimality. 

Zhang [7] argued that since snapshots of 
dynamic datasets whose contents vary over time are 
almost certain to overlap to a greater or lesser 
extent, a certain degree of commonality inevitably 
exists in the mining results obtained at different 
moments in times. For example, as shown in Figure 
2, the mining results obtained at moment D’ differ 
from those obtained at the previous moment (D) via 
the addition of Δ+ and the loss of Δ-, but have the 
contents D’ in common. Therefore, in attempting to 
infer suitable classification rules for such databases, 
it is necessary to apply some form of adaptive 
scheme capable of detecting and reacting to the 
changes which take place in the database over time.  

In the present study, the problem of classification 
rules mining in the presence of concept drift is 
solved using an IGA. The GA is a particular form 
of evolutionary scheme designed to derive exact or 
approximate solutions to search or optimization 
problems. In the GA procedure, candidate solutions 
are represented as chromosomes, typically in the 
form of a binary data string, and the chromosome 
population is processed iteratively using 
biologically-inspired selection, crossover and 
mutation operations. The overall objective of these 
operations is to ensure the “survival of the fittest” 
such that the optimality of the chromosomes is 
progressively improved from one generation (i.e. 
iteration) to the next. GAs are widely applied in a 
diverse range of fields, including computer science, 
economics, manufacturing, physics, and so forth, 
and represent an ideal solution for the learning of 
classification rules [8]. In the IGA scheme proposed 
in this study, an assumption is made that new 
training instances become available at a constant 
rate and pass through a static window capable of 
storing W training samples. During the initialization 
phase, training instances are accumulated within 
this window until it become full and a GA with a 
randomly created chromosome population and a 
local heuristic search scheme is then activated to 
determine the best classification rules. These 

classification rules (i.e. chromosomes) are then 
mapped to memory. Since the window has a fixed 
size and the samples arrive at a constant rate, each 
time a new sample enters the window, an old 
sample is dropped from the window. After a certain 
elapsed time (the length of which depends on the 
arrival rate of the training instances), all of the old 
samples within the window are forgotten and are 
replaced by new samples. At this point, the GA is 
re-executed to determine the new best set of 
classification rules. To enable the GA to react to 
concept drift, the initial population is generated 
using a memory-based random immigrant scheme. 
That is, the population comprises a mixture of the 
best of the solutions obtained using the data within 
the previous window and an appropriate number of 
randomly generated new chromosomes. The 
number of new chromosomes is determined in 
accordance with the extent of the concept drift. 
Having created the population pool, conventional 
crossover, mutation and selection operations are 
performed iteratively until a new best set of 
solutions has been obtained. These solutions are 
then mapped to memory in place of those 
determined in the previous stage. This sequential 
process continues for as long as an incremental 
rules learning function is required. The performance 
of the IGA algorithm is benchmarked against that 
of the incremental decision tree algorithm presented 
in [9] and a conventional non-incremental GA 
classifier using the standard Mushroom and Zoo 
datasets for illustration purposes. 

The remainder of this paper is organized as 
follows. Section 2 reviews the related literature in 
the data mining and incremental rules inference 
field, while Section 3 formulates the classification 
problem considered in this study, describes the 
basic architecture of the IGA system, and discusses 
the sequential operation of IGA. Section 4 
introduces the major genetic operations performed 
in executing the IGA scheme and describes the 
fitness function applied to evaluate the quality of 
the emerging solutions. Section 5 presents the 
performance evaluation results. Finally, Section 6 
presents some brief concluding remarks and 
indicates the intended direction of future research. 

2. RELATED WORK 

This section reviews some of the major 
classification schemes and techniques, namely 
incremental decision tree algorithms [9][10][11] 
[12][13][14], incremental GAs [15], and GA-based 
multiagent environments [16]. 

2.1.  Incremental Decision Tree Algorithms 
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Decision trees are commonly used in data mining 
and machine learning applications to map 
observations about a particular item of interest to 
conclusions regarding its value in order to support a 
decision making process. Broadly speaking, 
decision tree algorithms can be classified as either 
non-incremental or incremental. In the former case, 
the algorithm is essentially a one-shot process in 
which the underlying concept of the data within the 
database is inferred just once in accordance with all 
the training instances available at that time. 
However, this method is clearly unsuitable for the 
classification of dynamic datasets whose contents 
and structures vary over time. Thus, various 
researchers have developed incremental decision 
tree algorithms for the classification of datasets in 
which new instances arrive sequentially in time 
[9][10][11][12][13][14]. The underlying principle 
of these algorithms is to map new arrivals to the 
existing tree structure wherever the attributes of this 
arrival make this possible, or to modify the relevant 
sub-tree within the decision tree if a direct mapping 
cannot be achieved. Thus, incremental decision tree 
algorithms avoid the requirement to reconstruct the 
tree from scratch each time a new instance arrives 
and are therefore ideally suited to the classification 
of dynamic datasets. As described in the following 
sections, incremental decision tree algorithms use 
either a fixed window size method or an adaptive 
window size method[9].  

Fixed window size methods 
As implied by their name, fixed window size 

methods infer the classifiers of the decision tree in 
accordance with the training data contained within 
a window of a fixed size, i.e. as new data instances 
enter the window, an equivalent number of the 
oldest examples within the window are 
automatically forgotten and excluded from the 
inference process. In practice, defining an 
appropriate window size involves obtaining an 
acceptable compromise between a more rapid 
adaptability to environmental change afforded by a 
small window and a more stable performance 
(given negligible concept drift) achieved using a 
larger window. Typical examples of fixed window 
size methods include the VFDT (Very Fast 
Decision Tree Learner) scheme [11][17] and the 
CVFDT (Concept-adapting Very Fast Decision 
Tree Learner) scheme [12][17]. In developing the 
VFDT scheme, Domingos [11] contended that the 
best attribute to test at any given node within the 
decision tree could be determined on the basis of a 
small number of training examples passing through 
that node, i.e. it was unnecessary to consider the 
entire training set. The problem of determining an 

appropriate number of instances for testing 
purposes at each node was evaluated statistically 
using a Hoeffding bound method designed to 
ensure that the attribute chosen for a node on the 
basis of a small number of samples was identical to 
that which would otherwise be chosen if the entire 
training set was considered. This was achieved by 
accumulating data instances from the training 
stream until the Hoeffding bound reduced to a 
value less than the difference between the observed 
values of the two attributes with the highest and 
second highest heuristic values, respectively.  

In common with most traditional clustering and 
mining algorithms, VFDT assumes that the training 
samples used to infer the underlying structure of the 
dataset are drawn at random from a stationary 
distribution. In practice, however, the contents and 
structure of modern datasets invariably vary over 
time, and thus this assumption does not hold. 
Accordingly, in a later study [12], Domingos 
developed the CVFDT scheme in which the original 
VFDT method was extended by sliding a fixed-size 
window over the training dataset. Rather than 
reconstructing a new decision tree each time a new 
sample arrived, CVFDT simply updated the 
statistics associated with each node within the 
existing tree by incrementing the counts 
corresponding to the new sample and decrementing 
those relating to the oldest. In dynamic datasets, 
this updating procedure has the effect that some of 
the splits in the decision tree which previously 
satisfied the Hoeffding bound now fail to do so, and 
thus the CVFDT scheme constructs an alternative 
sub-tree using the new best attribute as the root. 
When the classification accuracy of this sub-tree is 
determined to be more accurate than that of the 
original sub-tree, the original sub-tree is pruned 
from the tree and its place is taken by the new sub-
tree. As a result, CVFDT not only avoids the 
requirement to rebuild the entire decision tree each 
time a context change is detected, but also 
maintains a high level of classification accuracy.  

Adaptive window size methods 
The basic concept of adaptive window size 

strategies is to scale the size of the window 
dynamically in response to changes in the perceived 
level of concept drift within the dataset. 
Specifically, the window size is decreased in the 
event of concept drift, but is increased (or 
maintained) in the event of a stable concept. Two of 
the most well known adaptive window size methods 
are the WAH (Window-Adjustment-Heuristic) used 
in the FLORA family of algorithms developed by 
Wider [13] and the DNWS (Determine New 
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Window Size) heuristic developed by Klinkenberg 
[9].  

WAH was first proposed as a means of 
combining robustness to noise with a sensitivity to 
concept drift in rough set analysis applications, but 
was later applied by Maloof [10] to create an 
effective rules learner for datasets characterized by 
changing concepts. In WAH, concept changes are 
detected by monitoring the system’s predictive 
performance over time and analyzing the syntactic 
properties of the evolving hypotheses [13]. In the 
event that concept drift is discerned, WAH 
automatically responds by reducing the window 
size by 20%. However, if the concept is deemed to 
be extremely stable, WAH adds one new example 
to the window and deletes two old examples, 
thereby reducing the window size by 1 unit. If the 
concept appears to be sufficiently stable, the 
window size is neither increased nor decreased, but 
remains unchanged. Finally, in the event that none 
of these concept stability conditions apply, WAH 
assumes that more information is required and 
increases the window size by 1 unit by accepting a 
new sample into the window whilst simultaneously 
retaining the oldest sample.  

Although WAH solves the problem of concept-
drift inherent in real-world datasets, it is 
computationally intensive, and is therefore only 
really practical for the classification of small 
datasets. Accordingly, Klinkenberg [9] developed 
an adaptive window size adjustment heuristic 
(designated for convenience hereafter as DNWS) in 
which a filtering process was applied to determine 
the extent of the concept change and to adjust the 
window size accordingly. In DNWS, concept 
change is detected by monitoring the performance 
of a classifier in terms of its accuracy, recall and 
precision. For each of these three indicators, the 
average value and standard sample error are 
computed on the basis of M batches at the last time 
step and are then compared to a specified 
confidence interval. In the event that the value of 
one of the indicators falls below this confidence 
interval, an assumption is made that the concept has 
changed, and a further test is performed to 
determine the extent of this change, i.e. a small and 
gradual change (indicating concept drift) or a large 
and sudden change (indicating concept shift). If the 
test reveals the occurrence of concept shift, the 
window is immediately reduced to its smallest size. 
By contrast, in the event of concept drift, the 
window is reduced more gradually at a user-
specified rate. If the indicator values reveal that the 
existing concept is relatively stable, the window 
size remains unchanged and all the current 

examples are stored for future reference in order to 
improve the performance of the classifier.  

2.2.  Incremental Genetic Algorithms 

GAs are used in a diverse range of fields to solve 
a variety of search and optimization problems. 
Whilst GAs were originally intended for the 
analysis of static datasets, in more recent years they 
have also been applied to the problem of classifying 
large, time-varying datasets. However, traditional 
GAs often fail to converge properly when applied 
to dynamic datasets since they lack a suitable 
mechanism with which to respond to changes in 
their environment [9]. Thus, a new class of GA 
known as Incremental GAs has emerged in recent 
years [15]. As described in the sections below, 
these algorithms typically use random immigrant 
models [18], memory-based schemes [19] or multi-
population methods [20] to enable their application 
to search and optimization problems characterized 
by changing fitness landscapes. 

Random immigrant schemes 
In GA schemes of this type, the problem of a 

dynamically changing dataset is resolved by 
replacing an individual (or individuals) within the 
population by a randomly generated individual (or 
individuals) in each evolutionary generation (i.e. in 
each iteration of the algorithm). In general, one of 
two different strategies may be applied in selecting 
the existing individual(s) for substitution, namely a 
purely random approach or a selective procedure in 
which the individual(s) with the poorest fit(s) 
amongst all the solutions within the population pool 
is(are) replaced. In introducing random immigrants 
into the population pool, the aim is to increase the 
level of diversity within the population, thereby 
expanding the search space and enhancing the 
likelihood of the GA converging to the global 
optimal solution rather than becoming trapped at a 
local sub-optimal solution.  

Memory-enhanced schemes 
In memory-enhanced schemes, previous optimal 

solutions are retained in memory and are 
reactivated as appropriate in response to changes in 
the environment. Such schemes are particularly 
well suited to dynamic datasets with a periodic 
characteristic. However, they perform less well 
when applied to problems with a rapidly changing 
fitness landscape since the probability of previous 
solutions being exactly applicable to the new 
landscape is inevitably reduced. Furthermore, 
significant memory resources are required to store 
the chromosome information, and thus appropriate 
strategies must be devised to partially replace the 
contents of the memory when it becomes full.  
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Memory-based immigrant schemes 
Memory-based immigrant schemes combine the 

respective advantages of memory schemes and 
random immigrant schemes by storing the best 
chromosomes in memory for future reuse and then 
retrieving these chromosomes and using them to 
create random immigrants to replace the worst 
individuals in the population.  

Multi-population schemes 
Traditional GAs operate upon a single population 

of candidate solutions and have a proven ability to 
solve a wide variety of search and optimization 
problems. However, even better results can be 
achieved by partitioning the search space into 
multiple sub-populations and then solving the 
problem using a multi-population GA (MGA). In 
an MGA, each sub-population is allowed to evolve 
independently for a specified number of 
generations, and then one or more individuals are 
migrated between the sub-populations before 
allowing the solution procedure to continue. MGAs 
tend to be both quicker and more accurate than 
conventional single-population GAs. However, 
their performance is critically dependent upon an 
appropriate choice of parameter settings, namely, 
the migration method, the migration interval, the 
migration rate, the number of sub-populations, and 
so on.  

2.3.  Incremental Approach to GA-based 
Classification  

Reviewing the literature, it is found that the 
problem of incremental learning in the presence of 
concept drift is generally addressed using statistical 
type algorithms or neural networks rather than GAs. 
To address this perceived gap in the literature, 
Guan [16] developed a GA-based incremental 
learning scheme for classification purposes. The 
authors argued that classification problems may 
involve three different types of change, namely (1) 
the arrival of new data, allowing the existing 
solutions to be further improved; (2) the detection 
of new attributes, allowing new classification 
behaviors to be identified; and (3) the detection of 
new classes, allowing the classification structure to 
be improved.  

Whilst the authors conceded that these changes 
could be handled simply by rerunning a GA to 
rebuild the classification rules from scratch, they 
suggested that an incremental type approach was 
better suited to satisfying the time and resource 
constraints imposed in typical real-world 
applications. Accordingly, they proposed the 
multiagent environment, in which multiple 
classifier agents, each of which was based on a GA, 

collaborated with one another by monitoring 
incremental changes in the environment and then 
exchanging information regarding newly-detected 
training data, attributes and classes, and so on, such 
that the system collectively converged toward the 
optimal set of classification rules. In responding to 
changes in the environment, the GAs were designed 
to insert new elements into an old solution (i.e. an 
existing chromosome / rule) in order to form a new 
rule. Four specific methods were considered for 
integrating the old and new elements, namely (1) 
choosing the best of the old chromosomes and then 
adding randomly created new elements; (2) 
choosing the best of the old chromosomes and then 
adding elements provided by other classifier agents; 
(3) adding randomly-created elements to all of the 
old chromosomes, and (4) adding new elements 
provided by other classifier agents to all of the old 
chromosomes.  

The experimental results confirmed the ability of 
the proposed scheme to amend the rule set by 
integrating the new input attributes with the existing 
input space rather than rebuilding the rules from 
scratch. Furthermore, it was shown that the scheme 
improved both the learning time and the quality of 
the classification performance compared to that 
achieved by retraining the GA each time a change 
occurred in the dataset.   

3. INCREMENTAL GENETIC ALGORITHM FOR 
CLASSIFICATION RULES MINING 

Since in real-world datasets the level of concept-
drift may well vary over time, incremental decision 
tree methods based upon the use of a fixed window 
size heuristic are liable to generate significant errors 
when used for rules inference purposes. 
Furthermore, while the problem of concept drift can 
be resolved to a certain extent by integrating the 
classification system with some form of adaptive 
window scaling method, the performance of such 
schemes is critically dependent upon the choice of 
parameters assigned to the scaling heuristic, and in 
practice, these parameter values are not intuitively 
obvious to general data mining practitioners. The 
multiagent approach proposed by Guan [16] has the 
proven ability to accomplish classification rules 
mining in the presence of concept drift. However, 
the implementation of multiple GA-based 
classifiers is somewhat complicated and expensive 
for practical applications.  

Nonetheless, the results presented in [16] 
confirm the ability of GAs to adapt dynamically to 
incremental changes of various types in the dataset 
(i.e. data, attribute or class changes) and to evolve a 
new best rule set for classification purposes without 
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the need to rebuild the entire rule set from scratch. 
Therefore, as described in Section 1, the current 
study proposes a scheme designated as IGA 
featuring a memory-based random immigrant GA 
and a local heuristic search method for 
classification rules mining in the presence of 
concept drift. The remainder of this section is 
organized as follows: Section 3.1 formulates the 
classification problem considered in this study, 
Section 3.2 describes the basic architecture of the 
IGA system, and Section 3.3 discusses the 
sequential operation of IGA. 
3.1.  Problem Definition 

An assumption is made that all the samples are 
tuples of the dataset. Let S be the universal set of all 
the samples. Furthermore, let each sample be 
denoted by X=(x1,x2,…,xn), ∀X∈S, where n is the 
total number of attributes associated with the 
sample X and xi is the ith attribute in sample X. In 
addition, let D=(X1,X2,…,Xk), where k is a positive 
integer such that D⊆S is a set of k samples. Given 
an assumption that the target attribute has m 
possible values, the set of target attribute values is 
given by C=(c1,c2,…,cm), where mi ≤≤1 , and ci is 
the value of the ith target attribute. 

The classification function f is defined as f: D→ 
C, thus f(D)=(λ1, λ2,…, λk). 

where λi denotes the target attribute value of 
sample Xi in set D. 

In other words, classifier f assigns a target 
attribute value λi for each sample Xi within set D. 
Having executed the classifier, the result λi∈C 
indicates that the sample has been successfully 
classified; else Xi cannot be successfully classified 
by f.  

As described above, ITGA assumes that new 
data instances are generated at a constant rate. The 
data accumulated at time reference t form a dataset 
designated as St, and are used by the GA to infer the 
corresponding best classification rules function ft(X). 
Similarly, at time point t+1, the data accumulated 
in the interval since time t are assigned to a new 
dataset St+1 and the GA searches this dataset 
iteratively for a new best rule set, i.e. ft+1(X), taking 
ft(X), suitably modified by the random immigrant 
module, as the initial population pool. 

3.2.  Basic Architecture of IGA Scheme 

According to Darwin’s theory of evolution, 
biological species are geared toward the “survival 
of the fittest”. That is, a process of natural selection 
ensures that advantageous genetic mutations are 
accumulated and passed down through the 

generations such that the superior members of the 
population survive, whilst the inferior members 
gradually die out. According to Darwin, individuals 
with an adaptive characteristic are more likely to be 
selected for reproduction, and thus over a long 
period of time, a population becomes well adapted 
to a stable environment or adjusts itself in 
accordance with changes in the environment, 
possibly by breeding with outsiders, such that its 
long term survival can be assured, albeit possibly in 
a different form.  

In GAs, the solution procedure is analogous to 
that of natural evolution in the sense that the 
potential solutions to the problem of interest are 
encoded as chromosomes which are then iteratively 
processed using selection, crossover, mutation and 
evaluation operations such that best solutions 
gradually emerge. In the incremental GA 
implemented in the current study, the quality of the 
final solutions is improved by utilizing the memory-
based immigrant scheme presented in [12]. In other 
words, the best chromosomes obtained in one 
execution of the GA (e.g. at time t) are saved to 
memory and are used as the basis for the starting 
population of the GA executed at time t+1. 
Depending on the extent of the change which takes 
place in the environment in the interval between 
time t and time t+1, an appropriate number of new 
chromosomes are randomly generated and used to 
replace the chromosome(s) with the poorest fit in 
the stored population pool. For example, consider 
the case where the stored population contains 10 
chromosomes and the environment changes by 30% 
(i.e. the training samples change by 30%) Under 
these conditions, 3 new chromosomes are randomly 
generated and used in place of the 3 chromosomes 
with the poorest fit in the stored population. Having 
created the new population, the selection, crossover, 
mutation and evaluation operations are then 
performed once again attain to generate a new 
population of best chromosomes.  

Figure 3 illustrates the basic architecture of the 
IGA scheme. As shown, the system comprises a 
total of five different modules, namely (1) the data 
pre-processing & population initialization module, 
(2) the genetic operations module, (3) the fitness 
function calculation and evaluation module, (4) the 
heuristic search module, and (5) the memory-based 
random immigrant module. Basically, the system 
commences by pre-processing the training data and 
encoding the new instances in the form of 
chromosomes. The genetic operation module, 
memory-based immigrant module and heuristic 
search module are then employed to generate new 
candidate solutions, which are screened using the 
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fitness function module to generate a new 
population of best solutions which are then mapped 
to memory. The details of the data pre-processing, 
immigrant migration and heuristic search modules 
are described in the sections below, whilst the 
genetic operations module and fitness function 
module are discussed in Section 4.  

(1) Data preprocess & population initialization 
module 

The data preprocess task commences by 
checking the suitability of the attributes of the new 
instances. Any attributes which are completely 
different are deleted directly, while for those 
attributes which are completely the same, the 
characteristic attributes are recorded but the 
attributes are deleted. Also, for each attribute, the 
value which appears the most frequently is recorded 
for further use by the later modules in the IGA 
scheme. The chromosome population used in the 
initialization process is then randomly generated.   

In the present GA, each chromosome represents 
a classification rule and has the form of a binary 
string comprising a notional n+1 partitions 
corresponding to n input attributes and one target 
attribute to express the outcome of the classification 
rule. Assuming that an attribute can take k different 
values, then this attribute requires the use of k+1 
binary bits for encoding purposes, i.e. k bits to 
represent the k different attribute values and an 
addition bit to indicate whether or not this attribute 
forms part of the classification rule. When encoding 
each attribute, the left-most bit is used to indicate 
the usage state of the attribute, and is set to “0” if 
the attribute is used within the classification rule, 
and to “1” if it is not. Clearly, each attribute can 
only take one value at any moment in time, and 
thus of the remaining k bits, just one bit has a value 
of “1”, while the remainder have a value of “0”. 
Note that each classification rule inevitably yields a 
classification outcome, and thus the target attribute 
has no need for a usage bit to indicate whether or 
not the attribute is used. In other words, every bit 
within the string associated with the target attribute 
corresponds to a potential attribute value.   

Consider the case of a training sample with three 
input attributes A1, A2 and A3. Furthermore, 
assume that these three attributes can take 4, 2 and 
5 different values, respectively. Finally, assume that 
the target attribute has 3 possible values. Table 1 
presents a typical chromosome coding for a 
possible classification rule for this sample. This 
coding shows that the classification rule is based 
upon Attributes 1 and 3 only, and is specified in 
terms of their first and third possible values, 

respectively. Given these particular attribute 
conditions, the classification rule assigns the input 
sample to the class represented by the third value of 
the Target attribute. In other words, this particular 
chromosome expresses the following rule: IF 
(A1=value1) AND (A2=Empty) AND (A3=value3), 
THEN (Target=value3).  

(2) Memory-based immigrant module 
In the incremental GA implemented in this study, 

the best chromosomes generated by the iterative 
solution procedure are automatically saved to 
memory to provide the basis for the starting 
population used by the GA applied to the following 
set of training data. Since the aim of IGA is to react 
to incremental changes in the environment, the 
memory-based scheme used in the GA is integrated 
with a random immigrant module in order to 
increase the diversity level of the population pool, 
thereby expanding the search space and improving 
the optimality of the final solution. In the proposed 
approach, an assessment is made of the percentage 
change in the environment, and a corresponding 
number of new chromosomes are then randomly 
generated and used to replace an equivalent number 
of chromosomes in the stored population pool. Note 
that in the substitution process, the algorithm 
automatically replaces the stored member(s) with 
the lowest fitness value(s).  

(3) Heuristic search module 
In searching for the solution to a problem, GAs 

iteratively apply some form of local heuristic search 
technique to gradually reduce the size of the search 
space such that the solution procedure converges to 
the globally best outcome. As discussed below, the 
present GA applies two different heuristic search 
strategies.  

In the first strategy, the value which appears 
most frequently for each attribute is recorded 
during the pre-processing stage and is then replaced 
within each chromosome generated by the 
crossover operation in the GA solution procedure 
by a randomly selected value. If the value of the 
fitness function is improved, the randomly selected 
value is accepted as the new attribute value; else the 
original value is restored. In general, if an IF-
THEN classification rule has too many attributes, it 
cannot be intuitively understood by the mining 
practitioner. Thus, in the second search strategy, 
following the crossover operation, one attribute in 
the chromosome string is chosen at random and its 
first bit is inspected to determine whether or not it 
currently forms part of the classification rule. If the 
attribute does indeed form part of the classification 
rule, it is automatically discarded, i.e. the first bit is 
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changed from “0” to “1”. The fitness of the 
resulting chromosome is then re-evaluated. If the 
fitness value is found to improve, then the attribute 
is discarded from the classification rule, else it is 
retained. 
3.3.  Sequential Implementation of IGA 

In the present GA, the data stream is processed 
using the fixed window size method presented in 
[21]. The window is assumed to have a size W, i.e. 
it can hold a total of W training instances. When the 
rules classification system is initialized at time t0, a 
total of W training samples are accumulated, and 
the GA is then employed to establish the best 
classification rules based upon this particular set of 
training samples. An assumption is made that the 
new training instances arrive at a constant rate, and 
therefore, each time that a new training instance 
arrives, an old training sample is forgotten. As a 
result, following a time interval governed by the 
value of the arrival rate, the original W training 
samples within the window are completely replaced 
by a new set of W training examples. At this time, 
designated as time t1, the GA is re-executed to 
determine the new best classification rules. As 
shown in Figure 4, this process is repeated 
sequentially at regular time intervals for as long as 
an incremental learning capability is required. 

Figure 5 presents a simple schematic of the ith 
stage of the IGA scheme. As shown, the initial 
population of the GA applied at this particular stage 
of the learning process comprises a subset of the 
best classification rules established in the previous 
stage of the solution procedure and an appropriate 
number of randomly generated classification rules. 
The best classification rules determined in this 
stage of the leaning process are saved to memory 
and are then used as the basis for the population 
used in the following stage of the learning 
procedure. As stated above, this procedure 
continues sequentially until the specified number of 
training stages has been completed or a self-
learning capability is no longer required. The use of 
the memory-based random immigrant module in 
initializing the population of the GA at the 
beginning of each stage ensures that the IGA 
scheme is both computationally efficient and robust 
to concept drift. In the event that the target concept 
remains stable, the best solutions obtained at the 
previous stage are simply reused as the initial 
population for the following stage, i.e. there is no 
need to repopulate the search space each time the 
GA is run. However, in the event that concept drift 
occurs, the system adapts to this change by 
automatically replacing an appropriate number of 

the original classification rules with new random 
rules and then searches for an updated set of best 
rules. 

4. GENETIC OPERATORS IN IGA SCHEME 

This section describes the core operations within 
the GA scheme implemented in this study, namely 
the genetic operations and the fitness function 
calculation. Figure 6 presents a flowchart showing 
the iterative GA solution procedure. As shown, the 
procedure commences by retrieving the best 
solutions from the previous stage and replacing 
certain of these solutions with randomly generated 
new chromosomes. Having created the initial 
population, crossover, heuristic search, mutation 
and selection operations are performed to create a 
new population. The fitness functions of the 
members of this population are then determined to 
establish whether or not they satisfy the target 
criteria. If these criteria are satisfied, the GA 
terminates and the current population is mapped to 
memory. However, if the termination criteria are 
not satisfied, the crossover, search, mutation and 
selection operations are repeated to generate a new 
candidate set of classification rules. This procedure 
continues iteratively until the chromosomes within 
the population pool meet the target requirements, at 
which point the GA terminates.  

4.1 Genetic Operations Module 

In addition to the heuristic search mechanism 
(described in Section 3.2), the Genetic Operations 
Module executes three standard GA operations, 
namely crossover, mutation and selection. The 
details of these operations are described in the 
sections below. 

(1) Crossover 
The GA implemented in the IGA scheme uses a 

random two-point crossover operation. Two cutting 
points are randomly selected in a pair of 
chromosomes, and the bit strings between these two 
cutting points are simply exchanged between the 
two chromosomes. 

(2) Mutation 
In the mutation operation performed in the 

current GA, a single chromosome within the 
population is chosen at random and a bit within this 
chromosome is then selected (again at random) and 
its value flipped. The probability of the mutation 
operation being performed is governed by the 
mutation rate parameter. To ensure the 
responsiveness of the IGA scheme to changes in the 
environment, the mutation rate parameter is 
assigned a dynamic rather than static characteristic, 
i.e. it is assigned a value of 0.5 initially, but is then 
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adjusted adaptively in accordance with changes in 
the system environment. The value of the mutation 
rate parameter is specified in accordance with Eq. 
(1), in which AvgFit denotes the average value of 
the fitness functions of all the chromosomes within 
the population. 

)
2

AvgFit-1(Mut_Rate =  (1) 

(3) Selection 
Having completed the crossover and mutation 

operations, the chromosomes are ranked in a 
descending order of fitness, and the top 90% of the 
chromosomes are selected as members of the new 
population pool. The remaining members of the 
population pool are then selected at random from 
the 10% of chromosomes remaining. In other words, 
the selection process is performed using a Rank-
based Roulette Wheel Selection (RRWS) scheme 
[22]. This scheme ensures that better members of 
the population (i.e. solutions with a higher fitness) 
have a greater chance of being selected for 
reproduction. Moreover, by randomly selecting 
poorer members of the population for inclusion in 
the reproduction process, the diversity of the 
population pool is maintained. Significantly, the 
RRWS scheme is more robust that the conventional 
RWS method in converging to a best solution since 
it prevents good solutions discovered early on from 
dominating the population pool.  

4.2.  Fitness Function Calculation & Evaluation 
Module 

In the IGA solution procedure, the relative 
quality of each of the chromosomes within the 
population is evaluated using the fitness function 
presented by Tan [3] .As shown in Eq. (2), this 
fitness function comprises two components, namely 
a sensitivity term (see Eq. (3)) and a specificity 
term (see Eq. (4)).  

fntp
tp
+

=ySensitivit  
(2) 

fptn
tn
+

=ySpecificit  
(3) 

)()(
fptn

tn
fntp

tpfitness
⋅+

+
⋅+

=
βα

 

12.0 ≤≤ α , 201 ≤≤ β  
(4) 

Note that in these equations, tp denotes true 
positive, fp denotes false positive, tn denotes true 
negative, and fn denotes false negative (see Table 2). 
Furthermore, α and β are user-defined parameters 
which determine the rate of convergence of the 
solution procedure and are determined 
experimentally in accordance with the requirements 

of the particular application. In general, the value of 
the fitness function varies in the range 0~1, with a 
higher value indicating a better fit, i.e. a higher 
solution quality.   

Table 2 summarizes the possible outcomes of a 
generic classification rule X⇒Y. As shown, four 
possibilities exist, namely:  

1. True positive (tp): the actual class is Y and 
the predicted class is also Y.        

2. False positive (fp): the actual class is Y, but 
the predicted class is not Y. 

3. True negative (tn): the actual class is not Y 
and the predicted class is also not Y.     

4. False negative (fn): the actual class is not Y, 
but the predicted class is Y. 

As discussed earlier in relation to Table 1 in 
Section 3.2, the classification rules developed using 
the IGA scheme are expressed in the form of simple 
IF-THEN statements in order to enhance their 
meaningfulness to the mining practitioner. In the 
iterative GA-based procedure performed at each 
stage of the incremental rule inference process, the 
fitness function ensures that the best classification 
rules (i.e. those rules which are accurate and clear) 
survive, whilst those which are not are discarded. 
Having completed the mining procedure, 
overlapping set theory is applied to the final 
population of classification rules to determine the 
particular subset of these rules to present to the end 
user.   

5. SIMULATION 

The performance of IGA was evaluated by 
performing a series of classification rules mining 
simulations using two standard datasets. The 
simulations were performed on a 2.4 GHz Intel 
Pentium processor with 256 MB RAM and an 80-
Gbyte HDD running under the Windows XP 
Professional operating system. The simulation 
program was written using Borland C ++ Builder 
6.0 and the datasets were managed using Microsoft 
Office Access 2003. 

5.1. Simulation Procedure 

The simulations were performed using two 
different datasets downloaded from the University 
of California at Irvine - Machine Learning 
Repository (UCI) [23], namely Mushroom and Zoo. 
The details of these two datasets are summarized in 
Table 3.  

In designing the simulations, an assumption was 
made that the data within these datasets were 
supplied to IGA at a constant rate. In addition, the 
rule mining process was assumed to involve a total 
of n time intervals, and thus IGA performed n+1 
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mining operations.  In the initial set of simulations, 
conducted using the Mushroom dataset, the 
performance of IGA was benchmarked against that 
of DNWS [9] in terms of the classification accuracy 
and the computational load. In the simulations, the 
data within the dataset were divided into 8 data 
blocks of equal size to represent the data acquired 
by the two schemes in 8 sequential stages, 
respectively. In the IGA scheme, the population 
size was specified as 20 chromosomes, and 
parameters α and β in the fitness function (see Eq. 
(2)) were specified as 0.5 and 8, respectively. 
Finally, in the DNWS heuristic, parameters α, β and 
γ were specified as 5.0, 0.25 and 0.50, respectively. 

 In the second set of experiments, performed 
using the Zoo dataset, the performance of IGA was 
compared against that of a traditional GA-based 
classifier in which the classification rules were 
inferred on a one-shot basis having acquired all the 
training instances within the dataset. As shown in 
Table 3, Zoo contains 101 training instances each 
of which has 18 attributes and is associated with 
one of 7 different classes. Of the 18 attributes, 1 
attribute indicates the name of the animal, two are 
numeric and the remainder are Boolean variables. 
In the IGA simulations, the dataset was partitioned 
into four blocks of equal size, the population size 
was specified as 20 chromosomes and the fitness 
function parameters were specified as α=1 and β=1, 
respectively. The simulations evaluated the 
performance of the two schemes in terms of the 
number of iterations required to obtain a convergent 
solution, the average fitness function, the average 
classification accuracy, the average support, and the 
similarity of the classification rules. The similarity 
measure was determined at each stage of the IGA 
solution procedure by comparing the best 
classification rules inferred by IGA at that stage 
with the classification rules obtained by the one-
shot GA classifier based upon the entire contents of 
the dataset. The similarity measure was computed 
in accordance with the formulation: 
Overall similarity ratio= identical ratio+similar ratio (5) 

The first term on the right-hand side of Eq. (5) 
indicates the percentage of the classification rules 
generated by IGA which are identical to the 
classification rules generated by the non-
incremental GA classifier. Meanwhile, the second 
term indicates the percentage of the classification 
rules generated by IGA which are similar to (i.e. a 
subset of) a classification rule generated by the 
non-incremental GA scheme. For example, 
consider the following rules generated by the IGA 
scheme and the non-incremental GA scheme, 
respectively:  

IF hair='1' AND milk='1' Then type='1'  (Rule 1) 
IF hair='1' AND milk='1' AND backbone='1' 
Then type='1' (Rule 2) 

In this example, Rule 1 is a subset of Rule 2 and 
is said to be similar to Rule 2. 
5.2. Simulation Results 

(1) Mushroom dataset 
Table 4 compares the classification performance 

of IGA with that of DNWS [9] when applied to the 
Mushroom dataset The results show that the two 
schemes achieve an average classification accuracy 
of 99% and 100%, respectively. The value of 99% 
obtained by IGA is judged to be sufficiently close 
to 100% that the discrepancy (1%) can be attributed 
to statistical errors. 

Figure 7 compares the number of training 
instances processed by IGA and the DNWS scheme, 
respectively, at each stage in the simulation 
procedure. It can be seen that the number of 
instances increases linearly over the course of the 
DNWS simulation, but remains constant in the IGA 
simulation since old instances are simply forgotten 
when they pass out of the window. In other words, 
the results demonstrate that IGA incurs a low and 
constant processing overhead.  

(2) Zoo Dataset 

Figure 8 illustrates the performance of the non-
incremental GA when applied to the Zoo dataset. 
As shown, the GA requires a total of 171 
generations to classify the dataset and yields a final 
average classification accuracy (AvgAccurate) of 
100%, a final average fitness (Fit) of 0.949, and a 
final average support (AvgSup) of 38.7%. It can be 
seen that the three performance measures have 
extremely low values (i.e. very close to zero) for the 
first 120 iterations, but increase rapidly thereafter. 
Thus, it can be inferred that the non-incremental 
GA is relatively inefficient in recognizing the better 
chromosomes within the population pool, but 
rapidly improves the quality of these solutions once 
it has done so.  

The simulations results obtained when applying 
IGA to the Zoo dataset are summarized in Table 5. 
Inspecting the first column in the table, it is evident 
that the number of iterations required by IGA at 
each step in the simulation procedure is 
significantly lower than the 171 iterations required 
by the non-incremental GA. The reason for this 
improvement is two-fold: (1) IGA only processes a 
sub-set of the Zoo dataset at each stage, whereas the 
non-incremental GA processes the entire dataset; 
and (2) the accuracy of the initialization process in 
IGA is at least 56% in Steps 1~3, and thus the 

% 
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classification rules converge more rapidly. 
Furthermore, it can be seen that the initialization 
accuracy of IGA increases as the simulation process 
proceeds and therefore yields a continuous 
reduction in the number of iterations required at 
each stage. For example, in Step 1 of the simulation 
procedure, the initialization accuracy is 0% (i.e. the 
population pool is randomly generated), and thus a 
total of 65 iterations are required to obtain a 
convergent solution. However, in Step 1, the 
initialization accuracy improves to 56.3% since the 
population pool inherits some of the best solutions 
from the previous step, and thus the number of 
iterations required reduces to 55. In the final step of 
the solution procedure, the initialization accuracy 
has a value of 70% and a convergent solution is 
obtained after just 25 iterations. Significantly, even 
in Step 0 when IGA is applied to a randomly 
generated chromosome pool, its performance is still 
far better than that of the non-incremental GA in 
terms of the number of iterations required, i.e. the 
non-incremental GA requires 171 iterations, while 
IGA requires just 65; representing a reduction of 
around 62%.  

From Table 5, it can be seen that the average 
accuracy of the classification results obtained using 
IGA at Steps 0, 1, 2 and 3 are 99.7%, 92.2%, 100% 
and 100%, respectively. Thus, the results show that 
IGA consistently achieves a high level of 
classification accuracy when applied sequentially to 
non-overlapping subsets of the Zoo dataset. It can 
also be seen that the average support values 
obtained in Steps 0 ~ 3 are all higher than 36%, 
which indicates that the classification rules obtained 
at each stage of the solution procedure are highly 
reliable.  

Table 6 summarizes the similarly ratio data 
obtained in Steps 0 ~ 3 of the IGA solution 
procedure. Given an assumption that the 
classification rules obtained by the IGA scheme at 
each stage are equal in number and the data in the 
dataset are uniformly distributed, one would expect 
the identical ratio at each stage (i.e. the percentage 
of rules generated by IGA which are identical to 
those generated by the non-incremental GA) to 
have a value of 25%. However, the results show 
that the identical ratio actually has values of 10%, 
30%, 45% and 20%, respectively, in Steps 0 ~ 3 of 
the solution procedure. In other words, the training 
instances processed in the second stage of the 
simulation are more representative of all the 
samples in the dataset than those processed in the 
remaining stages. This is borne out by an inspection 
of Table 5, which shows that the average accuracy 
(100%) and average support (40.4%) performance 

indicators attain their highest values in Step 2. 
Table 6 also shows that the overall similarity ratio 
between the classification rules obtained using IGA 
and those derived using the non-incremental GA is 
consistently higher than 60%, which confirms the 
reliability of the IGA approach.  

The bottom row in Table 6 presents the similarity 
ratio data obtained by comparing all of the 
classification rules generated by IGA over the four 
steps of the simulation procedure with the rules 
derived by the non-incremental GA. As shown, the 
identical ratio has a value of 45%. This apparently 
low value is to be expected since in separating the 
original dataset into four discrete data blocks, some 
information available to the non-incremental GA is 
hidden from IGA, and thus IGA inevitably infers a 
different set of rules. The overall similarity ratio, 
however, is seen to be 100%, which suggests that 
given an identical set of training instances, IGA and 
the non-incremental GA will generate the same 
classification rules.  

6. CONCLUSIONS 

Many real-world datasets contain huge volumes 
of data and are compiled and maintained over a 
period of months if not years. Due to the typical life 
spans of such systems, the concepts responsible for 
generating their contents may well change over 
time, resulting in a phenomenon known as concept 
drift. Traditional classification techniques such as 
genetic algorithms (GAs) are ideally suited to the 
processing of datasets with stationary distributions, 
but yield significant errors when applied to datasets 
in which the contents are generated by a series of 
different concepts rather than one single concept. 
Accordingly, this study has presented an 
incremental genetic algorithm (IGA) for 
classification rules mining in datasets characterized 
by concept drift. In the proposed approach, a fixed-
size window is slid over the training data at a 
constant rate, and each time the window is 
completely filled with new training data, a GA 
integrated with a local heuristic search method is 
applied to infer the best classification rules. The 
robustness of the classification rules to concept drift 
is ensured by utilizing a memory-based random 
immigrant mechanism, in which the initial 
population utilized by the GA when processing the 
training data within a window comprises a mix of 
the best solutions obtained from the training data in 
the previous window and an appropriate number of 
randomly generated chromosomes. IGA is applied 
sequentially to the training data for as long as an 
incremental learning function is required. 
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The performance of IGA has been benchmarked 
against that of DNWS [9] and a traditional non-
incremental GA classifier using the Mushroom and 
Zoo datasets, respectively. The results obtained for 
the Mushroom dataset have shown that IGA has a 
virtually identical classification performance to the 
DNWS scheme, but incurs a significantly lower 
computational overhead due to its policy of 
forgetting old examples when they drop out of the 
window. Meanwhile, the results obtained for the 
Zoo dataset have shown that the number of 
iterations required by IGA to obtain a convergent 
solution reduces as the cumulative number of 
processed windows increases. For example, when 
processing the training instances in the first window, 
IGA requires 65 iterations to obtain convergence, 
whereas when processing the data within the fourth 
window, it requires just 25. By contrast, the non-
incremental GA requires a total of 171 iterations to 
infer the best classification rules, i.e. the rules 
which yield a classification accuracy of 100%. The 
minimum classification accuracy of IGA is 92%, 
while the mean classification performance is 98%. 
Therefore, IGA is more computationally efficient 
than the non-incremental GA, but achieves a 
virtually identical classification performance. 
Finally, the average support values obtained at each 
stage of the IGA incremental mining process 
exceed 36% in every case, and thus the reliability of 
the classification rules is confirmed. 

Overall, the experimental results confirm the 
feasibility and efficiency of IGA for classification 
rules mining in the presence of concept drift. In 
future studies, the current authors will investigate a 
number of potential enhancements to the IGA 
scheme. Firstly, in the current version of IGA, the 
initial chromosome population (i.e. that used during 
the very first stage of the solution procedure at t=0) 
is generated randomly. Therefore, future studies 
will aim to develop heuristic techniques for 
generating a fitter starting population based on the 
particular characteristics of the target dataset, the 
unique features of the data within the dataset, and 
so forth. In this way, it is anticipated that the 
number of iterations required to derive the best 
solutions will be reduced, and their quality 
improved. Secondly, the simulations in this study 
have considered only the Mushroom and Zoo 
datasets. Accordingly, in future studies, the 
feasibility and versatility of IGA will be more 
rigorously examined through its application to a 
wide range of datasets containing different types of 
data. Thirdly, in its present form, IGA features a 
single GA, which works alone to solve the 
classification rules mining problem. However, in a 

future study, an attempt will be made to implement 
IGA in a parallel environment, i.e. by using 
multiple collaborative agents (classifiers), which 
exchange information with one another, migrate 
best solutions amongst one another, and so forth, 
such that IGA can be applied to the solution of 
more complex problems in a rapid and efficient 
manner. Finally, in the present study, an 
assumption has been made that new training 
instances arrive at a constant rate, i.e. the concept 
drift has a stable characteristic. Thus, a future study 
will investigate the feasibility of adapting IGA to 
the classification rules mining of datasets 
characterized by unpredictable changes in concept. 
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Figure 3. System architecture. 

 
Figure 4:  Time-series based GA learning process. 

S0 arrived 
during [t0, t1] 

S1 arrived 
during [t1, t2] 

S2 arrived 
during [t2, t3] 

Figure. 1: Concept drifting phenomenon [6].  

 

Figure 2: Definitions of D, D’, Δ-, D- and Δ+ [7]. 
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Figure 5:  i-th stage in IGA scheme. 
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Figure 7: Number of training instances processed by IGA and DNWS at each stage o f 

simulation procedure. 

 
Figure 6:  Iterative GA solution procedure. 
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Table 6: Similarity ratio data obtained when classifying Zoo dataset with IGA 

Simulat
ion 

Identical 
 Ratio 

Simil
ar 

Overall  
Similarity 

0 10% 65% 75% 
1 30% 50% 80% 
2 45% 25% 65% 
3 20% 40% 60% 

Total 45% 55% 100% 

Table 5: Simulation results obtained when classifying Zoo using IGA. 

Simulation 
Step 

Evolution 
Generation 

Fitness 
Function 

Accuracy of 
Initialization Accuracy Support 

0 65 0.958 0% 99.7% 37.6 % 
1 55 0.881 56.3% 92.2% 37.7 % 
2 34 1 65 % 100 % 40.4 % 
3 25 0.902 70 % 100 % 36.4 % 

Table 4: Average classification performance of IGA 
and DNWS for Mushroom dataset. 

Simulation IGA DNWS 
1 100% 100% 
2 95% 100% 
3 100% 100% 
4 100% 100% 
5 95% 100% 
6 100% 100% 
7 100% 100% 
8 100% 100% 

Average 99% 100% 

Table 2: Prediction cases of classification rules. 

 Predicted 
Yes N

Actual Class Yes tp fp 
No fn tn 

Table 3: Summary of test data set. 

Data Set Records No. Of 
Attributes 

Values  Of 
Target Attribute 

Mushroom 8124 22 2 
Zoo 101 18 7 

Table 1: Chromosome Coding.  

A1 A2 A3 Target 
01000 100 000100 001 

 
Figure 8: Simulation results obtained when classifying Zoo using non-incremental GA 


