
Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

595

DATABASE ALGEBRAS

1 Pushpa R. Suri, 2 Sudesh Rani
 1 Reader, Department of Computer Sc. & Applications, K. U., Kurukshetra , India-1361191

 2 Ph.D. Student , Department of Computer Sc. & Applications, K. U. , Kurukshetra , India-136119
E-mail: pushpa.suri@yahoo.com , dhillon_sudesh@rediffmail.com

ABSTRACT

The algebraic approach to database query processing continues to be successful long after its introduction
in relational database. This paper is devoted to database algebras. The purpose of this paper is to convey
some idea of the general nature of database algebras in the hope of gaining some insight into why certain
operations exist and of identifying common themes among these algebras.

Keywords: Database, Query, Algebra, Relational algebra, Nested relational algebra, Object oriented
algebra.

1. INTRODUCTION

As computers become larger (in capacity),
smaller (in size), and more powerful, it becomes
easier to do more complex things with them than
could be done in the past. This is as true of database
management systems (DBMSs) as of any other type
of software. The central feature of a DBMS is its
data model, the formal abstraction which it uses to
map real-world entities onto (logical) database
entities. Many different DBMSs may implement the
same abstract data model. Data models are
becoming increasingly powerful and complex day
by day, and with this power and complexity comes
the need to ensure correct and efficient execution of
queries on data with increasingly complex
structure.

1.1. Why an Algebra?

When executing a query in any database
system, we wish to minimize the utilization of
CPU, memory, I/O, and communications resources.
Given current hardware technology (i.e., the
availability of cheap memory), what we really want
to minimize is a query’s response time, which for
centralized systems is usually dominated by the I/O
transfer time. An orthogonal issue to speed is
correctness. Clearly, the fastest query is useless if it
returns the wrong answer (or never returns any
answer at all). To achieve correctness with respect
to a data model, one normally designs a calculus for
manipulating the objects in a database. This
becomes the definitive standard for lower level

implementation of the system in the sense that any
lower-level query languages should be equivalent
to the calculus in expressive power. Most of the
calculi proposed for this purpose have been first-
order. This calculus often becomes the basis of the
user-level query language for the system, as it is
non-procedural in nature. It has become clear, from
experience with the relational model, that it is much
easier to pose queries using a non-procedural
language than with a procedural language, in which
the query must specify not only what data is
desired, but how to go about retrieving that data.

Of course, at some point we must decide on a
sequence of operations to retrieve the data
physically. For this purpose there must be routines
to access the data and to perform operations on
them (e.g., the relational join). But going directly
from a user’s query to procedure calls on the actual
database will generally result in very inefficient
query plans. We need to be able to rearrange the
operations to produce an optimal sequence of data
accesses. The formality of an algebra allows us to
do this. Naturally, this algebra must be equipollent
(equivalent in expressive power) to the calculus and
translatable into actual calls on the database. It is an
intermediate language. The relational algebra
performs this function in the relational model, and
is one reason why the model of query processing in
relational systems is so attractive.

The processing of a query, then, occurs
conceptually in four steps: 1) translation from the
calculus representation to a functionally equivalent
algebra representation; 2) logical transformations of

596

the algebraic query to standardize and simplify it;
3) generation of alternative algebraic strategies
combined with alternative access and operator
methods to produce plans for retrieving the data;
and 4) selection of the cheapest plan based on a
designer-specified set of criteria.

2. DATABASE ALGEBRAS

An algebra is formally defined as a pair (S, Θ),
where S is a (possibly infinite) set of objects and
Θ is a (possibly infinite) set of n-ary operators,
each of which is closed with respect to S [9]. These
operations will have certain properties (e.g.
commutativity) which make rearrangement of some
algebraic expressions possible; this is what makes
algebras so desirable for query optimization.

A large number of recent systems operate on
objects much more complex than those found in
relational systems. A few of these have a
corresponding algebra which they could use to
optimize queries, but most do not. In addition,
several "generic" algebras for non-relational
systems have been proposed. These are not geared
toward any particular system or implementation. In
the following sections we describe the basic
concepts and operations of these algebras,
regardless of their connections with actual systems.
For each algebra, we will provide the following as
appropriate: a short summary of the system and
algebra (including goals of the system, structure of
the objects operated on, and all of the algebraic
operators), descriptions of any normal forms or
other restrictions imposed by the model, some of
the more important results about algebraic
equivalences, whether the operators work on
object-based or value-based structures, a rough idea
of the expressive power of the algebra, whether or
not there is a corresponding calculus,
implementation status (where applicable and
known).

2.1. The Relational Algebra

The relational model was first described in [3]
and became the model of choice for standard
business data processing applications in the 1980s.
The model consists of three things: 1) Relations, 2)
An algebra to operate on those relations, and 3)
Rules and guidelines for database design and
maintenance (including integrity constraints, etc.).

In the relational model, real-world entities are
represented by tuples (or records). A tuple has a

fixed integral number of named attributes (or
fields). An important restriction is that these fields
be filled only with scalar values. This is known as
the first normal form (or 1NF) restriction. A
relation (or table) is a set of tuples with identical
layouts. This layout is called the relation’s schema.
Relations are manipulated using the relational
algebra, which is equipollent to the relational
calculus. Five standard relational operators as
defined in [7] or [8] are:

1) Union (∪): Two relations can be combined into
one using a standard set-theoretic union (duplicate
tuples are eliminated). The two relations must have
the same schema.

2) Difference (−): The expression R −S describes a
relation consisting of all tuples in R which are not
also in S. The two relations must have the same
schema.

3) Cartesian Product (×): R×S indicates the
relation whose schema consists of all attributes of R
followed by all attributes of S. Each tuple of R is
"concatenated" with each tuple of S to form the set
of tuples in R×S.

4) Projection (π): This operation, when applied to
a set of tuples and given a list of attributes, returns
the same set of tuples, removing from each tuple all
attributes but the ones listed in the π expression. If
any duplicates were created during this process,
they are removed.

5) Selection (σ): Given a relation R, this operator
applies a predicate to each tuple in the relation. If
the tuple satisfies the predicate, it becomes part of
the result of the selection expression; otherwise, it
is dropped.

2.2. Nested Relational Algebras

This section describes several algebras which
operate on non-first normal form relations.

2.2.1. The DASDBS Algebra

 The main feature of the DASDBS (Darmstadt
Database System) [2, 5, 6, 10] is an application-
independent kernel based on non-first normal form
(NF2) relations. Specific applications will be
implemented on top of this kernel. The kernel itself
supports a subset of the NF2 algebra which will be
presented here. The kernel also provides transaction
management facilities.There is no limit to the level

597

of nesting of the relations. The following seven
operators for the NF2 algebra are proposed:

1)-5) Cross-product (×), Union (∪), Difference
(−), Selection (σ), Projection (π): These are
defined as in the relational algebra.

6) Nest (ν): This operator is applied to a single
relation and must specify what attributes are to be
nested and the name of the single attribute which
will replace them. Specifically, νA*=A (R), where A
is a set of attributes and A* is a single relation-
valued attribute whose tuples have members of A
as columns, is a new relation, R*. R* is formed by
using the attributes in (attrs(R) − A) as a key.

7) Unnest (μ): This is the inverse of ν. μA*=A (R) is
obtained by replacing the single attribute A* with
the set of attributes A and for each tuple of R,
forming a set of tuples over ((attrs(R) − {A*}) ∪
A) such that for each of these tuples t, t[A] was a
tuple in the A* attribute of this tuple of R.

 It should be noted that only two new
operators, ν and μ, have been introduced. The first
five operators are the standard operators needed for
relational completeness. The most important
property of the μ and ν operators is that, while μ is
always the inverse of ν, it is not always the case
that ν (μ (R)) = R. This equality holds iff a certain
functional dependency holds on the relation: all
nonscalar fields must be functionally dependent on
the set of scalar fields. This is known variously as
Partitioned Normal Form (PNF) [11, 19]. Another
interesting property of ν is that this operator can be
used to perform the grouping phase of aggregate
function computation in a fairly straightforward
way.

As the DASDBS algebra is a fairly
straightforward extension of the relational algebra,
it is value-based (as opposed to object-based), just
as is the relational algebra. That is, to get a handle
on an object, one must use its value(s), not some
abstract sort of name or identifier or surrogate for
the object. In other words, the system is not object-
oriented. No formal calculus has been defined for
the DASDBS system.

2.2.2. The AIM Algebra

 The AIM project at IBM-Heidelberg [14, 15,
4] is designed to handle an extension of the NF2
data model, with the goal of supporting non-

traditional database applications. The major
extension is the ability to handle ordered lists
(arrays), multisets, and tuple-valued attributes. The
seven operators described above for the DASDBS
system appear essentially unchanged in the AIM
algebra, with the exception of selection. Also, the
AIM algebra treats renaming (ρ) as a separate
operator, not as part of the π operator. The
operations are the following:

1)-6) Nest (ν), unnest (μ), projection (π),
Cartesian product (×), union (∪), and difference
(−): These are defined exactly as in the DASDBS
algebra.

7) Selection (σ): This is similar to the DASDBS σ,
but the AIM selection allows an arbitrary
algebraic expression to appear in a σ formula.
This mimics the SQL notion of nested queries.

8) Keying (χ): This operator is introduced to
eliminate the problem of non-invertible unnestings.
χ appends a key column to a relation before it is
unnested then renested, and this ensures that
nesting after an unnest will result in the original
NF2 relation. This is needed only when there is not
already a key column in the relation.

9) Renaming (ρ): This operator renames an
attribute of a nested relation. The renamed attribute
may appear anywhere in the schema. Such an
operator is needed only because no ordering is
assumed to hold on the columns of a relation. If
such an ordering were assumed, renaming would
not be necessary and column numbers could be
used instead.

As with DASDBS, no formal calculus has
been defined for the AIM system. Null values are
not supported in the formal algebra. Joins in AIM
are defined using the ∩ operator as follows: if the
join attributes are both scalar, two tuples will join
with one another if the attribute values are equal (as
in the relational natural join). If the join attributes
are both relation-valued, the tuples join iff the
intersection of the two relation-valued join
attributes is not ∅. This definition of the join
operator seems to imply that the AIM system is
value-based rather than object-based.

2.2.3. The Vanderbilt Algebra

 The algebra for NF2 relations described in [7]
was not defined for use with a particular system,

598

but rather as a general algebra for use with any NF2
system, just as Codd’s relational algebra [3] was
intended to apply to any number of relational
systems. The objects operated on by the Vanderbilt
algebra are exactly the NF2 relations, as with the
DASDBS algebra. That is, a relation can have
atomic and relation-valued attributes. The
following operations can be applied to nested
relations:

1)-4) Project (π), Union (∪), Difference (−),
Cartesian Product (×): These are defined exactly
as in the relational algebra.

5) Select (σ): This is similar to the relational σ
operator but has been extended with set
comparators and setvalued constants.

6) Nest (NEST): This is defined exactly as is the ν
operator in the DASDBS and AIM NF2 algebras.

7) Unnest (UNNEST): UNNEST is identical to the
μ operator of the DASDBS and AIM algebras.

8) Flatten (UNNEST*): This operator simulates a
sequence of UNNEST operations on a relation
which will transform it into an equivalent flat
(1NF) relation. That is, all possible unnestings are
performed. Note that the order in which these are
performed is irrelevant, since UNNEST A=S
(UNNEST B=T (R)) = UNNEST B=T (UNNEST A=S
(R)).

Joins in the Vanderbilt algebra are defined
as they are for the AIM algebra. This exemplifies
the fact that the algebra is strictly value-based.
Also, it should be clear that this algebra has the
same expressive power as the DASDBS and AIM
algebras. Finally, it should be noted that no calculus
corresponding to the Vanderbilt algebra has been
defined.

2.2.4. The SQL/NF Algebra

 SQL/NF [12, 11] is an extension of the SQL
relational query language to handle non-first
normal form relations. As with the previous three
algebras, the domain of interest here is the set of
NF2 relations.The set of operators for the algebra is
as follows:

1) Select (σ): [6] claims not to extend the relational
σ operator, but their proofs use a σ which is
extended with the ability to specify set-valued
constants. This is the notion of σ we adopt here.

Note that no set-based comparisons have been
added; only equality may be tested for.
2) Union (∪e): Union is defined recursively for
pairs of relations with the same schema. For flat
schemas, it works exactly as does the relational ∪.
But when a relation-valued attribute is encountered
the ∪e operator is applied to this relation,
recursively. That is, to preserve PNF, tuples with
common values on the scalar fields will be
combined into a single tuple in which the relation-
valued fields will in turn be operated on by ∪e.

3) Difference (−e): This is defined recursively in a
fashion similar to the ∪e operator.

4) Intersection (∩e): This is also defined similarly
to ∪e. Two tuples intersect if they agree on their
scalar (key) attributes and the intersections of all of
their nested attributes are non-empty.

5) Cartesian Product (×): This is defined as in the
relational algebra.

6) Projection (πe): This consists of a normal
relational π (i.e., only a top-level attribute may be
projected out, but it need not be scalar) followed by
a unioning (∪e) of all the resulting tuples to remove
duplicates.

7) Natural Join (|×|e): The natural join of two
relations is defined only if all the common (joining)
attributes are top-level attributes of the relation.
Two tuples join only if they agree on all common
scalar attributes and the intersections (∩e) of their
common set-valued attributes are all non-empty.

8) Nest (ν): This is defined exactly as in the
Vanderbilt algebra.

9) Unnest (μ): This is also defined exactly as in the
Vanderbilt algebra.

Neither null values nor empty sets are
supported in the algebra, which avoids some
interesting problems regarding the unnesting of an
empty set in a system not supporting nulls. Also, it
is clear that, like the rest of the algebras discussed
thus far, this algebra is purely value-based. A
formal calculus corresponding to the SQL/NF
algebra has been defined and proved equivalent to
the algebra.

2.2.5. The NRDM Algebra

599

 The Nested Relational Data Model (NRDM)
is a system being developed and implemented at
Indiana University [19]. Once again, the domain of
objects is the set of relations with relation-valued
attributes, just as in the previous algebras. This
algebra also enforces the PNF restriction on its
data, which again has an effect on the definition of
the algebraic operations. These operators are
defined as follows:

1)-3) Union (∪e), Difference (−e), Project (πe):
These are defined in the same manner as in the
SQL/NF algebra.

4) Select (σe): This is extended from the relational
σ to allow membership testing in sets, set
comparators, and selections from any level of the
hierarchical structure.

5) Join (|×|): Joins are allowed only when the join
attributes are atomic. Joins are identical to the
relational natural join, and can occur only when the
join attributes are at the top level.

6) Nest (ν): This works essentially as in the
previous algebras, but is restricted to yield a
structure with only one set-valued attribute at the
highest level. That is, a ν operation must nest at
least all of the relation-valued attributes at the top
level of the structure, resulting in just one relation-
valued attribute. This can be worked around by
joining two or more relations which have only one
set-valued top-level attribute.

7) Unnest (μ): This merely inverts the ν operator.

Null values are not supported in this
algebra. No calculus has been defined to
correspond specifically to this algebra, but, like
with the other algebras, it is not hard to envisage an
adaptation of the SQL/NF calculus [11] to this
algebra. It also shares with all of the previously
defined algebras the characteristic of being value-
based. There are no formal results on the expressive
power of this algebra, but it almost certainly has the
same expressive power as SQL/NF, due to the PNF
restriction.

2.3. Database Algebras for advanced data

models

 This section describes algebras for advanced
data models other than the nested relational model.

Algebras described in detail here include algebras
for relational aggregates, summary tables, complex
objects, and object-oriented systems.
2.3.1. An Algebra for Aggregates

 In [1] an algebra is developed which extends
the relational algebra to include aggregate
computations. The set of objects over which this
algebra operates is the set of 1NF relations. The
operators are thus identical to the relational algebra
operators, with the addition of an operator to handle
aggregates, which will be described below. For
completeness, we present all of the operators:

1)-4) Projection, Cross product, Union, and
Difference are the standard relational operators.

5) Restriction: This is used in place of selection,
and results in an equivalent algebra. It is written as
e[X Θ Y](I), where e is an algebraic expression and
I is an instance of a relation. It restricts the result to
contain those tuples whose X component stands in
relation Θ to its Y component, where Θ is either =
or <. It differs from selection in that many
definitions of selection allow constants to appear in
the predicate as well as values from the actual
tuples.

6) Aggregate formation: This is denoted by e<X,
f>(I), where e is an algebraic expression, I is an
instance of a relation, X is a set of attributes of the
relation, and f is a function. The result of this
operation is the set of tuples over the attributes (X
∪ {F}), where F is an attribute indicating the result
of applying the function f to the X attributes of each
tuple of the original relation. More precisely, this
operator partitions its input on the attributes X,
applies the function f to each partition, and returns
the X-value and associated f-value for each
partition. As a limiting case, X can be empty, and
we return simply a single value (for example, the
average value of a single column, taken over the
entire relation).

In [5] a calculus is defined for this algebra
and their equipollence is proved. Clearly, this
algebra is value-based and null values are not
allowed in this algebra.

2.3.2. A Complex Object Algebra

 In [16], an algebra and calculus are developed
for a model whose objects are sets of values
constructed from the set and tuple type constructors
in an arbitrary fashion; this is a pure complex object

600

model. The model is also purely value-based, thus
equality of two entities is determined by traversing
their entire structures. Sets in the model are strictly
homogeneous, and cyclic schemas are not allowed.
The following operators are provided for complex
objects:

1)-3) Union (∪), Intersection (∩), and Difference
(−): Each of these takes two inputs of the same set
type and produces a result of that type. They are
defined exactly as in set theory. As in set theory, ∩
is redundant.

4) Cross product (crossA): This is an n-ary
operator which forms a set of n-tuples from n
inputs, each of which must be a set. The value is the
cross product of the input sets. The subscript
indicates the name of the new tuple type contained
in the result set.

5) Rename (rename A→B): This renames all
occurrences of type A in the input expression to
type B. No values are changed.

6) Powerset (powerset A): This returns the set of
all subsets of its input, which must be a set. The
subscript indicates the name of the type contained
in the result set.

7) Set-collapse (set-collapse): Given a set of sets,
the member sets are all unioned together to produce
a single set.

8) Replace (ρ<G>(R)): This operation iterates
through a set of objects and performs the
transformations indicated by G. G is a "replace
specification". G is built recursively as follows:
base specifications are constants, names of types
appearing in the input type, and input parameters
(each specification G can have input parameters
which are algebraic expressions of a specified type;
these are distinct from the input to the "replace"
operator). Recursive specifications are built up
from base specifications using the tuple and set
constructors (i.e., a tuple or set of specifications is
also a specification). Conditional and applicative
specifications are also used recursively to build
other specifications. A conditional specification can
use the comparators "=" and "∈", and returns an
object as its result only if the predicate is true. It
acts like a relational selection. Finally, an
applicative specification applies one of the other
algebraic operators to each element of the input set
(each element may, of course, have had other

specifications applied to it prior to being given to
the algebraic operator).

2.3.3 An Object-Oriented Database Algebra

 [17] describes an object-oriented data model
and algebra. Structurally, the model supports scalar
values and the tuple and set type constructors, as
well as inheritance among tuple types. One
important extension, though, is that sets need not be
homogeneous. Everything in a database is an object
with its own unique identity, thus everything in a
field of a tuple and every element in a set
(homogeneous or not) is an object identifier. Unlike
many object-oriented models, however, this one
does not support the notion of methods associated
with object types (classes). Tests for both identity
and equality of two objects are allowed. Equality
here means "deep equality"; i.e., an entire
hierarchical structure is traversed, and all parts of it
must be equal to the corresponding parts of the
other.The algebra supports the following operators:

1)-3) Union (Union), Intersection (Intersect), and
Difference (Subtract): Each of these takes 2 sets
of object identifiers and produces a new (set-
valued) object. Each is defined exactly like its set-
theoretic counterpart, and equality of object
identifiers (i.e., identity of the objects referred to) is
used to test the set elements for equality.

4) Combining two objects (Combine): This
operation is defined on any pair of objects such that
either i) both are tuples, ii) both are sets, or iii) one
is a set and the other a tuple. In case (i), the result is
a new tuple object with all the fields of each input
tuple. In case (ii), the result is computed by
invoking Combine on each element of the Cartesian
product of the inputs. In case (iii), Combine
invokes itself on every pair (t, e), where t is the
input tuple and e is an element of the input set.

5) Partitioning an object (Partition attr_list):
The input to this operator must be either a tuple or a
set. If it is a tuple, the result is a new tuple
containing only the attributes in attr_list (or null if
the tuple does not contain all the attributes in
attr_list). If the input is a set, the output is a new set
containing the result of applying Partition to every
tuple in the set which contains all of the attributes
in attr_list. Thus it can perform relational
projections.

601

6) Predicates (Choose Pred): A predicate (Pred)
consists of terms of the following form connected
by ∧ and ¬: obj IsNull, obj1 - obj2, obj1 ≡ obj2
(identity test), and obj InClass C (where C is the
name of some class). In the expression Choose Pred
(obj), if obj is a set, the result is a new set
containing (the identifiers of) all objects in the set
for which Pred is true. Otherwise the result is obj if
Pred applied to obj is true and null if it is false.

3. SUMMARY

 We conclude the survey by summarizing the
salient features of the algebras described above.
Table 1 summarizes the NF2 algebras and other
database algebras presented in previous sections.
For algebras the interesting features include any
restrictions (e.g. normal forms) required of a
database in order for the operations of the algebra
to be applicable; whether or not the algebra allows
for value-based or object-based operations or both;
and an unannotated list of the algebraic operators
provided.

4. CONCLUSION

 In this paper we have seen many different
ways of defining an algebra and notice the central
nature of the relational algebra that is virtually all
of the algebras are based on this algebra in some
way with some algebraic extensions. Specifically,
these algebraic extensions imply that the relational
model falls short in the areas of modelling
constructs (not rich enough), expressive power
(cannot do, e.g., a general transitive closure),
computational power (absence of aggregates, etc.),
historical databases (i.e., we cannot express the
query "what was true at time x?"), and object-based
notions (which can help alleviate some of the
anomalies encountered in 1NF relations). But for
data more complex than NF2 relations, a clearly
favorite set of primitives has not yet emerged
(indeed, only a handful of algebras for complex
objects exist). More work remains to be done in this
area.

5. REFERENCES

[1] A. Klug, “Equivalence of Relational
Algebra and Relational Calculus Query
Languages Having Aggregate Functions”,
Journal of the ACM, Vol. 29, No. 3, 1982,
pp. 699-717.

[2] C. Schaffert, T. Cooper, B. Bullis, M.
Kilian, and C. Wilpot, “An Introduction to

Trellis/Owl”, Proceedings of 1st OOPSLA
Conference, Portland, Oregon, 1986, pp.
9-16.

[3] E. Codd, “A Relational Model of Data for
Large Shared Data Banks”, CACM, Vol.
13, No.6, 1970, pp. 337-387.

[4] G. Jaeschke, G., “Recursive Algebra for
Relations with Relation Valued
Attributes”, Tech. Report 85.03.002, IBM
Heidelberg Scientific Center, 1985.

[5] H. J. Schek, “Towards a Basic Relational
NF2 Algebra Processor”, Proceedings of
International Conference on FODO,
Kyoto, Japan, 1985, pp. 173-182

[6] H. J. Schek, and M. Scholl, “The
Relational Model with Relation-Valued
Attributes”, Inform. Systems, Vol. 11, No.
2, 1986, 137-147.

[7] H. Korth, and A. Silberschatz, “Database
System Concepts”, second edition,
McGraw-Hill, New York, 1991.

[8] J. Ullman, J. “Principles of Database and
Knowledge-Base Systems”, Vol. 2.,
Computer Science Press, Rockville,
Maryland, 1989.

[9] L. L. Dornhoff, and F. E. Hohn, “Applied
Modern Algebra”, Macmillan, New York,
1978.

[10] M. H. Scholl, “Theoretical Foundations of
Algebraic Optimization Utilizing
Unnormalized Relations”, Proceedings of
International Conference on Database
Theory, Rome, 1986, pp. 380-396.

[11] M. Roth, H. Korth, and A. Silberschatz,
“Extended Algebra and Calculus for 1NF
Relational Databases”, Technical Report:
CS-TR-84-36, 1984.

[12] M. Roth, H. Korth, and D. Batory,
“SQL/NF: A Query Language for 1NF
Relational Databases”, Inform. Systems,
Vol. 12, No. 1, 1987, pp. 99-114.

[13] P. C. Fischer, and S. J. Thomas,
“Operators for Non-First-Normal-Form
Relations”, Proceedings of IEEE
COMPSAC, 1983, pp. 464-475.

[14] P. Dadam, K. Kuespert, F. Andersen, H.
Blanken, R. Erbe, J. Guenauer, V. Lum, P.
Pistor, and G. Walch, “A DBMS Prototype
to Support Extended NF2 Relations: An
Integrated View of Flat Tables and
Hierarchies”, Proceedings of ACM
SIGMOD Conference, Washington, DC,
1986, pp. 356-367.

[15] P. Pistor, and F. Andersen, “Designing a
Generalized NF2 Model with an SQL-
Type Language Interface”, Proceedimgs

602

of VLDB Conference, Kyoto, Japan, 1986,
pp. 278-285.

[16] S. Abiteboul, and C. Beeri, “On the Power
of Languages for the Manipulation of
Complex Objects”, Tech. Report No. 846,
INRIA, 1988.

[17] S. Osborn, “Identity, Equality, and Query
Optimization”, Lecture notes in computer
science on Advances in object-oriented
database systems, No. 334, Springer-

Verlag, Berlin, Germany, 1988, pp. 341-
356

[18] V. Deshpande, and D. Van Gucht, “An
Implementation for Nested Relational
Databases”, Proceedings of VLDB
Conference, Los Angeles, 1988, pp. 76-87.

[19] V. Deshpande, and P. A. Larson, “An
Algebra for Nested Relations”, Research
Report CS-87-65, University of Waterloo,
1987.

Algebra Restrictio

ns

Objects /

Values

Operators

DASDBS None Value based x, ∪,-, σ, π,ν, μ

AIM None Both x, ∪, -, σ, π,ν,μ, χ, ρ

Vanderbilt None Value based x, ∪, -, σ, π, NEST, UNNEST,

UNNEST*

SQL/NF PNF Value based x, ∪e, -e, ∩e, σ, πe, ⏐x⏐e, ν, μ

NRDM PNF Value based ∪e, -e, σ e,πe, ⏐x⏐,ν,μ

An Algebra for

Aggregates

None Value based Projection,Cross product, Union,
Difference, Restriction, Aggregate
formation

A Complex Object

Algebra

None Value based ∪, ∩, −, crossA, rename A→B,
powersetA, set-collapse, ρ<G>(R)

An Object-Oriented

Database Algebra

None Object based Union, Intersect, Subtract, Combine,

Partition attr_list, Choose Pred

 Table 1. Database algebras

