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ABSTRACT 
 
The algebraic approach to database query processing continues to be successful long after its introduction 
in relational database. This paper is devoted to database algebras. The purpose of this paper is to convey 
some idea of the general nature of database algebras in the hope of gaining some insight into why certain 
operations exist and of identifying common themes among these algebras. 
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1.  INTRODUCTION 
 

As computers become larger (in capacity), 
smaller (in size), and more powerful, it becomes 
easier to do more complex things with them than 
could be done in the past. This is as true of database 
management systems (DBMSs) as of any other type 
of software. The central feature of a DBMS is its 
data model, the formal abstraction which it uses to 
map real-world entities onto (logical) database 
entities. Many different DBMSs may implement the 
same abstract data model. Data models are 
becoming increasingly powerful and complex day 
by day, and with this power and complexity comes 
the need to ensure correct and efficient execution of 
queries on data with increasingly complex 
structure. 
 
1.1. Why an Algebra? 
 

When executing a query in any database 
system, we wish to minimize the utilization of 
CPU, memory, I/O, and communications resources. 
Given current hardware technology (i.e., the 
availability of cheap memory), what we really want 
to minimize is a query’s response time, which for 
centralized systems is usually dominated by the I/O 
transfer time. An orthogonal issue to speed is 
correctness. Clearly, the fastest query is useless if it 
returns the wrong answer (or never returns any 
answer at all). To achieve correctness with respect 
to a data model, one normally designs a calculus for 
manipulating the objects in a database. This 
becomes the definitive standard for lower level 

implementation of the system in the sense that any 
lower-level query languages should be equivalent 
to the calculus in expressive power. Most of the 
calculi proposed for this purpose have been first-
order. This calculus often becomes the basis of the 
user-level query language for the system, as it is 
non-procedural in nature. It has become clear, from 
experience with the relational model, that it is much 
easier to pose queries using a non-procedural 
language than with a procedural language, in which 
the query must specify not only what data is 
desired, but how to go about retrieving that data.  
 

Of course, at some point we must decide on a 
sequence of operations to retrieve the data 
physically. For this purpose there must be routines 
to access the data and to perform operations on 
them (e.g., the relational join). But going directly 
from a user’s query to procedure calls on the actual 
database will generally result in very inefficient 
query plans. We need to be able to rearrange the 
operations to produce an optimal sequence of data 
accesses. The formality of an algebra allows us to 
do this. Naturally, this algebra must be equipollent 
(equivalent in expressive power) to the calculus and 
translatable into actual calls on the database. It is an 
intermediate language. The relational algebra 
performs this function in the relational model, and 
is one reason why the model of query processing in 
relational systems is so attractive. 
 

The processing of a query, then, occurs 
conceptually in four steps: 1) translation from the 
calculus representation to a functionally equivalent 
algebra representation; 2) logical transformations of 



 
596 

 

the algebraic query to standardize and simplify it; 
3) generation of alternative algebraic strategies 
combined with alternative access and operator 
methods to produce plans for retrieving the data; 
and 4) selection of the cheapest plan based on a 
designer-specified set of criteria.  
 
2. DATABASE ALGEBRAS 
 

An algebra is formally defined as a pair (S, Θ), 
where S is a (possibly infinite) set of objects and 
Θ is a (possibly infinite) set of n-ary operators, 
each of which is closed with respect to S [9]. These 
operations will have certain properties (e.g. 
commutativity) which make rearrangement of some 
algebraic expressions possible; this is what makes 
algebras so desirable for query optimization. 
 

A large number of recent systems operate on 
objects much more complex than those found in 
relational systems. A few of these have a 
corresponding algebra which they could use to 
optimize queries, but most do not. In addition, 
several "generic" algebras for non-relational 
systems have been proposed. These are not geared 
toward any particular system or implementation. In 
the following sections we describe the basic 
concepts and operations of these algebras, 
regardless of their connections with actual systems. 
For each algebra, we will provide the following as 
appropriate: a short summary of the system and 
algebra (including goals of the system, structure of 
the objects operated on, and all of the algebraic 
operators), descriptions of any normal forms or 
other restrictions imposed by the model, some of 
the more important results about algebraic 
equivalences, whether the operators work on 
object-based or value-based structures, a rough idea 
of the expressive power of the algebra, whether or 
not there is a corresponding calculus, 
implementation status (where applicable and 
known).  
 
2.1. The Relational Algebra 
 

The relational model was first described in [3] 
and became the model of choice for standard 
business data processing applications in the 1980s. 
The model consists of three things: 1) Relations, 2) 
An algebra to operate on those relations, and 3) 
Rules and guidelines for database design and 
maintenance (including integrity constraints, etc.).  
 

In the relational model, real-world entities are 
represented by tuples (or records). A tuple has a 

fixed integral number of named attributes (or 
fields). An important restriction is that these fields 
be filled only with scalar values. This is known as 
the first normal form (or 1NF) restriction. A 
relation (or table) is a set of tuples with identical 
layouts. This layout is called the relation’s schema. 
Relations are manipulated using the relational 
algebra, which is equipollent to the relational 
calculus. Five standard relational operators as 
defined in [7] or [8] are: 
 
1) Union (∪): Two relations can be combined into 
one using a standard set-theoretic union (duplicate 
tuples are eliminated). The two relations must have 
the same schema. 
  
2) Difference (−): The expression R −S describes a 
relation consisting of all tuples in R which are not 
also in S. The two relations must have the same 
schema. 
 
3) Cartesian Product (×): R×S indicates the 
relation whose schema consists of all attributes of R 
followed by all attributes of S. Each tuple of R is 
"concatenated" with each tuple of S to form the set 
of tuples in R×S.  
 
4) Projection (π): This operation, when applied to 
a set of tuples and given a list of attributes, returns 
the same set of tuples, removing from each tuple all 
attributes but the ones listed in the π expression. If 
any duplicates were created during this process, 
they are removed. 
 
5) Selection (σ): Given a relation R, this operator 
applies a predicate to each tuple in the relation. If 
the tuple satisfies the predicate, it becomes part of 
the result of the selection expression; otherwise, it 
is dropped. 
 
2.2. Nested Relational Algebras 
 
This section describes several algebras which 
operate on non-first normal form relations. 
 
2.2.1. The DASDBS Algebra 
 
 The main feature of the DASDBS (Darmstadt 
Database System) [2, 5, 6, 10] is an application-
independent kernel based on non-first normal form 
(NF2) relations. Specific applications will be 
implemented on top of this kernel. The kernel itself 
supports a subset of the NF2 algebra which will be 
presented here. The kernel also provides transaction 
management facilities.There is no limit to the level 
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of nesting of the relations. The following seven 
operators for the NF2 algebra are proposed: 
 
1)-5) Cross-product (×), Union (∪), Difference 
(−), Selection (σ), Projection (π): These are 
defined as in the relational algebra. 
 
6) Nest (ν): This operator is applied to a single 
relation and must specify what attributes are to be 
nested and the name of the single attribute which 
will replace them. Specifically, νA*=A (R), where A 
is a set of attributes and A* is a single relation-
valued attribute whose tuples have members of A 
as columns, is a new relation, R*. R* is formed by 
using the attributes in (attrs(R) − A) as a key. 
 
7) Unnest (μ): This is the inverse of ν. μA*=A (R) is 
obtained by replacing the single attribute A* with 
the set of attributes A and for each tuple of R, 
forming a set of tuples over ((attrs(R) − {A*}) ∪ 
A) such that for each of these tuples t, t[A] was a 
tuple in the A* attribute of this tuple of R. 
 
 It should be noted that only two new 
operators, ν and μ, have been introduced. The first 
five operators are the standard operators needed for 
relational completeness. The most important 
property of the μ and ν operators is that, while μ is 
always the inverse of ν, it is not always the case 
that ν  (μ (R)) = R. This equality holds iff a certain 
functional dependency holds on the relation: all 
nonscalar fields must be functionally dependent on 
the set of scalar fields. This is known variously as 
Partitioned Normal Form (PNF) [11, 19]. Another 
interesting property of ν is that this operator can be 
used to perform the grouping phase of aggregate 
function computation in a fairly straightforward 
way. 
 

As the DASDBS algebra is a fairly 
straightforward extension of the relational algebra, 
it is value-based (as opposed to object-based), just 
as is the relational algebra. That is, to get a handle 
on an object, one must use its value(s), not some 
abstract sort of name or identifier or surrogate for 
the object. In other words, the system is not object-
oriented. No formal calculus has been defined for 
the DASDBS system. 
 
2.2.2. The AIM Algebra 
 
 The AIM project at IBM-Heidelberg [14, 15, 
4] is designed to handle an extension of the NF2 
data model, with the goal of supporting non-

traditional database applications. The major 
extension is the ability to handle ordered lists 
(arrays), multisets, and tuple-valued attributes. The 
seven operators described above for the DASDBS 
system appear essentially unchanged in the AIM 
algebra, with the exception of selection. Also, the 
AIM algebra treats renaming (ρ) as a separate 
operator, not as part of the π operator. The 
operations are the following: 
 
1)-6) Nest (ν), unnest (μ), projection (π), 
Cartesian product (×), union (∪), and difference 
(−): These are defined exactly as in the DASDBS 
algebra. 
 
7) Selection (σ): This is similar to the DASDBS σ, 
but the AIM selection allows an arbitrary 
algebraic expression to appear in a σ  formula. 
This mimics the SQL notion of nested queries. 
 
8) Keying (χ): This operator is introduced to 
eliminate the problem of non-invertible unnestings. 
χ appends a key column to a relation before it is 
unnested then renested, and this ensures that 
nesting after an unnest will result in the original 
NF2 relation. This is needed only when there is not 
already a key column in the relation. 
 
9) Renaming (ρ): This operator renames an 
attribute of a nested relation. The renamed attribute 
may appear anywhere in the schema. Such an 
operator is needed only because no ordering is 
assumed to hold on the columns of a relation. If 
such an ordering were assumed, renaming would 
not be necessary and column numbers could be 
used instead. 
 

As with DASDBS, no formal calculus has 
been defined for the AIM system. Null values are 
not supported in the formal algebra. Joins in AIM 
are defined using the ∩ operator as follows: if the 
join attributes are both scalar, two tuples will join 
with one another if the attribute values are equal (as 
in the relational natural join). If the join attributes 
are both relation-valued, the tuples join iff the 
intersection of the two relation-valued join 
attributes is not ∅. This definition of the join 
operator seems to imply that the AIM system is 
value-based rather than object-based. 
 
2.2.3. The Vanderbilt Algebra 
 
 The algebra for NF2 relations described in [7] 
was not defined for use with a particular system, 
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but rather as a general algebra for use with any NF2 
system, just as Codd’s relational algebra [3] was 
intended to apply to any number of relational 
systems. The objects operated on by the Vanderbilt 
algebra are exactly the NF2 relations, as with the 
DASDBS algebra. That is, a relation can have 
atomic and relation-valued attributes. The 
following operations can be applied to nested 
relations: 
 
1)-4) Project (π), Union (∪), Difference (−), 
Cartesian Product (×): These are defined exactly 
as in the relational algebra.  
 
5) Select (σ): This is similar to the relational σ  
operator but has been extended with set 
comparators and setvalued constants. 
  
6) Nest (NEST): This is defined exactly as is the ν 
operator in the DASDBS and AIM NF2 algebras. 
 
7) Unnest (UNNEST): UNNEST is identical to the 
μ operator of the DASDBS and AIM algebras. 
 
8) Flatten (UNNEST*): This operator simulates a 
sequence of UNNEST operations on a relation 
which will transform it into an equivalent flat 
(1NF) relation. That is, all possible unnestings are 
performed. Note that the order in which these are 
performed is irrelevant, since UNNEST A=S 
(UNNEST B=T (R)) = UNNEST B=T (UNNEST A=S 
(R)). 
 

Joins in the Vanderbilt algebra are defined 
as they are for the AIM algebra. This exemplifies 
the fact that the algebra is strictly value-based. 
Also, it should be clear that this algebra has the 
same expressive power as the DASDBS and AIM 
algebras. Finally, it should be noted that no calculus 
corresponding to the Vanderbilt algebra has been 
defined. 
 
2.2.4. The SQL/NF Algebra 
 
 SQL/NF [12, 11] is an extension of the SQL 
relational query language to handle non-first 
normal form relations. As with the previous three 
algebras, the domain of interest here is the set of 
NF2 relations.The set of operators for the algebra is 
as follows: 
 
1) Select (σ): [6] claims not to extend the relational 
σ operator, but their proofs use a σ which is 
extended with the ability to specify set-valued 
constants. This is the notion of σ we adopt here. 

Note that no set-based comparisons have been 
added; only equality may be tested for. 
2) Union (∪e): Union is defined recursively for 
pairs of relations with the same schema. For flat 
schemas, it works exactly as does the relational ∪. 
But when a relation-valued attribute is encountered 
the ∪e operator is applied to this relation, 
recursively. That is, to preserve PNF, tuples with 
common values on the scalar fields will be 
combined into a single tuple in which the relation-
valued fields will in turn be operated on by ∪e.  
 
3) Difference (−e): This is defined recursively in a 
fashion similar to the ∪e operator.  
 
4) Intersection (∩e): This is also defined similarly 
to ∪e. Two tuples intersect if they agree on their 
scalar (key) attributes and the intersections of all of 
their nested attributes are non-empty. 
 
5) Cartesian Product (×): This is defined as in the 
relational algebra. 
 
6) Projection (πe): This consists of a normal 
relational π (i.e., only a top-level attribute may be 
projected out, but it need not be scalar) followed by 
a unioning (∪e) of all the resulting tuples to remove 
duplicates. 
 
7) Natural Join ( |×|e ): The natural join of two 
relations is defined only if all the common (joining) 
attributes are top-level attributes of the relation. 
Two tuples join only if they agree on all common 
scalar attributes and the intersections (∩e) of their 
common set-valued attributes are all non-empty. 
 
8) Nest (ν): This is defined exactly as in the 
Vanderbilt algebra. 
 
9) Unnest (μ): This is also defined exactly as in the 
Vanderbilt algebra. 
 

Neither null values nor empty sets are 
supported in the algebra, which avoids some 
interesting problems regarding the unnesting of an 
empty set in a system not supporting nulls. Also, it 
is clear that, like the rest of the algebras discussed 
thus far, this algebra is purely value-based. A 
formal calculus corresponding to the SQL/NF 
algebra has been defined and proved equivalent to 
the algebra.  
 
2.2.5. The NRDM Algebra 
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 The Nested Relational Data Model (NRDM) 
is a system being developed and implemented at 
Indiana University [19]. Once again, the domain of 
objects is the set of relations with relation-valued 
attributes, just as in the previous algebras. This 
algebra also enforces the PNF restriction on its 
data, which again has an effect on the definition of 
the algebraic operations. These operators are 
defined as follows: 
 
1)-3) Union (∪e), Difference (−e), Project (πe): 
These are defined in the same manner as in the 
SQL/NF algebra. 
 
4) Select (σe): This is extended from the relational 
σ to allow membership testing in sets, set 
comparators, and selections from any level of the 
hierarchical structure. 
 
5) Join (|×|): Joins are allowed only when the join 
attributes are atomic. Joins are identical to the 
relational natural join, and can occur only when the 
join attributes are at the top level.  
 
6) Nest (ν): This works essentially as in the 
previous algebras, but is restricted to yield a 
structure with only one set-valued attribute at the 
highest level. That is, a ν operation must nest at 
least all of the relation-valued attributes at the top 
level of the structure, resulting in just one relation-
valued attribute. This can be worked around by 
joining two or more relations which have only one 
set-valued top-level attribute. 
 
7) Unnest (μ): This merely inverts the ν operator. 
 

Null values are not supported in this 
algebra. No calculus has been defined to 
correspond specifically to this algebra, but, like 
with the other algebras, it is not hard to envisage an 
adaptation of the SQL/NF calculus [11] to this 
algebra. It also shares with all of the previously 
defined algebras the characteristic of being value-
based. There are no formal results on the expressive 
power of this algebra, but it almost certainly has the 
same expressive power as SQL/NF, due to the PNF 
restriction. 
 
 
2.3. Database Algebras for advanced data 

models 
 
 This section describes algebras for advanced 
data models other than the nested relational model. 

Algebras described in detail here include algebras 
for relational aggregates, summary tables, complex 
objects, and object-oriented systems. 
2.3.1. An Algebra for Aggregates 
 
 In [1] an algebra is developed which extends 
the relational algebra to include aggregate 
computations. The set of objects over which this 
algebra operates is the set of 1NF relations. The 
operators are thus identical to the relational algebra 
operators, with the addition of an operator to handle 
aggregates, which will be described below. For 
completeness, we present all of the operators:  
 
1)-4) Projection, Cross product, Union, and 
Difference are the standard relational operators. 
 
5) Restriction: This is used in place of selection, 
and results in an equivalent algebra. It is written as 
e[X Θ Y](I), where e is an algebraic expression and 
I is an instance of a relation. It restricts the result to 
contain those tuples whose X component stands in 
relation Θ to its Y component, where Θ is either = 
or <. It differs from selection in that many 
definitions of selection allow constants to appear in 
the predicate as well as values from the actual 
tuples. 
 
6) Aggregate formation: This is denoted by e<X, 
f>(I), where e is an algebraic expression, I is an 
instance of a relation, X is a set of attributes of the 
relation, and f is a function. The result of this 
operation is the set of tuples over the attributes (X 
∪ {F}), where F is an attribute indicating the result 
of applying the function f to the X attributes of each 
tuple of the original relation. More precisely, this 
operator partitions its input on the attributes X, 
applies the function f to each partition, and returns 
the X-value and associated f-value for each 
partition. As a limiting case, X can be empty, and 
we return simply a single value (for example, the 
average value of a single column, taken over the 
entire relation). 
 

In [5] a calculus is defined for this algebra 
and their equipollence is proved. Clearly, this 
algebra is  value-based and null values are not 
allowed in this algebra. 
 
2.3.2. A Complex Object Algebra 
 
 In [16], an algebra and calculus are developed 
for a model whose objects are sets of values 
constructed from the set and tuple type constructors 
in an arbitrary fashion; this is a pure complex object 
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model. The model is  also purely value-based, thus 
equality of two entities is determined by traversing 
their entire structures. Sets in the model are strictly 
homogeneous, and cyclic schemas are not allowed. 
The following operators are provided for complex 
objects: 
 
1)-3) Union (∪), Intersection (∩), and Difference 
(−): Each of these takes two inputs of the same set 
type and produces a result of that type. They are 
defined exactly as in set theory. As in set theory, ∩ 
is redundant. 
 
4) Cross product (crossA ): This is an n-ary 
operator which forms a set of n-tuples from n 
inputs, each of which must be a set. The value is the 
cross product of the input sets. The subscript 
indicates the name of the new tuple type contained 
in the result set. 
 
5) Rename (rename A→B ): This renames all 
occurrences of type A in the input expression to 
type B. No values are changed.  
 
6) Powerset (powerset A ): This returns the set of 
all subsets of its input, which must be a set. The 
subscript indicates the name of the type contained 
in the result set. 
 
7) Set-collapse (set-collapse): Given a set of sets, 
the member sets are all unioned together to produce 
a single set. 
 
8) Replace (ρ<G>(R)): This operation iterates 
through a set of objects and performs the 
transformations indicated by G. G is a "replace 
specification". G is built recursively as follows: 
base specifications are constants, names of types 
appearing in the input type, and input parameters 
(each specification G can have input parameters 
which are algebraic expressions of a specified type; 
these are distinct from the input to the "replace" 
operator). Recursive specifications are built up 
from base specifications using the tuple and set 
constructors (i.e., a tuple or set of specifications is 
also a specification). Conditional and applicative 
specifications are also used recursively to build 
other specifications. A conditional specification can 
use the comparators "=" and "∈", and returns an 
object as its result only if the predicate is true. It 
acts like a relational selection. Finally, an 
applicative specification applies one of the other 
algebraic operators to each element of the input set 
(each element may, of course, have had other 

specifications applied to it prior to being given to 
the algebraic operator). 
 
 
 
2.3.3 An Object-Oriented Database Algebra 
 
 [17] describes an object-oriented data model 
and algebra. Structurally, the model supports scalar 
values and the tuple and set type constructors, as 
well as inheritance among tuple types. One 
important extension, though, is that sets need not be 
homogeneous. Everything in a database is an object 
with its own unique identity, thus everything in a 
field of a tuple and every element in a set 
(homogeneous or not) is an object identifier. Unlike 
many object-oriented models, however, this one 
does not support the notion of methods associated 
with object types (classes). Tests for both identity 
and equality of two objects are allowed. Equality 
here means "deep equality"; i.e., an entire 
hierarchical structure is traversed, and all parts of it 
must be equal to the corresponding parts of the 
other.The algebra supports the following operators: 
 
1)-3) Union (Union), Intersection (Intersect), and 
Difference (Subtract): Each of these takes 2 sets 
of object identifiers and produces a new (set-
valued) object. Each is defined exactly like its set-
theoretic counterpart, and equality of object 
identifiers (i.e., identity of the objects referred to) is 
used to test the set elements for equality. 
 
4) Combining two objects (Combine): This 
operation is defined on any pair of objects such that 
either i) both are tuples, ii) both are sets, or iii) one 
is a set and the other a tuple. In case (i), the result is 
a new tuple object with all the fields of each input 
tuple. In case (ii), the result is computed by 
invoking Combine on each element of the Cartesian 
product of the inputs. In case (iii), Combine 
invokes itself on every pair (t, e), where t is the 
input tuple and e is an element of the input set. 
 
5) Partitioning an object (Partition attr_list ): 
The input to this operator must be either a tuple or a 
set. If it is a tuple, the result is a new tuple 
containing only the attributes in attr_list (or null if 
the tuple does not contain all the attributes in 
attr_list). If the input is a set, the output is a new set 
containing the result of applying Partition to every 
tuple in the set which contains all of the attributes 
in attr_list. Thus it can perform relational 
projections. 
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6) Predicates (Choose Pred): A predicate (Pred) 
consists of terms of the following form connected 
by ∧  and ¬: obj IsNull, obj1 - obj2, obj1 ≡ obj2 
(identity test), and obj InClass C (where C is the 
name of some class). In the expression Choose Pred 
(obj), if obj is a set, the result is a new set 
containing (the identifiers of) all objects in the set 
for which Pred is true. Otherwise the result is obj if 
Pred applied to obj is true and null if it is false. 
 
3. SUMMARY 
 
 We conclude the survey by summarizing the 
salient features of the algebras described above. 
Table 1 summarizes the NF2 algebras and other 
database algebras presented in previous sections. 
For algebras the interesting features include any 
restrictions (e.g. normal forms) required of a 
database in order for the operations of the algebra 
to be applicable; whether or not the algebra allows 
for value-based or object-based operations or both; 
and an unannotated list of the algebraic operators 
provided.  
 
4. CONCLUSION 
 
 In this paper we have seen many different 
ways of defining an algebra and notice the central 
nature of the relational algebra that is virtually all 
of the algebras are based on this algebra in some 
way with some algebraic extensions. Specifically, 
these algebraic extensions imply that the relational 
model falls short in the areas of modelling 
constructs (not rich enough), expressive power 
(cannot do, e.g., a general transitive closure), 
computational power (absence of aggregates, etc.), 
historical databases (i.e., we cannot express the 
query "what was true at time x?"), and object-based 
notions (which can help alleviate some of the 
anomalies encountered in 1NF relations). But for 
data more complex than NF2 relations, a clearly 
favorite set of primitives has not yet emerged 
(indeed, only a handful of algebras for complex 
objects exist). More work remains to be done in this 
area. 
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Algebra Restrictio

ns 

Objects / 

Values 

 

Operators 

DASDBS None Value based x, ∪,-, σ, π,ν, μ 

AIM None Both x, ∪, -, σ, π,ν,μ, χ, ρ 

Vanderbilt None Value based x, ∪, -, σ, π, NEST, UNNEST, 

UNNEST* 

SQL/NF PNF Value based x, ∪e,  -e, ∩e, σ, πe, ⏐x⏐e, ν, μ 

NRDM PNF Value based ∪e, -e, σ e,πe, ⏐x⏐,ν,μ 

An Algebra for 

Aggregates 

None Value based Projection,Cross product, Union,  
Difference, Restriction, Aggregate 
formation 
 

A Complex  Object  

Algebra 

None Value based ∪, ∩, −, crossA, rename A→B, 
powersetA, set-collapse, ρ<G>(R) 
 

An Object-Oriented 

Database Algebra 

None Object based Union, Intersect, Subtract, Combine, 

Partition attr_list, Choose Pred 

               
               Table 1. Database algebras 
 


