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ABSTRACT 
 

In this paper, a new robust nonlinear observer is proposed for the reconstruction of the whole process state 
variables in a simulated polymerization reactor. It presents an interconnected high gain observer to perform 
the estimation. This observer has robust performance in the presence of measurement noise and model 
uncertainty. The global stability of the observer is analytically treated using the Lyapunov theory in order to 
show the conditions under which exponential convergence can be achieved. Finally, we present a numerical 
simulation to illustrate the effectiveness of the suggested approach. 

Keywords: State estimation, interconnected observer, global stability, robustness, polymerization reactor 
 
1. INTRODUCTION  
 

 The major obstacles in the application of 
computer control algorithms for polymerization 
reactor is the difficulty of finding adequate and 
reliable sensors for the on-line measurements of 
process key variables such as reactant and product 
concentrations. Sensors in the field of chemical 
processes are still very expensive and their 
maintenance is usually time consuming. One way to 
avoid these problems is to use estimation strategies. 

State estimation methods have been initiated  in 
the 1960s. The Kalman filter and the Luenberger 
observer were the first ones to be introduced ([13]; 
[20], [21]). The extensions of these two methods, 
known as extended Kalman filter (EKF) and 
extended Luenberger observer ([1]-[3]; [5]; [6];   
[12]; [16]; [17]; [19]; [23];  [25]-[27]; [29]; [32];  ). 
However, several studies show the inadequacy of 
these methods for highly non-linear processes ([11]; 
[14]; [17]; [24]; [35]; [36]), because these methods 
use linear approximation of the nonlinear process 
model ([34]; [38]). Gauthier et al. ([9];[10]) stated a 
canonical form and necessary and sufficient 
observability conditions for a class of nonlinear 
systems that are linear with respect to inputs. Farza 
et al. ([7];[8]) developed a simple nonlinear 
observer for on-line estimation of the reaction rates 
in chemical and biochemical reactors. The principal 
advantage of this observer lies in the simplicity of 
its design and implementation.  

 Another procedure related to the construction of 
observers for nonlinear processes, is geometric 
differential methods [15]. The main idea is to find 
some state transformation that represents the 
original system as a linear equation plus a nonlinear 
term, which is a function of the system output. 

 A detailed discussion on many of the available 
state estimation techniques applicable to a broad 
class of nonlinear systems is provided by Mouyon 
[22]. Another comprehensive evaluation of various 
nonlinear observers was presented by Wang et al. 
[37]. 

The main objective of this paper is to design an 
interconnected high gain observer. The global 
stability of the observer is analytically treated using 
the Lyapunov theory in order to show the 
conditions under which exponential convergence 
can be achieved. The performance of the 
methodology proposed is illustrated taking as case 
study a CSTR polymerization reactor, where the 
main variables (initiator, monomer and growing 
polymer concentration) are estimated using 
continuous measurements of temperature, the total 
molar concentration of dead polymer and  the total 
molar concentration of monomer units present as 
polymer. 

The work is organized as follows. In Section 2, 
we present the dynamical model under 
consideration. The design of the corresponding 
nonlinear observer is presented in section 3. In 
section 4, the computer simulations were developed 
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to illustrate the performance of the proposed 
nonlinear observer. Finally, we will close the paper 
with some concluding remarks. 

2. DYNAMICAL MODEL OF THE FREE- 
RADICAL POLYMERIZATION REACTORS 
 

Polymerization reactors are highly nonlinear 
processes characterized by multiple steady states, 
exotic dynamics, and potential reactor runaway 
([30]; [33]). 

In this paper we consider continuous stirred tank 
reactors in which free-radical polymerization takes 
place. The reaction mechanism of free-radical 
polymerization reactions is well understood and 
first-principles mathematical models of free-radical 
polymerization reactors are available in the 
polymerization literature [33].  

Using the equal-reactivity hypothesis and the 
quasi-steady-state assumption for all radical 
species, and ignoring the reaction of chain transfer 
to the polymer, a mathematical model of the class 
of CSTR free-radical polymerization reactors has 
the form [30]: 

ሶூܥ ൌ െ݇ூܥூ 
ிబିி


 (1) 

ሶܥ ൌ െ݇ܥܥ 
ிబିி


 (2) 

ሶܶ ൌ ሺି∆ுሻ
ఘ

݇ܥܥ െ 
ఘ

൫ܶ െ ܶ൯ 

          ிሺ బ்ି்ሻ


 (3) 

ܥ ൌ ටଶכ


 (4) 

with: 

݇ ൌ ݁ିாೝܣ ோ்⁄ ݎ   , ൌ , ,ܫ ,ݐ  ܿݐ

ܨ ൌ ூܨ  ܨ   ௦ܨ
where ܥ, ܥ, ܶ and ܥ represent the concentration 
of initiator, concentration of monomer, reactor 
temperature and concentration of growing polymer, 
respectively. The initiator is azobisisobutyronitrile 
(AIBN) dissolved in benzene, while the monomer 
is styrene and the solvent is benzene. 

In order to complete the model, following 
Schmidt and Ray [33], two polymer chain moment 
equations are added to the mass and energy 
balances [30]: 

ሶߣ ൌ െ0.5݇௧ܥ
ଶ െ ி


  (5)ߣ

ሶଵߣ ൌ ݇ܥܥ െ ி


 ଵ (6)ߣ

where ߣ is the total molar concentration of dead 
polymer and ߣଵ is the total molar concentration of 
monomer units present as polymer. 

Equations (1-6) can be written in the following 
dimensionless form [30]: 

ሶଵݔ ൌ ଵݑூݍ െ ଵݔܳ െ ߶ூ݇ூሺݔଷሻݔଵ (7) 

ሶଶݔ ൌ ଶݔݍ െ ଶݔܳ െ ߶݇ሺݔଷሻݔଶݔସ (8) 

ሶଷݔ ൌ ܳ൫ݔଷ െ ଷ൯ݔ  ସݔଶݔ ଷሻݔ݇ሺ߶ߚ െ
ଷݔሺߜ           െ  ଶሻ (9)ݑ

ସݔ ൌ ටଶכథሺ௫యሻ
థሺ௫యሻ

 ଵ  (10)ݔ

ሶହݔ ൌ 0.5߶௧݇௧ሺݔଷሻݔସ
ଶ െ  ହ (11)ݔ

ሶݔ ൌ ߶݇ሺݔଷሻݔଶݔସ െ   (12)ݔ

where: 

݇ሺݔଷሻ ൌ exp ሺ ఊ௫య

ఊା௫య
ሻ, ݇ூሺݔଷሻ ൌ exp ሺఊఊ௫య

ఊା௫య
ሻ,     

݇௧ሺݔଷሻ ൌ exp ሺఊఊ௫య

ఊା௫య
ሻ    

and  ܳ ൌ ூݍ  ݍ    ௦ݍ
It can be shown that equation (11) becomes: 

ሶହݔ ൌ ଵݔଷሻݔூ݇ூሺ߶כ݂ െ  ହ (13)ݔ

The values of the parameters used in the above 
equations are given in Table 1. 

Parameter value 
ூݍ 0.11429 
  0.4ݍ
௦ݍ 0.48571 
 ଶ 1.0ݔ
 ଷ 0.0ݔ
 13.17936 ߚ
כ݂ 0.6 
߶ூ 0.01688 
߶ 2.19560×107 
߶௧ 9.6583×1012 
ூߛ 4.18808 
  10.77879ߛ
௧ߛ 0.23699 
 0.74074 ߜ

Table 1. Dimensionless parameters values of 
polymerization model. 

Input variables for the observer are 
dimensionless initiator feed concentration (ݑଵ) and 
dimensionless jacket temperature (ݑଶ). Measured 
outputs in dimensionless form are temperature (ݔଷ), 
the total molar concentration of dead polymer (ݔହ) 
and the total molar concentration of monomer units 
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present as polymer (ݔ). With this choice of output 
variables the system is completely observable. This 
finding is in agreement with the literature on 
observability in polymerization reactor systems 
([28]; [31]; [35]). 

3. OBSERVER SYNTHESIS 

3.1. PRINCIPLE 
 
There is no systematic method to design an 

observer for a given nonlinear control system, but 
several designs are available according to the 
specific characteristics of the considered nonlinear 
system. In particular the nonlinear system 
considered can be seen as an interconnection 
between several subsystems, where each of these 
subsystems satisfies some required conditions for 
an observer to be computable [4]. 

The idea of the interconnected observer is to 
design an observer for the whole nonlinear system 
considered, starting from the separate synthesis of 
observers for each subsystem with the following 
assumption: the states of the other subsystems are 
available for each observer. 

Certain assumptions then make it possible to 
prove the convergence of the whole observers. 

Class of systems considered. Each nonlinear 
subsystem obtained is put in the following form: 

൜
ሶܺ ൌ ,ݑሺܣ ሻܺݕ  ݃ሺݑ, ,ݕ ܺሻ

ݕ ൌ ܺܥ  (14) 

with ܺ א Թ, ݑ א Թ and ݕ א Թ. 

3.2. APPLICATION TO THE FREE-RADICAL 
POLYMERIZATION REACTORS 
 

Input variables for the observer are dimensionless 
initiator feed concentration (ݑଵ) and dimensionless 
jacket. 

The free radical polymerization model can be 
rewritten in the form of three interconnected 
subsystems: 

ݔሶଷ
ሶସݔ

൨ ൌ െܳ 0
0 െ0.5ܳ൨ ቂ

ଷݔ
ସݔ

ቃ  

൦

ଷݔܳ  ସݔଶݔଷሻݔ݇ሺ߶ߚ

0.5ሾ
ସݔ

ଵݔ
ଵݑூݍ െ ߶ூ݇ூሺݔଷሻݔସ 

ߛ
ଶሺߛ௧ െ ସݔூሻߛ

൫ߛ  ଷ൯ଶݔ ሺܳ൫ݔଷ െ  ଷ൯ݔ

െߜሺݔଷ െ ଶሻݑ
 

ߚ߶݇ሺݔଷሻݔଶݔସ െ ଷݔሺߜ െ ଶሻሿݑ
 (15) 

ݔሶହ
ሶଵݔ

൨ ൌ െ1 0
0 െܳ൨ ቂ

ହݔ
ଵݔ

ቃ   ଵݔଷሻݔூ݇ூሺ߶כ݂
ଵݑூݍ െ ߶ூ݇ூሺݔଷሻݔଵ

൨ (16) 

 

ݔሶ
ሶଶݔ

൨ ൌ െ1 0
0 െܳ൨ ቂ

ݔ
ଶݔ

ቃ  ቈ
߶݇ሺݔଷሻݔଶݔସ

ଶݔݍ െ ߶݇ሺݔଷሻݔସݔଶ
 (17) 

The three subsystems (15), (16) and (17) can be 
represented in compact form as follows: 

൜
ሶܺଵ ൌ ଵܣ ଵܺ  ݃ଵሺݑ, ,ݕ ଵܺ, ܺଷሻ

ଵݕ ൌ ܥ ଵܺ
 (18) 

൜
ሶܺଶ ൌ ଶܺଶܣ  ݃ଶሺݑ, ,ݕ ଵܺ, ܺଶሻ

ଶݕ ൌ ଶܺܥ
 (19) 

൜
ሶܺଷ ൌ ଷܺଷܣ  ݃ଷሺݑ, ,ݕ ଵܺ, ܺଷሻ

ଷݕ ൌ ଷܺܥ
 (20) 

where: 

ଵܣ ൌ െܳ 0
0 െ0.5ܳ൨,       ܣଶ ൌ െ1 0

0 െܳ൨,  

ଷܣ ൌ െ1 0
0 െܳ൨ 

݃ଵሺݑ, ,ݕ ܺଵ, ܺଷሻ

ൌ ൦

ଷݔܳ  ସݔଶݔଷሻݔ݇ሺ߶ߚ

0.5ሾ
ସݔ

ଵݔ
ଵݑூݍ െ ߶ூ݇ூሺݔଷሻݔସ 

ߛ
ଶሺߛ௧ െ ସݔூሻߛ

൫ߛ  ଷ൯ଶݔ ሺܳ൫ݔଷ െ  ଷ൯ݔ

െߜሺݔଷ െ ଶሻݑ
 

ߚ߶݇ሺݔଷሻݔଶݔସ െ ଷݔሺߜ െ ଶሻሿݑ
 

 

݃ଶሺݑ, ,ݕ ଵܺ, ܺଶሻ ൌ  ଵݔଷሻݔூ݇ூሺ߶כ݂
ଵݑூݍ െ ߶ூ݇ூሺݔଷሻݔଵ

൨,  

 

݃ଷሺݑ, ,ݕ ଵܺ, ܺଷሻ ൌ ቈ
߶݇ሺݔଷሻݔଶݔସ

ଶݔݍ െ ߶݇ሺݔଷሻݔସݔଶ
 

 
ܥ ൌ ሾ1 0ሿ, ଵܺ ൌ ሾݔଷ ସሿ் , ܺଶݔ ൌ ሾݔହ   , ଵሿ்ݔ
ܺଷ ൌ ሾݔ  ଶሿ்ݔ

Our goal is to design three interconnected 
observers for the subsystems (18), (19) and (20) to 
reconstruct the concentration of initiator, monomer 
and growing polymer. Consequently, we pose the 
following assumption: 
A.1. The variables ሺݑ, ,ݕ ܺଷሻ and ሺݑ, ,ݕ ଵܺሻ are 
considered as known signals for the subsystems 
(18), (19) and (20) respectively. We denote 

 ߭ଵ
ᇞ
ൌ ሾݕ  ݑ  ܺଷ ሿ் and ߭ଶ

ᇞ
ൌ ሾݕ  ݑ  ଵܺሿ்  

Then the three subsystems (18), (19) and (20) 
become: 

൜
ሶܺଵ ൌ ଵܣ ଵܺ  ݃ଵሺ߭ଵ, ଵܺሻ

ଵݕ ൌ ܥ ଵܺ
 (21) 

൜
ሶܺଶ ൌ ଶܺଶܣ  ݃ଶሺ߭ଶ, ܺଶሻ

ଶݕ ൌ ଶܺܥ
 (22) 

൜
ሶܺଷ ൌ ଷܺଷܣ  ݃ଷሺ߭ଶ, ܺଷሻ

ଷݕ ൌ ଷܺܥ
 (23) 

A.2. ߭ଵ and ߭ଶ are bounded and supposed to be 
regularly persistent to guarantee the observability 
property of the subsystems (21), (22) and (23) 
respectively. 
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A.3. The function ݃ଵሺݑ, ,ݕ ଵܺ, ܺଷሻ is globally 
Lipschitz with respect to ሺܺଷሻ uniformly with 
respect to the inputs ሺݑ, ,ݕ ଵܺሻ. 
A.4. The function ݃ଶሺݑ, ,ݕ ଵܺ, ܺଶሻ is globally 
Lipschitz with respect to ሺ ଵܺሻ uniformly with 
respect to the inputs ሺݑ, ,ݕ ܺଶሻ. 
A.5. The function ݃ଷሺݑ, ,ݕ ଵܺ, ܺଷሻ is globally 
Lipschitz with respect to ሺ ଵܺሻ uniformly with 
respect to the inputs ሺݑ, ,ݕ ܺଷሻ. 

Under the above assumptions, the nonlinear 
interconnected observers for the subsystems (18), 
(19) and (20) are given by: 

൞
ܺሶ

ଵ ൌ ଵܣ ܺଵ  ݃ଵ൫ݑ, ,ݕ ܺଵ, ܺଷ൯  ܵఏభ
ିଵܥ்ܥ൫ ଵܺ െ ܺଵ൯

ଵܵఏభߠ  ଵܣ
்ܵఏభ  ܵఏభܣଵ െ ܥ்ܥ ൌ 0

ොଵݕ ൌ ܥ ܺଵ

 (24) 

൞
ܺሶ

ଶ ൌ ଶܣ ܺଶ  ݃ଶ൫ݑ, ,ݕ ܺଶ൯  ܵఏమ
ିଵܥ்ܥ൫ܺଶ െ ܺଶ൯

ଶܵఏమߠ  ଶܣ
்ܵఏమ  ܵఏమܣଶ െ ܥ்ܥ ൌ 0

ොଶݕ ൌ ܥ ܺଶ

 (25) 

൞
ܺሶ

ଷ ൌ ଷܣ ܺଷ  ݃ଷ൫ݑ, ,ݕ ܺଵ, ܺଷ൯  ܵఏయ
ିଵܥ்ܥ൫ܺଷ െ ܺଷ൯

ଷܵఏయߠ  ଷܣ
்ܵఏయ  ܵఏయܣଷ െ ܥ்ܥ ൌ 0

ොଷݕ ൌ ܥ ܺଷ

 (26) 

where: 
݃ଵ൫ݑ, ,ݕ ܺଵ, ܺଷ൯ ൌ 

൦

ଷݔܳ  ොସݔොଶݔොଷሻݔ݇ሺ߶ߚ

0.5ሾ
ොସݔ

ොଵݔ
ଵݑூݍ െ ߶ூ݇ூሺݔොଷሻݔොସ 

ߛ
ଶሺߛ௧ െ ොସݔூሻߛ

൫ߛ  ොଷ൯ଶݔ ሺܳ൫ݔଷ െ  ොଷ൯ݔ

െߜሺݔොଷ െ ଶሻݑ
 

ߚ߶݇ሺݔොଷሻݔොଶݔොସ െ ොଷݔሺߜ െ ଶሻሿݑ
 

݃ଶ൫ݑ, ,ݕ ܺଵ, ܺଶ൯ ൌ  ොଵݔොଷሻݔூ݇ூሺ߶כ݂
ଵݑூݍ െ ߶ூ݇ூሺݔොଷሻݔොଵ

൨,  

݃ଷሺݑ, ,ݕ ܺଵ, ܺଷሻ ൌ ቈ
߶݇ሺݔොଷሻݔොଶݔොସ

ଶݔݍ െ ߶݇ሺݔොଷሻݔොସݔොଶ
 

ܥ ൌ ሾ1 0ሿ , ܺଵ ൌ ሾݔොଷ ොସሿ்,  ܺଶݔ ൌ ሾݔොହ   , ොଵሿ்ݔ
ܺଷ ൌ ሾݔො  ොଶሿ்ݔ

In order to prove the estimation error 
convergence of the three observers, we present the 
stability analysis of the three observers based on 
Lyapunov theory. 

3.3. GLOBAL STABILITY ANALYSIS WITH 
PARAMETERS UNCERTAINTY 

 
Define the estimation errors as: 

݁ଵ ൌ ଵܺ െ ܺଵ  ,  ݁ଶ ൌ ܺଶ െ ܺଶ ,   ݁ଷ ൌ ܺଷ െ ܺଷ 
We then have: 

ሶ݁ଵ ൌ ଵܣൣ െ ܵఏభ
ିଵܥ்ܥ൧݁ଵ  ݃ଵሺݑ, ,ݕ ଵܺ, ܺଷሻ െ

          ݃ଵ൫ݑ, ,ݕ ܺଵ, ܺଷ൯ (27) 
ሶ݁ଶ ൌ ଶܣൣ െ ܵఏమ

ିଵܥ்ܥ൧݁ଶ  ݃ଶሺݑ, ,ݕ ଵܺ, ܺଶሻ െ
           ݃ଶ൫ݑ, ,ݕ ܺଵ, ܺଶ൯ (28) 

ሶ݁ଷ ൌ ଷܣൣ െ ܵఏయ
ିଵܥ்ܥ൧݁ଷ  ݃ଷሺݑ, ,ݕ ଵܺ, ܺଷሻ െ

           ݃ଷሺݑ, ,ݕ ܺଵ, ܺଷሻ (29) 
Now, let us consider that in the process model 

there is some dynamics uncertainty, the equations 
(27)-(29) become: 

ሶ݁ଵ ൌ ଵܣൣ െ ܵఏభ
ିଵܥ்ܥ൧݁ଵ  ݃ଵሺݑ, ,ݕ ଵܺ, ܺଷሻ െ

        ݃ଵ൫ݑ, ,ݕ ܺଵ, ܺଷ൯   ଵܣ∆  ଵܺ  ∆݃ଵሺݑ, ,ݕ ଵܺ, ܺଷሻ (30) 
ሶ݁ଶ ൌ ଶܣൣ  െ ܵఏమ

ିଵܥ்ܥ൧݁ଶ   ݃ଶሺݑ, ,ݕ ଵܺ, ܺଶሻ െ
         ݃ଶ൫ݑ, ,ݕ ܺଵ, ܺଶ൯  ଶܺଶܣ∆   ∆݃ଶሺݑ, ,ݕ ଵܺ, ܺଶሻ (31) 

ሶ݁ଷ ൌ ଷܣൣ  െ ܵఏయ
ିଵܥ்ܥ൧ ݁ଷ   ݃ଷሺݑ, ,ݕ ଵܺ, ܺଷሻ െ

          ݃ଷሺݑ, ,ݕ ܺଵ, ܺଷሻ  ଷܺଷܣ∆  ∆݃ଷሺݑ, ,ݕ ଵܺ, ܺଷሻ (32) 
where ∆ܣ and ∆݃ (݅ ൌ 1,2,3) are the unknown 
parts of the process dynamics. 
A.6. Suppose that: 
ԡ∆ܣԡ  ݅    ,   ߩ ൌ 1,2,3 
ԡ∆݃ଵሺݑ, ,ݕ ଵܺ, ܺଷሻԡ   ଵߤ
ԡ∆݃ଶሺݑ, ,ݕ ଵܺ, ܺଶሻԡ   ଶߤ
ԡ∆݃ଷሺݑ, ,ݕ ଵܺ, ܺଷሻԡ   ଷߤ

This assumption is justified by the fact that the 
process parameters are bounded and are known 
with a certain precision and also by the fact that the 
states variables are bounded. 

Theorem: 
If assumptions A1-A6 are satisfied, then the 

system (24)-(26) is an exponential observer for 
system (18) - (20) for appropriate choice of ߠଵ, ߠଶ 
and ߠଷ. 

Proof: 
Define ܸሺ݁ሻ ൌ ∑ ܸሺ݁ሻଷ

ୀଵ   as the Lyapunov 
candidate function. 
where ܸሺ݁ሻ ൌ ݁

்ܵఏ݁ . Then its time derivative 
is: 

ሶܸ ൌ డ
డ

ൌ డ
డ

ൈ డ
డ

  

ሶܸ ൌ 2݁
்ܵఏሾ൫ܣ െ ܵఏ

ିଵܥ்ܥ൯݁  ݃ሺݑ, ,ݕ ܺሻ െ
         ݃൫ݑ, ,ݕ ܺ൯  ܣ∆ ܺ  ∆݃ሺݑ, ,ݕ ܺሻሿ  

ሶܸ ൌ  2݁
்ܵఏܣ݁ െ 2݁

݁ܥ்ܥ்  
          2݁

்ܵఏൣ݃ሺݑ, ,ݕ ܺሻ െ ݃൫ݑ, ,ݕ ܺ൯൧ 
         2݁

்ܵఏሾ∆ܣ ܺ   ∆݃ሺݑ, ,ݕ ܺሻሿ  
ሶܸ ൌ ݁

்൫െߠܵఏ െ ൯݁ܥ்ܥ െ 2݁
݁ܥ்ܥ் 

         2݁
்ܵఏൣ݃ሺݑ, ,ݕ ܺሻ െ  ݃൫ݑ, ,ݕ ܺ൯൧ 

         2݁
்ܵఏሾ∆ܣ ܺ  ∆݃ሺݑ, ,ݕ ܺሻሿ  

ሶܸ ൌ  െߠ݁
்ܵఏ݁ െ 3݁

݁ܥ்ܥ்  
          2݁

்ܵఏൣ݃ሺݑ, ,ݕ ܺሻ െ ݃൫ݑ, ,ݕ ܺ൯൧ 
         2݁

்ܵఏሾ∆ܣ ܺ  ∆݃ሺݑ, ,ݕ ܺሻሿ  
ሶܸ  െߠ ܸ  2ԡ݁ԡฮܵఏฮ 

         ฮ݃ሺݑ, ,ݕ ܺሻ െ ݃൫ݑ, ,ݕ ܺ൯ฮ 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2008 JATIT. All rights reserved.                                                                                          
 

www.jatit.org 

 
651 

 

        2ԡ݁ԡฮܵఏฮԡ∆ܣԡԡ ܺԡ 
        2ԡ݁ԡฮܵఏฮԡ∆݃ሺݑ, ,ݕ ܺሻԡ 

By using the Lipschitz condition of assumptions 
A.2-A.6, we have: 
ฮܵఏฮ    ௫ሺܵఏሻߟ
ฮ݃ሺݑ, ,ݕ ܺሻ െ ݃൫ݑ, ,ݕ ܺ൯ฮ    ԡ݁ԡߞ
ԡ ܺԡ    ߪ
ԡ∆ܣԡ    ߩ
ԡ∆݃ሺݑ, ,ݕ ܺሻԡ    ߤ
where ߟ௫denote the largest eigenvalue of  ܵఏ. 
,ߞ  , ߪ   denote, respectively, the Lipschitzߤ   andߩ
constants of ݃ሺݑ, ,ݕ ܺሻ, ܺ, ∆ܣ and ∆݃ሺݑ, ,ݕ ܺሻ 

Then, we obtain: 
ሶܸ  െߠ ܸ    ԡ݁ԡଶߞ௫൫ܵఏ൯ߟ2

         2ߟ௫൫ܵఏ൯ߩߪԡ݁ԡଶ   ԡ݁ԡଶߤ௫ሺܵఏሻߟ2
ሶܸ  െߠ ܸ  ߞ௫൫ܵఏ൯ሺߟ2  ߪߩ   ሻԡ݁ԡଶߤ

ሶܸ  െߠ ܸ  2
௫൫ܵఏ൯ߟ
൫ܵఏ൯ߟ

ሺߞ  ߪߩ  ሻߤ ܸ 

where ߟ is the minimum eigenvalue of matrix 
ܵఏ 

since: ԡ݁ԡଶ  ଵ

ఎቀௌഇቁ ଵܸ 

ሶܸ  െሺߠ െ Ω୧ሻ ܸ 
with Ω୧ ൌ ሺߞ  ߪߩ   ሻߤ
Hence, it results that: 

ሶܸ  െ ሺߠ െ Ω୧ሻ ܸ

ଷ

ୀଵ

 

Now choose ߠ  Ω୧. This completes the proof of 
Theorem. 

4. SIMULATION RESULTS 
 

Simulations, using MATLAB Software Package, 
have been carried out to verify the effectiveness of 
the proposed method. 

A block diagram of the observer system is shown 
in Figure 1. 

The values of the model parameters used in 
simulation are given in Table 1. The process was 
excited through ݑଵ and ݑଶ (ݑଵ ൌ  0.06769   , 
ଶݑ  ൌ  1.2788 ). 

The states initial conditions were set to: 
ሺ0ሻݔ  ൌ ሾ1.4967 ൈ 10ି ;  0.0345  ;  0.65326  ; 
       1.6593 ൈ 10ିଽ ;  5.7484 ൈ 10ି ; 0.00115ሿ், 
ܺଵሺ0ሻ ൌ ሾ2.4937 ൈ 10ିଽ ;  0.75326ሿ்,  
ܺଶሺ0ሻ ൌ ሾ0.7484 ൈ 10ି; 5.4967 ൈ 10ିଷሿ் 
ܺଷሺ0ሻ ൌ ሾ0.0315 ; 0.545ሿ் 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Nonlinear observer block diagram 
 
The estimation results obtained are depicted in 

Figures 2–7.  

 
Figure 2. Real and estimated dimensionless initiator 

concentration.  
The influence of the convergence parameter ߠ on 

the speed of convergence is clearly shown in these 
figures: 
 A high value of ߠ  decreases the observer time 

convergence, but also it leads to a high 
oscillation. 

 A low value of ߠ  reduces the oscillations, but it 
increases the observer time convergence. 
In fact, it is right to choose an optimal value of ߠ  

which fulfill the desired performances. 
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Figure 3. Real and estimated dimensionless dead 

polymer concentration 

 
Figure 4. Real and estimated dimensionless reactor 

temperature 
 
In order to test the behavior of the proposed 

nonlinear observer in the presence of measurement 
noise, several estimations were performed. For this 
purpose, white Gaussian noises with variances 
of േ5% are simultaneously added to the outputs ݔଷ, 
 . Figures 8-13 show the estimation resultsݔ ହ andݔ
obtained in this case. It clearly appears that the 
observer conserve its performances and robustness 
in presence of noises. In these figures, the influence 
of ߠ on the robustness with respect to measurement 
noise is shown. Here it is seen that the bigger values 
of ߠ, increases the sensitivity of the estimated state 
to the measurement noise. 

 
Figure 5. Real and estimated dimensionless growing 

polymer concentration 

 
Figure 6. Real and estimated dimensionless monomer 

concentration 

 
Figure 7. Real and estimated dimensionless of 

concentration of monomer units present as polymer  
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Figure 8. Real and estimated dimensionless initiator 

concentration in presence of measure noises 

 
Figure 9. Real and estimated dimensionless dead 

polymer concentration in presence of measure noises 

 
Figure 10: Real and estimated dimensionless reactor 

temperature in presence of measure noises 
 
To test the observer performance in other 

disadvantageous conditions, additional simulations 
were carried out based on model uncertainty. For 
this purpose, it was considered a mismatch between 
the real activation energy and its value in the 
model. In this work, a difference up to 2% between 
the real parameter and its value in the model was 
considered. 

 
Figure 11. Real and estimated dimensionless growing 

polymer concentration in presence of measure noises 

 
Figure 12. Real and estimated dimensionless monomer 

concentration in presence of measure noises 

 
Figure 13: Real and estimated dimensionless of 

concentration of monomer units present as polymer in 
presence of measure noises. 

 
Figures 14-19 shows the influence of ߠ on the 

robustness with respect to modeling errors. It is seen 
that for small values of ߠ there is a large error 
between the observed states and the real ones, due to 
the modeling error. 
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Figure 14. Real and estimated dimensionless initiator 

concentration in presence of modeling error 

 
Figure 15. Real and estimated dimensionless dead 

polymer concentration in presence of modeling error 

 
Figure 16: Real and estimated dimensionless reactor 

temperature in presence of modeling error 

 
Figure 17. Real and estimated dimensionless growing 

polymer concentration in presence of modeling error 

 
Figure 18. Real and estimated dimensionless monomer 

concentration in presence of modeling error 

 
Figure 19: Real and estimated dimensionless of 

concentration of monomer units present as polymer in 
presence of modeling error 

 
5. CONCLUSION 

 
A nonlinear interconnected high gain observer 

for estimating states variables in MIMO free radical 
polymerization system has been introduced. 
Convergence of the estimated states to the true ones 
is obtained. The observer implementation is simple 
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and it requires small computational effort. 
Moreover, the nonlinear observer exhibits a 
satisfactory performance when used with noisy 
measurements and dynamics uncertainty. The 
observer gain can be easily tuned in order to find an 
optimum compromise between fast convergence 
and robustness. Finally, computer simulations were 
developed to illustrate the performance of the 
nonlinear observer. Simulation results showed the 
good performance that can be achieved with the 
proposed method. 
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NOTATION 
 
 .ூ :  Initiator concentrationܥ
 .ூబ : Initiator feed concentrationܥ

 . : Monomer concentrationܥ
 .బ : Monomer feed concentrationܥ

 . : Growing polymer concentrationܥ
ܶ :   Reactor temperature. 

ܶ :  Reactor feed temperature. 

ܶ  :  Cooling jacket temperature. 
݇ூ :  Rate constant for termination. 
݇ :  Rate constant for propagation. 
݇௧ :  Rate constant for termination. 
 .ூ :  Initiator flowrateܨ
 . : Monomer flowrateܨ
 .௦ :  Solvent flowrateܨ
 .Total flowrate through reactor  : ܨ
ܸ :  Reactor volume. 
 .Heat of reaction : ܪ∆
 .Density of the reaction mixture  : ߩ
 . :  Heat capacity of the reaction mixtureܥ
ܷ :  Overall heat transfer coefficient. 
 .Heat transfer area  : ܣ
 .Initiator efficiency  : כ݂
 . :  Concentration of dead polymerߣ
 ଵ :  Concentration of monomer units present asߣ

polymer. 
     
     
     
     
     
     
     
     
     
     
     
  


