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ABSTRACT 
Reactive power dispatch (RPD) is one of the important tasks in the operation and control of power system. This paper presents a 
Differential Evolution (DE) - based approach for solving optimal reactive power dispatch including voltage stability limit in power 
systems. The monitoring methodology for voltage stability is based on the L-index of load buses. The objective is to minimize the real 
power loss subjected to limits on generator real and reactive power outputs, bus voltages, transformer taps and shunt power control devices 
such as SVCs. The proposed algorithm has been applied to IEEE 30-bus system to find the optimal reactive power control variables while 
keeping the system under safe voltage stability limit and is found to be effective for this task. The optimal reactive power allocation results 
obtained using DE are compared with other methods. It is shown that the objective function value is less than those of other methods.:  

 
Keywords :  Optimal reactive power allocation; Differential evolution; voltage stability, differential evolution, L-index; Line loss  

1. NOTATIONS  

kg     : Conductance of branch k  

iiG     : Self- conductance of bus i 

iiB     : Self- conductance and susceptance of bus i 

ijG     : Mutual conductance between bus i and bus j  

ijB     : Mutual susceptance between bus i and bus j  

BN     : Total number of buses 

1−BN   : Total number of buses excluding slack bus  

CN     : Number of capacitor banks  

gN     : Number of generator buses  

lN     : Number of branches in the system  

PQN    : Number of PQ buses 

TN     : Number of tap-setting transformer branches  

lossP    : Network real power loss  

iP     : Real power injected into network at bus i 

iQ     : Reactive power injected into network at bus i 

iCQ    : Reactive power generated by i-th capacitor bank  

giQ     : Reactive power generation at bus i 

lS     : Apparent power flow through the l-th branch  

kt     : Tap-setting of transformer at branch k  

iV     : Voltage magnitude at bus i  

jV     : Voltage magnitude at bus j 

ijθ     : Voltage angle difference between bus i and 

bus j 
 

2. INTRODUCTION 
To solve the RPD problem, a number of conventional 
optimization techniques [1-2] have been proposed. These 
include the Gradient method, Non-linear Programming 
(NLP), Quadratic Programming (QP), Linear programming 
(LP) and Interior point method. Though these techniques 
have been successfully applied for solving the reactive 
power dispatch problem, still some difficulties are associated 
with them. One of the difficulties is the multimodal 
characteristic of the problems to be handled. Also, due to the 
non-differential, non-linearity and non-convex nature of the 
RPD problem, majority of the techniques converge to a local 
optimum. Recently, Evolutionary Computation techniques 
like Genetic Algorithm (GA) [3], Evolutionary Programming 
(EP) [4] and Evolutionary Strategy [5] have been applied to 
solve the optimal dispatch problem. In this paper, GA based 
approach has been proposed to solve the RPD problem. 

Evolutionary Algorithms (EAs) are optimization 
techniques based on the concept of a population of 
individuals that evolve and improve their fitness through 
probabilistic operators like recombination and mutation. 
These individuals are evaluated and those that perform better 
are selected to compose the population in the next 
generation. After several generations these individuals 
improve their fitness as they explore the solution space for 
optimal value. The field of evolutionary computation has 
experienced significant growth in the optimization area. 
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These algorithms are capable of solving complex 
optimization problems such as those with a non-continuous, 
non-convex and highly nonlinear solution space. In addition, 
they can solve problem that feature discrete or binary 
variables, which are extremely difficult. 

Several algorithms have been developed within the field 
of Evolutionary Computation (EC) being the most studied 
Genetic Algorithms were first conceived in the 1960’s when 
Evolutionary Computation started to get attention. Recently, 
the success achieved by EAs in the solution of complex 
problems and the improvement made in computation such as 
parallel computation have stimulated the development of 
new algorithms like Differential Evolution (DE), Particle 
Swarm Optimization (PSO), Ant Colony Optimization 
(ACO) and scatter search present great convergence 
characteristics and  
capability of determining global optima. Evolutionary 
algorithms have been successfully applied to many 
optimization problems within the power systems area and to 
the economic dispatch problem in particular [6-23]. 

Voltage Stability is becoming an increasing source of 
concern in secure operation of present-day power systems. 
The problem of voltage instability is mainly considered as 
the inability of the network to meet the load demand 
imposed in terms of inadequate reactive power support or 
active power transmission capability or both1. Voltage 
collapse is a local load bus problem and depends mostly on 
load conditions in the system. There exist two major 
techniques viz, static approach and dynamic approach for 
this analysis. Although not very accurate, yet the static 
technique has gained wide acceptance for its inherent 
virtues, eg, simplistic approach, faster execution and less 
memory consumption. The static voltage stability is 
primarily associated with the reactive power support. The 
real power (MW) loadability of a bus in a system depends on 
reactive power support that the bus can receive from the 
system. Several analytical tools have been presented in the 
literature for the analysis of the static voltage stability of a 
system. This paper is mainly concerned with analysis and 
enhancement of steady state voltage stability based on L-
index [24]. An algorithm is proposed using new operational 
load flow (OLF) and optimization of reactive power control 
variables using LP technique. Simulated case studies 
conducted on two Indian power networks of 82 and 217 
buses are presented for illustration purposes. 
 

I.  VOLTAGE STABILITY L-INDEX  
Consider an n-bus system having 1, 2…g, generator buses 

(g), and g+1,g+2…n the load buses(r=n-g-s) and t number of 
OLTC transformers. The transmission system can be 
represented using a hybrid representation, by the following 

set of equations 
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where 

LL I,V  are the voltage and current vectors at the load 
buses 

GG I,V  are the voltage and current vectors at the 
generator buses 

GGGLLGLL Y,K,F,Z  are the sub-matrices of the hybrid 
matrix H. 

The H matrix can be evaluated from the Y bus matrix by 
a partial inversion, where the voltages at the load buses are 
exchanged against their currents. This representation can 
then be used to define a voltage stability indicator at the load 
bus, namely Lj which is given by, 
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The term jV 0  is representative of an equivalent 
generator comprising the contribution from all generators.  

The index Lj can also be derived and expressed in terms 
of the power terms as the following. 
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where, 
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The complex power term component jcorrS  represents 
the contributions of the other loads in the system to the index 
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evaluated at the node j.  
It can be seen that when a load bus approaches a steady 

state voltage collapse situation, the index L approaches the 
numerical value 1.0. Hence for an overall system voltage 
stability condition, the index evaluated at any of the buses 
must be less than unity. Thus the index value L gives an 
indication of how far the system is from voltage collapse. 
This feature of this indicator has been exploited in our 
proposed algorithm to evolve a voltage collapse margin 
incorporated RPD routine. The L -indices for a given load 
condition are computed for all load buses. The equation for 
the L -index for j-th  node can be written as 

∑
=

=

−+∠−=
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jiji
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* Indicates the complex conjugate of the vector 

iii VV δ∠= , jjj VV δ∠= ,  
(9) 

jijiji FF θ∠=  

)cos( jijiji
r
ji FF δδθ −+= ,      

)sin( jijiji
m
ji FF δδθ −+=  

 
(10) 

It can be seen that when a load bus approaches a steady 
state voltage collapse situation, the index L  approaches the 
numerical value 1.0. Hence for an overall system voltage 
stability condition, the index evaluated at any of the buses 
must be less than unity. Thus the index value L gives an 
indication of how far the system is from voltage collapse. 
This feature of this indicator has been exploited in our 
proposed algorithm to evolve a voltage collapse margin 
incorporated in RPD routine.  

II.  FORMULATION OF ORPD PROBLEM 
The objective of RPD is to identify the reactive power 

control variables, which minimizes the real power loss 
( lossP ) of the system. This is mathematically stated as 
follows:   
Minimize F= [ 1f ]          

     1f = lossP = ∑
=
∈

−+

),(

22 )cos2(
jik

Nk
ijjijik

l

VVVVg θ   

 (11) 

 The reactive power optimization problem is subjected to the 
following constraints. 

Equality Constraints 
These constraints represent load flow equation such as  

∑
=

+−
gN

j
ijijijijjii BGVVP

1
)sincos( θθ =0, 1−∈ BNi           

(12) 

∑
=

−−
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j
ijijijijjii BGVVQ

1
)cossin( θθ =0, 1−∈ BNi               

(13) 
Inequality Constraints 

These constraints represent the system operating 
constraints. Generator bus voltages (Vgi), reactive power 
generated by the capacitor (Qci), transformer tap setting (tk), 
are control variables and they are self-restricted. Load bus 
voltages (Vload) reactive power generation of generator (Qgi) 
and line flow limit (Sl) are state variables, whose limits are 
satisfied by adding a penalty terms in the objective function. 
These constraints are formulated as 
(i) Voltage limits  
       maxmin

iii VVV ≤≤       ; BNi ∈                          
(14)               
(ii) Generator reactive power capability limit 
       maxmin

gigigi QQQ ≤≤   ; gNi ∈                            

(15) 
(iii) Capacitor reactive power generation limit  
       maxmin

cicici QQQ ≤≤   ; cNi ∈                          
(16) 
(iv) Transformer tap setting limit  
        maxmin

kkk ttt ≤≤   ; TNk ∈                                 
(17) 
(v) Transmission line flow limit   
           max

ll SS ≤   ; lNl ∈                                                   (18)  

(vi) Voltage stability constraint 
  PQj NjLL ∈≤ ;max                       

(19) 
The equality constraints are satisfied by running the 

power flow program. The active power generation (P) 
(except the gi generator at the slack bus), generator terminal 
bus voltages (V) and transformer tap-settings (t) are the 
optimization gi k variables and they are self-restricted by the 
optimization algorithm. The active power generation at the 
slack bus (Pgs ), load bus voltages (V) and reactive power 
generation ( Q) and voltage stability load gi level (L) are 
state variables which are restricted through penalty function 
approach. 
 

3. OVERVIEW OF DIFFERENTIAL EVOLUTION 
One extremely powerful algorithm from evolutionary 

computation due to it’s excellent convergence characteristics 
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and few control parameters is differential evolution. 
Differential evolution solves real valued problems based on 
the principles of natural evolution [11-15] using a population 
P of Np  floating point-encoded individuals (1.1) that 
evolve over G generations to reach an optimal solution. In 
differential Evolution, the population size remains constant 
throughout the optimization process. Each individual or 
candidate solution is a vector that contains as many 
parameters (1.2) as the problem decision variables D.  The 
basic strategy employs the difference of two randomly 
selected parameter vectors as the source of random 
variations for a third parameter vector. In the following, we 
present a more rigorous description of this new optimization 
method. 
      

]......................[ )()(
1

G
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G YYP =                                     

(19) 
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2
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1
)( G

Di
G
i

G
i

G
i XXXY = i =1,2,… Np       

 (20) 
Extracting distance and direction information from the 

population to generate random deviations result in an 
adaptive scheme with excellent convergence properties. 
Differential Evolution creates new offsprings by generating 
a noisy replica of each individual of the population. The 
individual that performs better from the parent vector 
(target) and replica (trail vector) advances to the next 
generation. 

This optimization process is carried out with three basic 
operations: 

• Mutation 
• Cross over 
• Selection 

First, the mutation operation creates mutant vectors by 
perturbing each target vector with the weighted difference of 
the two other individuals selected randomly. Then, the cross 
over operation generates trail vectors by mixing the 
parameters of the mutant vectors with the target vectors, 
according to a selected probability distribution. Finally, the 
selection operator forms the next generation population by 
selecting between the trial vector and the corresponding 
target vectors those that fit better the objective function. 

a. DE Algorithm    
• Initialize population 
• While stopping criteria are not satisfied, 
• Create mutant vector with the difference vector and 

scaling constant 
• Generate trial vectors applying the selected 

crossover scheme 
• Select next generation members according to 

competition performance. 

b.  DE Optimization Process 

i.  Initialization 
The first step in the DE optimization process is to create an 
initial population of candidate solutions by assigning random 
values to each decision parameter of each individual of the 
population. Such values must lie inside the feasible bounds 
of the decision variable and can be generated by Eq. (1.3). In 
case a preliminary solution is available, adding normally 
distributed random deviations to the nominal solution often 
generates the initial population. 

           )( minmaxmin)0(
, jjjjji YYYY −+= η                   (21) 

                 i  = 1,2,………. Np ,  j = 1,2,………. D  

Where min
jY and max

jY  are respectively, the lower and 

upper bound of the j th decision parameter and jη  is a 

uniformly distributed random number within [0,1] generated 
anew for each value of j . 

ii. Mutation 
After the population is initialized, this evolves through 

the operators of mutation, cross over and selection.  For 
crossover and mutation different types of strategies are in 
use. Basic scheme is explained here elaborately. The 
mutation operator is incharge of introducing new parameters 
into the population. To achieve this, the mutation operator 
creates mutant vectors by perturbing a randomly selected 
vector ( aY ) with the difference of two other randomly 

selected vectors ( bY and cY ). All of these vectors must be 
different from each other, requiring the population to be of at 
least four individuals to satisfy this condition. To control the 
perturbation and improve convergence, the difference vector 
is scaled by a user defined constant in the range [0, 1.2]. 
This constant is commonly known as the scaling constant 
( S ). 

 )( )()()()(' G
c

G
b

G
a

G
i YYSYY −+= i =1,2,…… Np    (22) 

Where cba YYY ,, , are randomly chosen vectors 

{ }Np,.........2,1∈  and icba ≠≠≠  

cba YYY ,,  are generated anew for each parent vector, S  
is the scaling constant. For certain problems, it is 
considered ia = . 

iii. Crossover 
The crossover operator creates the trial vectors, which are 

used in the selection process. A trail vector is a combination 
of a mutant vector and a parent (target) vector based on 
different distributions like uniform distribution, binomial 
distribution, exponential distribution is generated in the 
range [0, 1] and compared against a user defined constant 
referred to as the crossover constant. If the value of the 
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random number is less or equal than the value of the 
crossover constant, the parameter will come from the mutant 
vector, otherwise the parameter comes from the parent 
vector.  Figure 3 shows how the crossover operation is 
performed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Mutation operator 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  Crossover operator 

The crossover operation maintains diversity in the 
population, preventing local minima convergence. The 
crossover constant ( CR ) must be in the range of [0, 1]. A 
crossover constant of one means the trial vector will be 
composed entirely of mutant vector parameters. A crossover 
constant near zero results in more probability of having 
parameters from the target vector in the trial vector. A 
randomly chosen parameter from the mutant vector is always 
selected to ensure that the trail vector gets at least one 
parameter from the mutant vector even if the crossover 
constant is set to zero. 
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Where         i = 1, 2 … Np  

                   j = 1, 2 … D  

q  is a randomly chosen index { }D..,.........2,1∈  that 
guarantees that the trial vector gets at least one parameter 
from the mutant vector; '

jη  is a uniformly distributed 

random number within [0, 1) generated anew for each value 
of j .  )(

,
G
jiX  is the parent (target) vector, )('

,
G
jiX  the mutant 

vector and   )("
,

G
jiX   the trial vector. 

Another type of crossover scheme is mentioned in [11]. 
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Where the acute brackets 

D
denote the modulo 

function with modulus D. The starting index n is a randomly 
chosen integer from the interval [0, D-1]. The integer L is 
drawn from interval [0, D-1] with the probability Pr (L=v) = 
(CR) v. ]1,0[∈CR  is the crossover probability and 
constitutes a control variable for the DE scheme. The 
random decisions for both n and L are made anew for each 
trial vector. 

 
iv. Selection 

The selection operator chooses the vectors that are going 
to compose the population in the next generation. This 
operator compares the fitness of the trial vector and fitness 
of the corresponding target vector, and selects the one that 
performs better. 
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                                    i =1, 2… Np  
The selection process is repeated for each pair of target/ 

trail vector until the population for the next generation is 
complete. 

4. DIFFERENTIAL EVOLUTION SOLUTION 
TECHNIQUE 

In the ORPD problem, the elements of the solution 
consist of all the control variables, namely, generator bus 
voltages (V), the gi transformer tap-setting (tk ), and the 
reactive power generation ( Qci ). These variables are 
represented continous variables in the DE population.  
Fitness Function: In the ORPD problem under consideration 
the objective is to minimize the total power loss satisfying 

'
iY

aY
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Trail ParentMutant
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the constraints given by equations (2) to (9). For each 
individual, the equality constraints given by equations (2) 
and (3) are satisfied by running Newton-Raphson algorithm 
and the constraints on the state variables are taken into 
consideration by adding a quadratic penalty function to the 
objective function.  

With the inclusion of penalty function, the new objective 
function then becomes,  

FMin =

∑ ∑
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(10) 
where vK  , qK , fK and lK are the penalty factors for the 

bus voltage limit violation, generator reactive power limit 
violation, line flow violation and voltage stability limit 
violation, respectively. In the above objective function Vi 
lim and Qgi lim are defined as;  
  

lim
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The minimization objective function given by equation 

(10) is transformed to a fitness function (f) to be maximized 
as, where k is a large constant. This is used to amplify, the 
value of 1/F which is usually small, so that the fitness value 
of the chromosome will be in a wider range.  

5. SIMULATION RESULTS 
The details of the simulation study carried out on IEEE 

30-bus system using the proposed DE-based method are 
presented here. It is chosen as it is a benchmark system, has 
more control variables and provides results for comparison 
of the proposed method. The approach can be generalized 
and easily extended to large-scale systems. IEEE 30-bus 
system consists of 6 generator buses, 24 load buses and 41 
transmission lines of which 4 branches (6-9), (6-10), (4-12) 
and (28-27) are with the tap-setting transformer. Generator 
parameters are given in the Appendix. The transmission line 
parameters of this system and the base loads are given in 
[25]. 

For the ORPD problem, the candidate buses for reactive 
power compensation are 10, 12, 15, 17, 20, 21, 23, 24 and 
29. The DE-based ORPD algorithm was implemented using 

MATLAB code and was executed on a PC. Two different 
studies were performed with this system to show the 
significance of the proposed method and the use of the 
algorithm in a bigger system. In case 1 RPD problem is 
solved by the proposed method with 100% load level, case 2 
is reactive power dispatch under network contingency with 
the incorporation of the voltage stability limit in both the 
cases.  
 

 
Figure 3: IEEE 30-bus system 
 

 
TABLE I 

SYSTEM DESCRIPTION OF CASE STUDY  
Sl.No. Variables  30-bus system 
1 Buses 30 
2 Branches 41 

3 Generators 6 
4 Generator buses 6 
5 Shunts reactors 2 
6 Tap-Changing transformers 4 

 
 

TABLE II 
LIMITS OF VARIABLES FOR IEEE 30-BUS SYSTEM 

No. Description Units Lower 
Limits 

Upper 
Limits 

1 Voltage PQ-bus Pu 0.95 1.05 

2 Voltage PV-bus Pu 0.90 1.10 
3 Trans. taps Pu 0.90 1.10 

 
TABLE III 
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DE PARAMETERS FOR BEST RESULTS OF OPTIMAL POWER FLOW FOR IEEE 
30-BUS SYSTEM 

 

Sl.No

. 

Parameters of Differential evolution 

Parameters Values 

1 Population 20 

2 Generations 100 

 
The DE parameters used for the optimal power flow 

solution are given in Table 4. They are treated as continuous 
controls. The results of these simulations are summarized 
next.  
 

c. Case 1: base case  
In this case the system is optimized using the optimal 

reactive power dispatch method under base load condition 
for 100% load level. The real power settings of the generator 
are taken from [25]. To obtain the optimal values of the 
control variables the DE-based algorithm was run.  

The optimal values of the control variables and power 
loss obtained are presented in Table IV. The minimum 
transmission loss obtained is 4.8500 MW which is smaller 
than the result obtained in [25] for the same IEEE 30-bus 
system. To illustrate the convergence of the algorithm, the 
relationship between the best fitness value of the ORPD 
results and the objective function (Ploss) are plotted against 
the number of generations in Figure 2. From the figure it can 
be seen that the proposed algorithm converges rapidly 
towards the optimal solution. This shows the effectiveness of 
the proposed method for the ORPD problem.  

 
 

TABLE IV 
CONTROL VARIABLES FOR THE 30-BUS SYSTEM 

Sl. 
No
. 

I. Generator 
voltages 

II. Shunt 
Compensation 

III. Transformer 
taps 

Gen 
bus 

 
Value 

SVC 
 

Value Tran. 
Tap 

Value 

1 

2 

3 

4 

5 

6 

1 

2 

5 

8 

11 

13 

1.0700 
1.0629 
1.0446 
1.0430 
1.0974 
1.0613 

 

Qc10 
Qc12 
Qc15 
Qc17 
Qc20 
Qc21 
Qc23 
Qc24 
Qc27 

0.0426  
0.0260 
0.0275 
0.0282 
0.0458 
0.0380 
0.0531 
0.0258 
0.0309 

 

96−T  

106−T     

124−T     

2728−T  

0.9000 

0.9000 

1.0093  
1.0119  
 

 
 

 

 
 
Figure 4: Fitness function value Vs Generations for case 1 

 
Figure 5: Objective function value Vs Generations for case 1 
 

d. Case 2: contingency case  
Again in this case, the same values of load condition and 

generator setting as in case 1 are followed. But a network 
contingency is considered in this case. Additional constraint 
in the form of limit on the maximum value of L-index as in  
normal condition is incorporated. This is done to restrict the 
maximum value of L-index under contingency condition 
from reaching a dangerously high value. For the network 
contingency, namely, line outage (4 -12), with the inclusion 
of the voltage stability constraint the DE-based algorithm 
was applied to obtain the optimal values of the control 
variables under normal condition, the result of which is 
given in the  Table V. For these optimal values of control 
variables when line (4 -12) was removed it was found that 
the maximum value of L-index reached by the system is 
0.1815 only. This improvement in voltage stability was 
achieved because of the restriction put on the maximum L-
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index value in the base case condition. Table VI shows the 
performance parameters of the reactive power dispatch 
obtained using DE-based RPD.This shows the effectiveness 
of the proposed algorithm for voltage security enhancement.  

 
 

TABLE  V 
CONTROL VARIABLES FOR THE 30-BUS SYSTEM 

Sl. 
No
. 

I. Generator 
voltages 

II. Shunt 
Compensation 

III. Transformer 
taps 

Gen 
volt. 

Value SVC Value Tran. 
Tap 

Value 

1 

2 

3 

4 

5 

6 

1GV

2GV

5GV

8GV

11GV

13GV
 

1.0700 

1.0625 

1.0387 

1.0403 

1.0863 

1.0646 

Qc10 
Qc12 
Qc15 
Qc17 
Qc20 
Qc21 
Qc23 
Qc24 
Qc27 

0.0140 
0.0554 
0.0421 
0.0260 
0.0484 
0.0159 
0.0194 
0.0497 
0.0288 

 

96−T  

106−T   

124−T   

2728−T
 

1.0284 

0.9000 

1.0137 

0.9850 

 

 
Figure 6: Fitness function value Vs Generations for case 2 

 

Figure 7: Objective function value Vs Generations for case 2 
 

TABLE  VI 
PERFORMANCE PARAMETERS 

Parameter Values 
Case 1 Case 2 

1gP (pu)(slack bus) 0.9985 1.0236 

maxL  0.1310 0.1800 

lossP (pu) 0.0485 0.0507 

4. CONCLUSION 
This paper presents a DE solution to the optimal reactive 

power allocation problem and is applied to an IEEE 30-bus 
power system. The main advantage of DE over other modern 
heuristics is modeling flexibility, sure and fast convergence, 
less computational time than other heuristic methods. And it 
can be easily coded to work on parallel computers. The main 
disadvantage of DE is that it is heuristic algorithms, and it 
does not provide the guarantee of optimal solution for the 
RPD problem. The DE approach is useful for obtaining high-
quality solution in a very less time compared to other 
methods. 

Differential evolution algorithm is a stochastic 
optimization technique was employed as the optimization 
approach in determining the optimum values for the reactive 
power to be dispatched to establish voltage stability during 
contingency condition. Simulation results shows that the 
DE-based reactive power dispatch algorithm is able to 
improve voltage stability condition along with loss 
minimization in the system. Also, it is found that the results 
of the DE-based algorithm are always better than that 
obtained using conventional methods.  

The future work in this area consists of the applicability 
of DE solutions to large-scale RPD problems of systems 
with several thousands of nodes. The continuous demand in 
electric power system network has caused the system to be 
heavily loaded leading to voltage instability. Voltage 
instability condition in a stressed power system could be 
improved by having an effective reactive power dispatch 
(RPD) procedures.  
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