
AN EFFICIENT ALGORITHM FOR MULTIPLICATION
BASED ON DNA COMPUTING
1

Santosh Kumar Mishra,
2

Sanchita Paul
1 Student (M.Tech), Deptt. of Computer Science & Engineering, B.I.T. Mesra, Ranchi, India-835215

2 Lecturer, Deptt. of Computer Science & Engineering, B.I.T., Mesra, Ranchi, India-835215

 E-mail:-santosh_mta@yahoo.com, sanchita07@gmail.com

ABSTRACT

 DNA Computing utilizes the properties of DNA for performing the computations. The computations
include arithmetic and logical operations such as multiplication. We first show a procedure for
multiplication of a pair of two binary numbers. The procedure mainly consist of bit-shift operation where
the operation depends on bit position of one's (ignoring zero's) in the multiplicand and finally addition
operations which take place simultaneously in each steps. The above method takes O(1) time in the best
case which exists when each bit of multiplicand is zero. However, the time complexity of proposed
algorithm is O(n) for average and worst case and the space complexity of proposed algorithm is O(n) for
average case, worst case and best case. In addition the most merit of this model is simple coding and its
time efficiency.

Keywords: DNA computing, DNA computation Model, Multiplication.

1. INTRODUCTION

DNA computing is new computation
paradigms, which proposes the use of molecular
biology tools to solve different mathematical
problems. It is a form of computing which use
DNA, biochemistry and molecular biology, instead
of the traditional silicon-based computer
technologies. The primary advantage of DNA
based computation is the ability to handle millions
of operations in parallel. DNA computing is
fundamentally similar to parallel computing in that
it takes advantage of the many different molecules
of DNA to try many different possibilities at once.

DNA computing has two important
features, which are Watson-Crick
complimentarily and massive parallelism. Using
the features, we solve some optimization
problems, which usually need exponential time on
silicon-based computers, in polynomial steps with
DNA molecules. However, for DNA computing to
be applicable on a various range of problems for
primitive operations, such as logic or arithmetic
operations. A number of procedures have been
proposed for the primitive operations with DNA
molecules [1,3,4,10,11,12,14]. One procedure was
proposed by Gaurnieri et.al. [12] for addition of
two binary numbers of m bits .The procedure

uses O (m) steps using O(m) different DNA
strands .

Another model which allows for
representing and manipulating binary numbers on
DNA chip by H.Hug and Rescuer [4] applies
parallel execution of primitive operations. Kamino
et.al. [14] proposed a procedure which computes
maximum n binary numbers of m bits, which runs
in O(1) steps using O(mn 2) DNA strands.
A.fujiwara [1] shows one procedure for
multiplication and division in DNA computing.
This method shows multiplication of two binary
numbers of m bits in O(log m) steps using O(m 2)
DNA strands.

In this paper, we present a procedure for
multiplication of a pair of n bit binary numbers.
This procedure involves two operation first is bit-
shift operation depending on bit position of one's
(ignoring zero's) in the multiplicand and finally
addition operations which take place
simultaneously in each steps. The above method
takes O(1) time in the best case using O(n) DNA
strands which exists when each bit of multiplicand
is zero. However, the time complexity of proposed
algorithm is O(n) using O(n2) DNA strands and the
space complexity of proposed algorithm is O(n)
for average case, worst case and best case.

554

2. PROCEDURE FOR
MULTIPLICATION

In this section, we have described a
method for multiplication of a pair of n bit binary
numbers. The method for multiplication mainly
consists of bit-shift and addition operations
according to position of each bit in multiplicand.
Q=Multiplicand, where we check the bit position

of 1's;
M= Multiplier;
A= Temporary Register, where bit-shift operations
performed and stored as temporary;
S= Partial Result; where temporary result of A
(after bit-shift operations) added to S;
R= Where, bit positions of Q (multiplicand)
containing 1;
M<<R[i] = M shifted R[i] times;
It consists of following basic operation

? if the value of i-th bit of
Q is 1, we store the j
left-shifted value of M
in an address A .

? If the value of i-th bit of
Q is 0, there is no
operation.

? The results of operation
stored in S.

Figure 1: [bit-shift and addition operation]

2.1 FLOW CHART

Figure 2: Flowchart for multiplication

2.2 ALGORITHM

1. Initialize Registers.

S=0 //sum register used to perform addition
(S=S+A). [It takes O(1) complexity].

A=Auxiliary register for storing the result of bit-
shift operation. [It takes O(1) complexity].

Q=Multiplier. [It takes O(1) complexity].

M=Multiplicand. [it takes O(1) complexity].

R //processing register of size n that
contains the bit-positions of 1 in Q. [It takes O(1)
complexity].

i=0 // for accessing values in Register R.
 [It takes O(1) complexity].

j=k-1 // Number of Values stored in R. [it takes
O(1) complexity].

555

2. Repeat step 3-4 until i≥j

3. a. A=M.

b. t=R[i].

3c.Until (t>0) repeat step (i) & (ii). Repeataion
takes O(n)

complexity.

i). Circular left shift A.

ii). t=t-1

4. S=S+A

i=i+1

5. Final result in register S. //it takes O(1)
complexity.

Several theoretical and mathematical
computational models have been proposed for
DNA computing [2, 3, 4, 5, 6, 7, 8]. The
computational model used in this paper is same as
[11,3]. In this section, we introduce this
computational model. The DNA may be single or
double stranded. A single strand of DNA is
defined as a string of symbols over a finite
alphabet Σ(sigma).

Total time complexity: O(n) We define these alphabet as Σ={e

3 PRELIMINARIES

3.1 DNA STRANDS

DNA strands are a basic element for
DNA computing. DNA strands are similar to a
memory module used on a silicon-based computer.
A single strand of DNA is defined as a string of
four different base nucleotides (A, T, C, G). While
DNA strands can be synthesized using biological
method [9,11], we assume that each single strands
of DNA represent a symbol over a finite alphabet
Σ(sigma). DNA computing has main concept of
Watson-Crick complementary method
(complementary base pairs-Adenine and Thymine,Guanine & Cytosine) and massive-parallelism. We
can solve some problems in a minimum number of
steps with biological DNA molecules by help of
these concepts. We describe the alphabet Σ={e 0,
e1,?e m-1, ē0, ē1?.. ē m-1}, where the symbol e i and
ēi (0<=i<=m-1) are complements. A single strand
is a sequence of one of one or more symbol in Σ.
Two single strands of DNA form a double strand if
and only if the single strands are complements of
each other. A double strand with e i, ē i is denoted
by ei .
ē i

The DNA strands which are single or
double both are stored in a test tube .The following
expressions denotes test tubes T 1 and T 2, which
store single and double DNA strands. For

example, T 1={e0e1, e 0e1 } denotes two single
strands are stored in a test tube T 1. The set of
strands stored in a test tube is allowed to be a k-
multiset. Where, each strand has k-copies in the
test tube and k-depends on the error involved in
DNA manipulations. We describe each strand in a
set represented by test tube as one unit. For
example, the test tube T 1 contains two units of
e0e1, and three units of ē 0ē1, represented as
T1={e0e1,e0e1, ē0ē1,ē0ē1,ē0ē1 }.

3.2 COMPUTATIONAL MODEL FOR
DNA COMPUTING

0,e 1,??..e m-1,ē 0,
ē 1? ē m-1}.Where the symbols e i, ē ii(0<i<m-1) are
complement.. A double strand with e i, ēi is denoted
by {e i, ē i}. The model allows the following seven
DNA manipulations which are widely used in
DNA computing:
[1]. Merge: Given two test tubes T 1, T2. Merge (T1,
T 2) stores the union in a single test tube T 1UT2 in
T 1.
[2] Copy: Given test tube T 1, a new test tube T 2
can be produced with same contents using the
manipulation operation Copy (T 1, T2).
[3]. Detect: Detects whether the test tube T
contains at least one strand. Detect (T) produces
the output "Yes" if T contains DNA strands,
otherwise returns "No".
[4]. Separation: Given a test tube T 1 and a set of
strings X, separation (T 1,X, T2) removes all single
strands containing a string in X from T 1, and
produces a test tube T 2 with the removed strands.
[5]Cleavage: Given a test tube T and string of two
symbols e 0e1, the operation Cleavage (T, e 0e1) cuts
each double strand containing
e0e1
e0e1

α0 e0e1β0α 0e0 e1β 0
α1 e0e1β1 α 1e0 , e1β 1

It is assumed that Cleavage can only be applied to
some specified symbols over the alphabetΣ.
[6] Annealing: Given a test tube T, all feasible
double strands from single strands in T is produced

556

by the manipulation operation Annealing (T),
which are stored in test tube T.
[7] Deanaturation: Given a test tube T,
Denaturation (T) dissociates each double strand in
T into two single strands.
These above mentioned manipulations are
implemented with a constant number of biological
steps for DNA strands [13].
Let the Input be ,T1= { e1 e2, ē1ē 2 }

 T2= (e3, e4 }

(1). Merge (T1,T2):
T1UT2T1
T1={e1,e2,e3,e4, ē1ē 2 }

(2).Copy (T1,Ttemp):
Ttemp={e1,e2, ē1,ē 2 }

(3)Detect(T1):
Detect(e1,e2, ē1ē 2 },output="yes".
Detect(), output="no".

(4). Separation(T1,{X },T')
Separation (T1,{e1,ē2 },T'}, T 1={ ē1 }, T'={e 1,e2,
ē2}

(5). Annealing (T1):

 e1,e2
T1= e1,e2

(6) Annealing(T1) & Denaturation(T2):

T1={ e1,e2, ē1,ē 2 } .

(7).Annealing & Cleavage(T, e 1e2) :

 e1 e2
T= ē1, ē 2

3.3 BIT REPRESENTATION WITH DNA
STRANDS (STRINGS)

In this section, we give explanation of
data structure for storing a set of n binary numbers
using DNA strands. For additional details of
binary number representations with DNA
representations refer [1, 11].

Let us consider a number x such that

x=∑ x
−

=

1

0

m

j
j*2j where x m-1,x m-2,?..,x 0 are binary

bits. We assume that the most significant bit x m-1
is a sign bit and a negative number is denoted
using two's complement notation. A representation
of each bit is the same as that in [1, 11], and is
described below:
We first define the alphabet used in these
representations as follows.

∑

∑ ={A0,A1,??,A n1,B0,B1,?.B m1,C0,C1,D0,D,
0,#,
Ā0, Ā1,, ,,??. ?, Ā n-1, B0, B1,?B m-1, C0, C1 ,D0, D1,
1, 0 ,# }
A0,A1,??A n-1 denote addresses of binary
numbers ,and B 0,B1,?.B m-1 denote bit positions in
a binary number.C 0, C 1and D 0, D 1 are specified
symbols which cut by cleavage."0" and "1"
symbols are used to denote bit value and "#" is a
special symbol used for separation.
Using the above defined alphabet, a value of a bit,
whose address and bit position are i and j, is
represented by a single strand Si, j such that

Si,j= D1AiBjC0C1Vi,jD0 ,
Vi,j =0 if value of bit is 0, otherwise V i,j =1.Where
Si,j is a memory strand, and use a set of O(mn)
different memory strands to denote n binary
numbers of m bits ,that is , a number x stored in
address i is represented by a set of memory strands
{Si,m-1,Si,m-2??.Si,0},which denote binary
bits xm-1,xm-2,??x0,respectively. We assume
that Vi denotes a value stored in address i, that is,

Vi=∑ x
−

=

1

0

m

j
j*2j

3.4 PRIMITIVE OPERATIONS

In this paper, three operations Value
assignment, logic and addition are used as
primitive operations for multiplications. The
ValueAssignment is a primitive operation, we
express ValueAssignment such as
ValueAssignment_V(Tinput, T output) executes
assignments of the same value V to T input ,and
stores the results in T output . The Logic primitive
operation is expressed such as Logic(T input,
L,Toutput),it as an operation which executes logic
operations, which are defined by single strands in
a test tube L, for pairs of memory strands in test

557

tube T input ,and it stores the results in test tube
Toutput . The addition primitive operation
expressed such as Addition (T input, R,T output), is
an operation which executes addition, which are
define by single strands in a test tube R,for pairs
of memory strands in Tinput ,and results in Toutput .

For these three primitive operations, the following
lemmas are obtained [11].

Lemma 1 [11] The ValueAssignment_V(T input,
Toutput),which is for O(n) pairs of m bit binary
numbers, can be executed in O(1) steps using
O(1) kinds of O(mn) DNA strands.
Lemma 2 [11] The Logic (T input, L,Toutput),which
is for O(n) pairs of m bit binary numbers , can be
executed in O(1) steps using O(mn) kinds of
different DNA strands.
Lemma 3 [11]The Addition(T input, R,T output)
,which is for O(n) pairs of m bit binary numbers
,can be executed in O(1) steps using O(mn) kinds
of different DNA strands.

4. PROCEDURE FOR
MULTIPLICATION USING DNA STRANDS

An Input and output of multiplication procedures
are following three test tubes T input_x, T input_y and
Toutput. [Refer [1] for details]

T input_M = {SM,j| 0 ≤ j≤ m-1}

T input_Q = {SQ,j| 0 ≤ j ≤ m-1 }

T output _S = {SS,j= | 0 ≤ j ≤ 2m-1 }

In the procedure for multiplication,
memory strands in T input_Q and T input_M_ denote a
multiplicand and a multiplier, respectively. An
output value of the multiplication is stored in
memory strands in the following test tube Toutput_S.

The DNA manipulation operations as
mentioned in section ? are applied for solving
multiplication of two n bit binary number. The
following steps are carried out :

Step 1: Prepare an array R such that it
contains the positions of all 1's in Q. This step
consists of following sub steps:

(1-1) We first detect for .0 in test tube Q, and
then no operation is performed if it
returns "yes".
Detect (Tinput_Q) ="yes"

// detect strands in test tube T input_Q;if bit
is 0 then no operation performed .

(1-2) We detect position of all 1's in Q, then
use logic primitive operation and
separation DNA computing model for
storing all 1's in a new test tube.

Detect (Tinput_Q) ="yes"
// detect strands in test tube Tinput_Q;
Logic (Tinput_Q,Lassign,Tjudge_position_1);
//Logic operation for location assign in
test tube T input_Q and its position store in
New test tube Tjudge_position_1 .
Separation(Tinput_Q,1,TR_1);
Annealing (TR_1);
//separate 1 from Input test tube Q and
produce a new test tube T R_1 after
annealing.

(1-3) Then we save all these bit positions to a
test tube Tjudge_position_1.

Separation (Tjudge_poition_1,{1},TR1}
Annealing(Tjudge_1_positions);
//Test tube Tjudge_1_positions used for storing the
position of bits.

(1-4) Set initial Value of S=0 into T S and
A=00001011 into TA .

ValueAssignment_0(Tall_0,Ts)
//Set initial value of S=0
ValueAssignment_00001011(Ttmp,TA)
// Set Initial Value A=00001011 .

Step 2: Repeat the following steps for all values
stored in R.
(2-1) Store R [i] times left shifted value of M to
A and add temporarily Tpreanswer_A Value to TS .

for(i=0;i<=T judge_position_1;i++)
{
If (Tjudge_position_1 >=0)
{
Separation (Tinput_Q,1,TR_1);
Merge (TR_1,Tjudge_position_1);
Annealing (TR_1);
Separation (TR_1,{ D0D1},Tjudge_position_1);
Merge (TR_1,D1);
Annealing (TR_1);
Cleavage (TR_1,D0D1);
Denaturation (TR_1);
Separation (TR_1,{ D1},Tshift_A);
Annealing (Tshift_A);
Merge (Tinput_M,Tshift_A);

558

Separation (Tshift_A ,{D1},Tjudge_position_1);
Denaturation (Tshift_A);
Separation (Tshift_A, {C0C1},Tpre_answer_A);
Addition(Tpre_answer_A, R,TS);
//Addition performed and output stored in T S
(according to loop) S=S+A, where R is a logic
which defined for additon operation.
}

Step 3: Output a value is stored in address TS.

Separation(TS,{AS},TS);
// finally output value stored in last output test tube
TS in given above separation operation, because
input test tube strings removed which same as AS.
}

In addition, we use the following test
tubes:

• Tinput_Q={SQ,j | 0 ≤ j ≤ m-1 }

• Tinput_M= {SM,j| 0 ≤ j≤ m-1}

• Tpre_answe_A ={SA,j | 0 ≤ j ≤m-1}

• Tjudge_position_1={ B jC0C11D0D1Aj |
0 ≤ j ≤ m-1 }

5. CONCLUSIONS

In this paper, we proposed an efficient
algorithm for multiplication of two n bit binary
numbers. Above algorithm takes O(1) time in the
best case which exists when the each bit of
multiplicand is zero. However, for rest of the cases
the time complexity of proposed algorithm is O(n).
Similarly, the space complexity of proposed
algorithm is O(n) for Average case, Worst case
and Best case. In addition the most merit of this
model is simple coding and its time efficiency.

6. REFERENCES

[1]. Hiroki Fukagaw, Akihiro Fujiwara;
Procedures for multiplication and division in DNA

computing.

[2]. L. M. Adleman; Computing with DNA.
Scientific American, 279(2):54-61, 1998.
[3] V. Gupta, S. Parthasarathy, and M. J. Zaki.
Arithmetic and logic operations with DNA. In
Proceedings 3rd DIMACS Workshop on DNA
Based Computers, pages 212-220, 1997.
[4]. H. Hug and R. Schuler. DNA-based parallel
computation of simple arithmetic. In Proceedings
of International Meeting on DNA Based
Computers, pages 159-166, 2001.
[5]. R. J. Liption. DNA solution of hard
computational problems. Science, 268:542-545,
1995.
[6] Z. F. Qiu and M. Lu. Arithmetic and logic
operations for DNA computers. In Proceedings of
the Second IASTED International conference on
Parallel and Distributed Computing and Networks,
pages 481-486,
1998.
[7] Z. F. Qiu and M. Lu. Take advantage of the
computing power of DNA computers. In
Proceedings of the Third Workshop on Bio-
Inspired Solutions to Parallel Processing Problems,
IPDPS 2000 Workshops, pages 570-577, 2000.
[8]. J. H. Reif. Parallel bimolecular computation:
Models and simulations. Algorithmica, 25(2/3):
142-175, 1999.
[9] R. B. Merrifield. Solid phase peptide synthesis.
I. The synthesis of a tetra peptide. Journal of the
American Chemical Society, 85:2149-2154, 1963.
[10] P. Frisco. Parallel arithmetic with splicing.
Romanian Journal of Information Science and
Technology, 2(3):113-128, 2000.
[11]. A. Fujiwara, K. Matsumoto, and W. Chen.
Addressable Procedures for logic and arithmetic
operations with DNA molecules. International
Journal of Foundations of Computer Science,
15(3):461-474, 2004.
[12]. F. Guarnieri, M. Fliss, and C. Bancroft.
Making DNA add. Science, 273:220-223, 1996.
[13]. G. Paun, G. Rozeberg, and A. Salomaa.
DNA computing. Springer-Verlag, 1998.
[14].S. Kamio, A. Takehara, and A. Fujiwara.
Procedures for computing the maximum with dna
strands. In Proceedings of the 2003 International
Conference on Parallel and Distributed Processing
Techniques and Applications, volume 1, pages
351-357, 2003.

559

Abstract:- In this paper, we propose one procedure for multiplication using DNA strands
SANTU
D:20080419165335+05'30'
D:20080419165350+05'30'
AN EFFICIENT ALGORITHM FOR MULTIPLICATION
BASED ON DNA COMPUTING
1
Santosh Kumar Mishra,
2
Sanchita Paul
1
 Student (M.Tech), Deptt. of Computer Science & Engineering, B.I.T. Mesra, Ranchi, India-835215
2
 Lecturer, Deptt. of Computer Science & Engineering, B.I.T., Mesra, Ranchi, India-835215
 E-mail:-
santosh_mta@yahoo.com
,
sanchita07@gmail.com
ABSTRACT

 DNA Computing utilizes the properties of DNA for performing the computations. The computations
include arithmetic and logical operations such as multiplication. We first show a procedure for
multiplication of a pair of two binary numbers.
The procedure mainly consist of bit-shift operation where
the operation depends on bit position of one's
(ignoring zero's)
in the multiplicand
 and finally addition

 operations which take place simultaneously in each steps. The above method takes O(1) time in the best
case which exists when each bit of multiplicand is zero. However, the time complexity of proposed
algorithm is O(n) for average and worst case and the space complexity of proposed algorithm is O(n) for
average case, worst case and best case. In addition the most merit of this model is simple coding and its
time efficiency.

 Keywords: DNA computing, DNA computation Model, Multiplication.
1. INTRODUCTION
DNA computing is new computation

 paradigms, which proposes the use of molecular
biology tools to solve different mathematical
problems. It is a form of computing which use
DNA, biochemistry and molecular biology, instead
of the traditional silicon-based computer
technologies. The primary advantage of DNA
based computation is the ability to handle millions
of operations in parallel. DNA computing is
fundamentally similar to parallel computing in that
it takes advantage of the many different molecules
of DNA to try many different possibilities at once.
DNA computing has two important
features, which are Watson-Crick complimentarily and massive parallelism. Using
the features, we solve some optimization
problems, which usually need exponential time on

 silicon-based computers, in polynomial steps with
DNA molecules. However, for DNA computing to
be applicable on a various range of problems for
primitive operations, such as logic or arithmetic
operations. A number of procedures have been
proposed for the primitive operations with DNA
molecules [1,3,4,10,11,12,14]. One procedure was
proposed by Gaurnieri et.al. [12] for addition of
two binary numbers of m bits .The procedure

 uses O (m) steps using O(m) different DNA
strands

 .
Another model which allows for
representing and manipulating binary numbers on
DNA chip by H.Hug and Rescuer [4] applies
parallel execution of primitive operations. Kamino
et.al. [14]
proposed a procedure which computes
maximum n binary numbers of m bits, which runs
in O(1) steps using O(mn
2
) DNA strands.
A.fujiwara [1] shows one procedure for
multiplication and division in DNA computing.
This method shows multiplication of two binary
numbers of m bits in O(log m) steps using O(m
2
)
DNA strands.
In this paper, we present a procedure for
multiplication of a pair of n bit binary numbers.
This procedure involves two operation first is
bit-
shift operation depending on bit position of one's
(ignoring zero's)
in the multiplicand
 and finally
addition operations which take place
simultaneously in each steps. The above method
takes O(1) time in the best case using O(n) DNA
strands which exists when each bit of multiplicand
is zero. However, the time complexity of proposed
algorithm is O(n) using O(n
2
) DNA strands and the
space complexity of proposed algorithm is O(n)
for average case, worst case and best case.
554
2.
 PROCEDURE FOR
MULTIPLICATION
In this section, we have described a
method for multiplication of a pair of n bit binary
numbers. The method for multiplication mainly
consists of bit-shift and addition operations
according to position of each bit in multiplicand.
Q=Multiplicand, where we check the bit position
of 1's;
M= Multiplier;
A= Temporary Register, where bit-shift operations
performed and stored as temporary;
S= Partial Result; where temporary result of A
(after bit-shift operations) added to S;
R= Where, bit positions of Q (multiplicand)
containing 1;
M<<R[i] = M shifted R[i] times;
It consists of following basic operation

 ?
if the value of i-th bit of
Q is 1, we store the j
left-shifted value of M
in an address A .

 ?
If the value of i-th bit of
Q is 0, there is no
operation.

 ?
The results of operation
stored in S.
Figure 1: [bit-shift and addition operation]
2.1 FLOW CHART
Figure 2: Flowchart for multiplication
2.2 ALGORITHM

 1.
Initialize Registers.
S=0
//sum register used to perform addition
(S=S+A). [It takes O(1) complexity].
A=Auxiliary register for storing the result of bit-
shift operation. [It takes O(1) complexity].
Q=Multiplier. [It takes O(1) complexity].
M=Multiplicand. [it takes O(1) complexity].
R
//processing register of size n that
contains the bit-positions of 1 in Q. [It takes O(1)
complexity].
i=0
// for accessing values in Register R.
 [It takes O(1) complexity].
j=k-1
// Number of Values stored in R. [it takes
O(1) complexity].
555

 2. Repeat step 3-4 until i≥j
3. a. A=M.
b. t=R[i].
3c.Until (t>0) repeat step (i) & (ii). Repeataion
takes O(n)
complexity.
i). Circular left shift A.
ii). t=t-1
4. S=S+A
i=i+1
5. Final result in register S. //it takes O(1)
complexity.
Several theoretical and mathematical

 computational models have been proposed for
DNA computing [2, 3, 4, 5, 6, 7, 8]. The
computational model used in this paper is same as
[11,3]. In this section, we introduce this
computational model. The DNA may be single or
double stranded. A single strand of DNA is
defined as a string of symbols over a finite
alphabet Σ(sigma).
Total time complexity: O(n)

 We define these alphabet as Σ={e
3 PRELIMINARIES
3.1 DNA STRANDS
DNA strands are a basic element for

 DNA computing. DNA strands are similar to a
memory module used on a silicon-based computer.
A single strand of DNA is defined as a string of
four different base nucleotides (A, T, C, G). While
DNA strands can be synthesized using biological
method [9,11], we assume that each single strands
of DNA represent a symbol over a finite alphabet
Σ(sigma). DNA computing has main concept of
Watson-Crick complementary method
(complementary base pairs-Adenine and Thymine,

 Guanine & Cytosine) and massive-parallelism. We
can solve some problems in a minimum number of
steps with biological DNA molecules by help of
these concepts. We describe the alphabet Σ={e
0
,
e
1

 ,?e
m-1

 , ē
0

 , ē
1

 ?.. ē
m-1
}, where the symbol e
i
 and
ē
i
(0<=i<=m-1) are complements. A single strand

 is a sequence of one of one or more symbol in Σ.
Two single strands of DNA form a double strand if
and only if the single strands are complements of
each other. A double strand with e
i

 , ē
i
 is denoted
by e
i
.

 ē
i
The DNA strands which are single or
double both are stored in a test tube .The following
expressions denotes test tubes T
1
 and T
2
, which
store single and double DNA strands. For
example, T
1
={e
0
e
1
, e
0
e
1
 } denotes two single
strands are stored in a test tube T
1
. The set of
strands stored in a test tube is allowed to be a k-
multiset. Where, each strand has k-copies in the
test tube and k-depends on the error involved in
DNA manipulations. We describe each strand in a
set represented by test tube as one unit. For
example, the test tube T
1
 contains two units of
e
0
e
1

 , and three units of ē
0
ē
1
, represented as
T
1
={e
0
e
1
,e
0
e
1

 , ē
0
ē
1

 ,ē
0
ē
1

 ,ē
0
ē
1
}.
3.2 COMPUTATIONAL MODEL FOR
DNA COMPUTING
0
,e
1

 ,??..e
m-1

 ,ē
0
,
ē
1

 ? ē
m-1
}.Where the symbols e
i

 , ē
ii
(0<i<m-1) are
complement.. A double strand with e
i

 , ē
i
is denoted
by {e
i

 , ē
i}
. The model allows the following seven
DNA
manipulations which are widely used in
DNA computing:
[1]. Merge: Given two test tubes T
1
, T
2
. Merge (T
1
,
T
2
) stores the union in a single test tube T
1
UT
2
 in
T
1
.
[2] Copy: Given test tube T
1
, a new test tube T
2
can be produced with same contents using the
manipulation operation Copy (T
1
, T
2
).
[3]. Detect: Detects whether the test tube T
contains at least one strand. Detect (T) produces
the output "Yes" if T contains DNA strands,
otherwise returns "No".
[4]. Separation: Given a test tube T
1
 and a set of
strings X, separation (T
1
,X, T
2
) removes all single
strands containing a string in X from T
1
, and
produces a test tube T
2
 with the removed strands.
[5]Cleavage: Given a test tube T and string of two
symbols e
0
e
1
, the operation Cleavage (T, e
0
e
1)
 cuts
each double strand containing
e
0
e
1
e
0
e
1
α
0
 e
0
e
1
β
0

 α
0
e
0
 e
1

 β
0
α
1
 e
0
e
1
β
1

 α
1
e
0
 , e
1

 β
1

 It is assumed that Cleavage can only be applied to
some specified symbols over the alphabetΣ.
[6] Annealing: Given a test tube T, all feasible
double strands from single strands in T is produced
556
by the manipulation operation Annealing (T),
which are stored in test tube T.

 [7] Deanaturation: Given a test tube T,
Denaturation (T) dissociates each double strand in
T into two single strands.
These above mentioned manipulations are
implemented with a constant number of biological
steps for DNA strands [13].
Let the Input be ,T
1
= { e
1
 e
2

 , ē
1

 ē
2
}
 T
2
= (e
3,
 e
4
 }
(1). Merge (T
1
,T
2
):
T
1
UT
2

 ÆT
1
T
1
={e
1
,e
2
,e
3
,e
4

 , ē
1

 ē
2
 }
(2).Copy (T
1
,T
temp
):
T
temp
={e
1
,e
2

 , ē
1,

 ē
2
}
(3)Detect(T
1
):
Detect(e
1
,e
2

 , ē
1

 ē
2
 },output="yes".
Detect(), output="no".
(4). Separation(T
1
,{X
},T')
Separation (T
1
,{e
1

 ,ē
2
},T'}, T
1

 ={ ē
1
}, T'={e
1
,e
2
,
ē
2
}
(5). Annealing (T
1
):
 e
1,
e
2
T
1
=
 e
1,
e
2
(6) Annealing(T
1
) & Denaturation(T
2
):
T
1
={ e
1,
e
2

 , ē
1,

 ē
2
 } .
(7).Annealing & Cleavage(T, e
1
e
2
) :
 e
1
e
2
T=
ē
1

 , ē
2
3.3
BIT REPRESENTATION WITH DNA
STRANDS (STRINGS)
In this section, we give explanation of
data structure for storing a set of n binary numbers
using DNA strands. For additional details of
binary number representations with DNA
representations refer [1, 11].
Let us consider a number x such that
x=
∑
x
−
=
1
0
m
j
j
*2
j
 where x
m-1
,x
m-2

 ,?..,x
0
are binary
bits. We assume that the most significant bit x
m-1
is a sign bit and a negative number is denoted
using two's complement notation. A representation
of each bit is the same as that in [1, 11], and is
described below:
We first define the alphabet
used in these
representations as follows.
∑
∑
={A
0
,A
1

 ,??,A
n1
,B
0
,B
1

 ,?.B
m1
,C
0
,C
1
,D
0
,D,
0,#,
Ā
0

 , Ā

 1,, ,,??.

 ?, Ā
n-1
, B
0
, B
1

 ,?B
m-1
, C
0
, C
1
 ,D
0
, D
1
,
1, 0 ,# }
A
0
,A
1

 ,??A
n-1
 denote addresses of binary
numbers ,and B
0
,B
1

 ,?.B
m-1
 denote bit positions in
a binary number.C
0
, C
1
and D
0
, D
1
 are specified
symbols which cut by cleavage."0" and "1"
symbols are used to denote bit value and "#" is a
special symbol used for separation.
Using the above defined alphabet, a value of a bit,
whose address and bit position are i and j, is
represented by a single strand Si, j such that
S
i,j
= D
1
A
i
B
j
C
0
C
1
V
i,j
D
0
,
V
i,j
=0 if value of bit is 0, otherwise V
i,j
=1.Where
S
i,j
 is a memory strand, and use a set of O(mn)

 different memory strands to denote n binary
numbers of m bits ,that is , a number x stored in
address i is represented by a set of memory strands
{Si,m-1,Si,m-2??.Si,0},which denote binary
bits xm-1,xm-2,??x0,respectively. We assume
that Vi denotes a value stored in address i, that is,
V
i
=
∑
x
−
=
1
0
m
j
j
*2
j
3.4 PRIMITIVE OPERATIONS
In this paper, three operations Value
assignment, logic and addition are used as
primitive operations for multiplications. The
ValueAssignment is a primitive operation, we
express ValueAssignment such as
ValueAssignment_V(T
input
, T
output
) executes
assignments of the same value V to T
input
,and
stores the results in T
output
 . The Logic primitive
operation is expressed such as Logic(T
input
,
L,T
output
),it as an operation which executes logic
operations, which are defined by single strands in
a test tube L, for pairs of memory strands in test
557
tube T
input
 ,and it stores the results in test tube
T
output .
 The addition primitive operation
expressed such as Addition (T
input
, R,T
output
), is
an operation which executes addition, which are
define by single strands in a test tube R,for pairs
of memory strands in T
input
,and results in T
output
.
For these three primitive operations, the following
lemmas are obtained [11].

 Lemma 1 [11] The ValueAssignment_V(T
input
,
T
output
),which is for O(n) pairs of m bit binary
numbers, can be executed in O(1) steps using
O(1) kinds of O(mn) DNA strands.

 Lemma 2 [11] The Logic (T
input
, L,T
output
),which
is for O(n) pairs of m bit binary numbers , can be
executed in O(1) steps using O(mn) kinds of
different DNA strands.

 Lemma 3 [11]The Addition(T
input
, R,T
output
)
,which is for O(n) pairs of m bit binary numbers
,can be executed in O(1) steps using O(mn) kinds
of different DNA strands.
4. PROCEDURE
FOR
MULTIPLICATION USING DNA STRANDS
An Input and output of multiplication procedures
are following three test tubes T
input_x,
 T
input_y and
T
output.
[Refer [1] for details]
T
input_M
 = {S
M,j

 | 0 ≤ j≤ m-1}
T
input_Q
 =
 {S
Q,j

 | 0 ≤ j ≤ m-1 }
T
output _S
 = {S
S,j

 = | 0 ≤ j ≤ 2m-1 }
In the procedure for multiplication,
memory strands in T
input_Q
and T
input_M_
denote a
multiplicand and a multiplier, respectively. An
output value of the multiplication is stored in
memory strands in the following test tube T
output_S

 .
The DNA manipulation operations as

 mentioned in section ? are applied for solving
multiplication of two n bit binary number. The
following steps are carried out :
Step 1: Prepare an array R such that it
contains the positions of all 1's in Q. This step
consists of following sub steps:

 (1-1)
We first detect for .0 in test tube Q, and
then no operation is performed if it
returns "yes".
Detect (T
input_Q
) ="yes"
// detect strands in test tube T
input_Q
;if bit
is 0 then no operation performed .

 (1-2)
We detect position of all 1's in Q, then
use logic primitive operation and
separation DNA computing model for
storing all 1's in a new test tube.
Detect (T
input_Q
) ="yes"
// detect strands in test tube T
input_Q
;
Logic (T
input_Q
,L
assign
,T
judge_position_1
);
//Logic operation for location assign in
test tube T
input_Q
and its position store in
New test tube T
judge_position_1
 .
Separation(T
input_Q
,1,T
R_1
);
Annealing (T
R_1
);

 //separate 1 from Input test tube Q and
produce a new test tube T
R_1
 after
annealing.

 (1-3)
Then we save all these bit positions to a
test tube T
judge_position_1
.
Separation (T
judge_poition_1
,{1},T
R1
}
Annealing(T
judge_1_positions
);
//Test tube T
judge_1_positions
 used for storing the
position of bits.
(1-4)
Set initial Value of S=0 into T
S
 and
A=00001011 into T
A
 .
ValueAssignment_0(T
all_0
,T
s
)
//Set initial value of S=0
ValueAssignment_00001011(T
tmp
,T
A
)
// Set Initial Value A=00001011 .
Step 2: Repeat the following steps for all values
stored in R.
(2-1)
Store R [i] times left shifted value of M to
A and add temporarily T
preanswer_A
 Value to T
S
 .
for(i=0;i<=T
judge_position_1
;i++)
{
If (T
judge_position_1
>=0)
{
Separation (T
input_Q
,1,T
R_1
);
Merge (T
R_1
,T
judge_position_1
);
Annealing (T
R_1
);
Separation (T
R_1
,{ D
0
D
1
},T
judge_position_1
);
Merge (T
R_1
,D
1
);
Annealing (T
R_1
);
Cleavage (T
R_1
,D
0
D
1
);
Denaturation (T
R_1
);
Separation (T
R_1
,{ D
1
},T
shift_A
);
Annealing (T
shift_A
);
Merge (T
input_M
,T
shift_A
);
558
Separation (T
shift_A
,{D
1
},T
judge_position_1
);
Denaturation (T
shift_A
);
Separation (T
shift_A,
{C
0
C
1
},T
pre_answer_A
);
Addition(T
pre_answer_A
, R,T
S
);
//Addition performed and output stored in T
S
(according to loop) S=S+A, where R is a logic
which defined for additon operation.
}
Step 3: Output a value is stored in address T
S
.
Separation(T
S
,{A
S
},T
S
);
// finally output value stored in last output test tube
T
S
 in given above separation operation, because
input test tube strings removed which same as A
S
.
}
In addition, we use the following test
tubes:

 •
T
input
_
Q
={S
Q,j

 | 0 ≤ j ≤ m-1 }

 •
Tinput_
M
= {S
M,j

 | 0 ≤ j≤ m-1}

 •
T
pre_answe_A
={S
A,j

 | 0 ≤ j ≤m-1}

 •
Tjudge_position_1={ B
j
C
0
C
1
1D
0
D
1
A
j
|

 0 ≤ j ≤ m-1 }
5. CONCLUSIONS
In this paper, we proposed an efficient
algorithm for multiplication of two n bit binary
numbers. Above algorithm takes O(1) time in the
best case which exists when the each bit of
multiplicand is zero. However, for rest of the cases
the time complexity of proposed algorithm is O(n).
Similarly, the space complexity of proposed
algorithm is O(n) for Average case, Worst case
and Best case. In addition the most merit of this
model is simple coding and its time efficiency.
6. REFERENCES
[1]. Hiroki Fukagaw, Akihiro Fujiwara;
Procedures for multiplication and division in DNA
computing.
[2]. L. M. Adleman; Computing with DNA.
Scientific American, 279(2):54-61, 1998.
[3] V. Gupta, S. Parthasarathy, and M. J. Zaki.
Arithmetic and logic operations with DNA. In
Proceedings 3rd DIMACS Workshop on DNA
Based Computers, pages 212-220, 1997.
[4]. H. Hug and R. Schuler. DNA-based parallel
computation of simple arithmetic. In Proceedings
of International Meeting on DNA Based
Computers, pages 159-166, 2001.
[5]. R. J. Liption. DNA solution of hard
computational problems. Science, 268:542-545,
1995.
[6] Z. F. Qiu and M. Lu. Arithmetic and logic
operations for DNA computers. In Proceedings of
the Second IASTED International conference on
Parallel and Distributed Computing and Networks,
pages 481-486,
1998.
[7] Z. F. Qiu and M. Lu. Take advantage of the
computing power of DNA computers. In
Proceedings of the Third Workshop on Bio-
Inspired Solutions to Parallel Processing Problems,
IPDPS 2000 Workshops, pages 570-577, 2000.
[8]. J. H. Reif. Parallel bimolecular computation:
Models and simulations. Algorithmica, 25(2/3):
142-175, 1999.
[9] R. B. Merrifield. Solid phase peptide synthesis.
I. The synthesis of a tetra peptide. Journal of the
American Chemical Society, 85:2149-2154, 1963.
[10] P. Frisco. Parallel arithmetic with splicing.
Romanian Journal of Information Science and
Technology, 2(3):113-128, 2000.
[11]. A. Fujiwara, K. Matsumoto, and W. Chen.
Addressable Procedures for logic and arithmetic
operations with DNA molecules. International
Journal of Foundations of Computer Science,
15(3):461-474, 2004.
[12]. F. Guarnieri, M. Fliss, and C. Bancroft.
Making DNA add. Science, 273:220-223, 1996.

 [13]. G. Paun, G. Rozeberg, and A. Salomaa.
DNA computing. Springer-Verlag, 1998.

 [14].S. Kamio, A. Takehara, and A. Fujiwara.
Procedures for computing the maximum with dna
strands. In Proceedings of the 2003 International Conference on Parallel and Distributed Processing
Techniques and Applications, volume 1, pages
351-357, 2003.
559

