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ABSTRACT 
 

This paper deals with the presentation of a new formulation to solve combined magnetic and electric 
problems including the motional electromotive force in a rotating electric machine. In this analysis, the 
boundary element method and finite element method are applied to the brushless synchronous generator. 
This method takes the effect of the relative motion between the field winding and the armature winding into 
account, this technique is used in order to analyze the motion induced current in the armature windings. We 
use this method to predict the dynamic behavior of electric machines that is gaining in popularity because 
of the availability of high performance microcomputers and the development of new features, such as the 
integration of the rotor’s motion and the machine’s supply circuitry in the finite element solution.  
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1. INTRODUCTION  
 
     Magnetic and electric field analysis of a 
brushless synchronous generator is presented in this 
paper. This kind of machine has armature windings 
which are connected to the diodes. The static 
magnetic field generated by additional field 
windings induces speed electromotive force in the 
closed armature windings, connected diodes rectify 
alternating currents, then they can provide d.c 
armature currents without brushes.   

     To model magnetic phenomena in 2D, the 
current density must usually be known. But, people 
often use voltage sources, so they are compelled to 
make some iteration to calculate the final voltage 
from the current density in order to try with a new 
value of current density. To avoid such problems, 
the idea is to solve simultaneously the magnetic and 
electric equations. In the literature, we find two 
types of approach, the integro-differential method 
[1] and the direct method [2]-[5], this last method 
seems to be more efficient.  

     Building a machine model based on simplifying 
assumptions allows a fast prediction of the system’s 
behavior using commercial circuit simulation 
software.  

     When a linear model of the machine is assumed, 
this method is fast but often inaccurate because the 

magnetic material’s nonlinear behavior, as well as 
the influence of spatial harmonic’s and eddy 
currents, cannot be included in the machine model 
without leading to long computation time and 
complexity.  

     One way to improve the simulation’s accuracy 
to directly compute the drive system’s dynamic 
using the numerical  method.  
     Numerical methods, such as the boundary 
method and the finite element method has become 
established tools for electric machine analysis. 
However, the application of conventional methods 
to the electric generator is difficult. The reasons are 
as follows: 

(1)  The current induced by the relative motion has 
not been possible to determine. 
(2)  The governing equation including the motional 
electromotive force becomes a convection-diffusion 
equation. It is well-known that the high Peclet 
number produces unstable solutions. 
(3)  When using FEM, or BEM  the mesh 
subdivisions should be modified as the rotor moves. 
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Figure 1. Model of brushless synchronous generator 

 

 In a rotating machine, the effect of the relative 
motion is of considerable importance in some 
practical application. In this paper, the boundary 
element and the finite element methods taking the 
external power source is developed [6]-[7], so that 
the motion induced current can be determined. This 
method is applied to the brushless synchronous 
generator as shown in Figure 1, and clarifies the 
behavior of the magnetic field when a load is 
applied. 

     Additionally, we expand the finite element 
method to apply a brushless synchronous generator. 
The functioning of this apparatus depends on the 
nonlinear characteristics of the diodes connected to 
the armature windings. It is necessary to analyze 
the apparatus taking into account not only speed 
electromotive force but also nonlinear electronics 
circuits. With this method, the behavior of the 
magnetic field due to the armature reaction and the 
contributions of diode rectifiers can be clarified.  

 
2.  FORMULATION 
 
     The Maxwell equations play a fundamental role 
in the well established formulation of the 
electromagnetic theory [8]. These equations lead to 
the derivation of precise mathematical models 
useful in many applications in physics and 
engineering. The Maxwell equations involve only 
the integer-order calculus and, therefore, it is 
natural that the resulting classical models adopted 
in electrical engineering reflect this perspective. 
Recently, a closer look of some phenomena present  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in electrical systems, such as motors, transformers 
and lines, and the motivation towards the 
development of comprehensive models, seen to 
point out the requirement for fractional calculus 
approach. 

     In an alternative perspective several authors 
have verified that well-known expressions for the 
magnetic potential are related through integer-order 
integral and derivatives and have proposed its 
generalization based on the concept of fractional-
order poles. Nevertheless, the mathematical 
generalization towards calculus approach lacks a 
comprehensive method for its practical 
implementation.   

     In the stationary coordinate system Maxwell’s 
equations are always valid and expressed as 
follows: 

      
t∂

∂−=×∇ BE  

      JH=×∇                                                                                 
(1) 
      0. =∇ B  
      0. =∇ D  
 

     Where E is the electric field intensity, B the 
magnetic flux density, H  the magnetic field 
intensity, J the current density, and D the electric 
flux density. It is assumed that the electric charges 
and the displacement currents are negligible. 
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     The Galilean space-time transformation may be 
applied to equations (1) to give Maxwell’s 
equations in a moving coordinate system [7]: 

     
t∂

∂−=×+×∇ BBE )(' ν  

     JH=×∇ '                                                                                

(2) 

  0.' =∇ B  

     0.' =∇ D  

where primes denote quantities expressed in the 
moving coordinate system, and ν is the velocity of 
a point in the moving coordinate system 

),,,,,,,( tzyx .  

     The quantities H , B , D and Jare not altered in 
both coordinate systems, only the electric field 
intensity vector Eis modified as: 

BE'E ×+= ν                                                                                 

(3) 

     In two-dimensional analysis, substituting 
AB rot= into equation (3) yields: 

'A'A''A'E )()()(
yx

grad
t yx ∂

∂−
∂
∂−−

∂
∂−= ννϕ                               

(4) 

     Where A is the magnetic vector potential, ϕ is 

the scalar potential, xν and yν are x- and y- 
directional components of the velocity, 
respectively.  

     On the other hand, in the stationary coordinate 
system, the electric field intensity Eis: 

ϕgrad
t
−

∂
∂= AE                                                                            

(5) 

     In the case of a generator, the electric field 
vector intensity is induced in the windings. The 
terminal voltage TU of the windings is expressed as 
follows: 

∫=Φ−=
l

dln
dt
dnU wwT .E                                                                 

(6) 

     Where wn is the number of turns of winding, 
Φ is the interlinkage flux, and l is the length 
around the winding. Assuming the windings are 
connected to the external electric circuit as shows in 
Figure 2, the circuit equations are obtained as 
follows: 

In a stationary winding: 

∫ +=
l

IRdl
dt

dAnU iw 1111                                                                   

(7) 

In a moving winding: 

diodeiyi
l

xiw UIRdl
dy

d
dx

d
dt

dnU +++∫ += 222222 )( AAA νν                     

(8) 

      

     The subscript i means the value at the winding, 
U is the voltage of the external power source, 
R the resistance, I  the current and diodeU the 
terminal voltage of the connected diode. 

     When the rotation is assumed to be around the z-
axis at an angular frequency rω , xν  and yν  are 
given by: 

yrx ων −= ,     xry ων −=                                   
(9) 

     The boundary integral equation including 
induced current is expressed as follows: 

∫ Ω+Γ∫=Γ∫+
Ω

∗
Γ

∗
Γ

∗ IdA
S

nAdqAAdqAC wii 0µ                               

(10) 

     In order to determine the unknown current I , 
the circuit equation including the external electric 
circuit should be combined with the field equation 
(10). 

     In general, A and its derivatives are unknown, 
however, they can be given by the boundary 
integral equations: 

∫ ∫ ∫ Ω+Γ+Γ−=
Γ Γ Ω

∗∗∗ )(1 0 IdA
S

nqdAAdq
C

A w
i

i µ                           

(11) 

     After the discretizing process, the field equations 
(10), (11) and equations (7), (8) are combined to 
solve the equations. 
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Figure 2. Relative motion of windings 

 

     This method has been extensively used in 
solving problems in electrostatics, high voltage, 
electrical machines and electromagnetic fields. In 
most cases the problem to solved can be modelled 
in terms of the Laplace equation in either two or 
three dimensions. The accuracy of the solution 
obtained from this analysis depends on the error 
introduced due to (i) Approximation of geometry, 
(ii) Function interpolation and (iii) Numerical 
integration. Many approaches have been reported in 
the literature to address some of these problems in 
order to get a better approximation [9]. 

     Consider a region D  bounded by a closed 
surface, from Green’s theorem we can derive the 
boundary integral equation: 

[ ] [ ]21 )().()().()().( pppppp ΦΦ=Φ − θθθ                                       
(12) 

with: 

[ ] dq
n

qpp
S q
∫

−∂
Φ∂

=Φ
pq

1.)(
4
1)().( 1 π

θ                                             

(13) 

[ ] dq
n

qpp
S q
∫

−∂
∂Φ=Φ

pq
1.)(

4
1)().( 2 π

θ                                        

(14) 

     Here p is the field point where the solution is 
desired, q is the source point on the surface S . 

1)( =pθ if D∈p  

)4/()( πθ Ω=p if S∈p  (Ω is the solid angle 
subtended at the field point). 

0)( =pθ elsewhere. 

     If the solution domain is the infinite space 
outside S , we consider an imaginary sphere of 
large radius tending to infinity centred around the 
field point. The new formulation is now applied to 
the annular region between S and the sphere at 
infinity, this leads to: 

[ ] [ ] ∞Φ+ΦΦ=Φ − 21 )().()().()().( pppppp θθθ                              
(15) 

Here ∞Φ is the potential at infinity, which need not 
be zero. 

     In this new formulation we divide the 
surface S into a mesh elements. The unknown 
potential in the second term in equation (12) and 
the unknown normal gradient of the potential in the 
first term of equation (12) are linearly interpolated 
within each element in terms of the values at the 
nodes of the triangle. When the field points are 
chosen to be one of the nodes of the mesh, the left 
hand side of equation (12) can be written in terms 
of the unknown nodal potentials. This leads to the 
following matrix equation: 

∑=Φ∑ −
j

j
j

jijijiji ghC φδ )(                                                         

(16) 

     If equation (15) is solved we have a similar 
equation but with one more unknown ∞Φ .For this 
we need an additional equation, this is obtained 
from the following condition: 

∫ =
∂
Φ∂

0
)(
dq

n
q
q

                                                                           

(17) 

     In equation (16), iC is the value of )(pθ defined 
after equation (12) and is related to the solid angle 
at the field point p , which is one of the nodes 

ir .The matrix elements are given by: 

n

k
kk

je
ij dd

N

nN
g ξ

ξ
π

ξ

∫ ∫
−

∑−

×
= 1

0

1

0

21)( ),(
4 rr

tt

i

                                        

(18) 

and 
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(19) 

     The superscript is used in equation (18) and (19) 
to emphasise that the integral is carried over an 
element.  

In these integrals 1t  and 2t are the vectors along 
the triangle edges and iN are the interpolation 
functions. 

 
3.  BUILDING A MODEL 
 
     The recent high growth of the power of the 
computer systems, development of the software’s to 
solve complicated problems made it possible to use 
methods of calculations in electric machinery to 
obtain the magnetic field analysis. 

     The most spread nowadays finite element 
method still demands too much computing power to 
obtain the results in a short time. In this case, we 
have developed in our institution a software which 
is used to build a different machines by Matlab®. 
The structure and the strategy of used this software 
to build a brushless synchronous generator is given 
by Figure 3.   

     This work is articulated around the CAO of   
brushless synchronous generator in static and  
dynamic mode using Matlab® software. 

     Matlab® is a general purpose mathematical 
utility program which provides editing, plotting, 
debugging and graphics capabilities, as well as 
access to extensive and sophisticated library of 
powerful computational algorithms, and is 
becoming widely used throughout the engineering 
community.  

 
3.1.  Constructing the geometry 
 
     The geometry of an object as shown in Figure 1 
is constructed using points and lines. The surface, 
shell and pinpoint regions are constructed from 
these entities. The user has access to parameters 
which can help in both the construction of the 
geometry and in modifying the geometry 
(modifying the shape, displacing an object….),. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Supervisor Matlab 

 

     The normal method consists of first defining the 
parameters which will be used. A parameter is 
defined with a name, a comment and an arithmetic 
expression.  

     The second step to follow consists of defining 
the points, they are determined by their coordinates 
(constant numerical values, parameters, arithmetic 
expression) or by duplicating other points 
(duplication is done by modifying the values of 
parameters, and not by applying geometric 
transformations to the points). 

     The third step is the definition of the lines, there 
are three types: straight line, arc and circle. 

     The last step in the geometry construction 
consists of defining the regions, the surface regions 
are constructed from one or several closed surfaces 
limited by the lines.  

3.2.  Meshing the geometry 
 
     The finite elements method requires the 
subdivision of the study domain into elements to 
create what is called the mesh as shown in Figure 4. 
The mesh can be created with the help of the 
automatic mesh generator or the assisted mesh 
generator which allows a very precise control of the 

 
 
 
 
 
 

Geometry 
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 mesh obtained. These mesh generators generate 
second order finite elements. 

     The automatic mesh generator generates 
triangular mesh elements, using the subdivisions on 
those lines having been used for the geometry 
definition. The user can increase or decrease the 
number of subdivisions on a line or choose the 
distance between two subdivisions. The 
subdivisions can be linearly or non-linearly 
distributed. If required the mesh generator can 
increase by dichotomy the number of nodes on a 
line. 

     The assisted mesh generator allows you to 
control precisely the shape and quality of the mesh, 
which is very useful in analyzing certain problems 
(for example a small skin depth). 

     The user can subdivide those surface regions 
enclosed by three or four lines, regions that make 
up the elementary mesh. The user chooses one by 
one the mesh elements to subdivide and for each 
element the type of subdivision and the number of 
subdivisions. The resultant mesh can be refined by 
further dividing previously generated mesh 
elements. The mesh elements can be triangular or 
rectangular in shape.  

 
 
 
 
 
 
 
 
 
 

3.3.  Describing the circuit 
 
 

 

 

 

 

 

 

 

 

 
 

Figure 5. Circuit model 
     The following section gives a brief and general 
approach to solve electromagnetic field problems. 
To solve the problem of the brushless synchronous 
generator, the circuit equations   must   be  coupled   
with  the   field    equations and Figure 5 shows the 
circuit model used. 
     Matlab®  computes the back emf of the stator 
winding by connecting this winding to an external 
open circuit load and rotating the rotor over one 
electric cycle. The three phase stator winding for 
the one pole numerical model of the motor (1/4  of 
the machine) is star connected. The finite-element 
formulation equations are coupled with the circuit 
equations which leads to a system of equations that 
is solved taking the non-linearities into account by 
means of a Newton-Raphson method and using a 
time stepping technique. The time step must be 
small enough to assure good results and the choice 
of this value is critical. 
 
3.4.  Defining the physical properties 
 
     Each material as shown in Figure 6,  is described 
by a name, a comment and one  or several physical 
properties. 

     A property can be defined by a model which 
indicates the variable(s) on which it depends, by the 
form of this dependence and by numerical values 
(for example an electric resistivity can be described 
by a function linear with temperature; in which case 
you need to supply two numerical values).  

 

 

 

 

 

Figure 4. Meshing the geometry 

rotor 

stator 
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Figure 6.  B(H) Curve 

 
3.5. Boundary conditions 
 
     The boundary conditions are set on nodes 
belonging to lines: external or internal shell regions, 
internal pinpoint regions, parts of external 
boundaries. They allow you to set limits to the 
study domain by setting the value of the variable, to 
take into account physical symmetries, to impose 
the value of the variable inside the study domain  
Matlab® offers the following boundary conditions: 
Neumann condition and Dirichlet condition. 
 
3.6. Solving the problems 
 
     Solver, which uses Matlab® functions, allows 

you, to define the values of the geometrical and 
physical parameters to be taken into account during 
the solving process, and to carry out the solving 
process it self.  
 
3.7.  Results analysis 
 
     This program allows you to process the results 
of a problem by using Matlab® functions (isovalues, 
color shaded plots, 2D and 3D curves, computation 
of local or global quantities, animations, parametric 
analysis ...). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     The magnetic vector potential A  presented in 
Figure 7a and Figure 7b, is assumed to vary 
sinusoidal with time at the frequency f or angular 
frequency ω and is represented by its complex 
phasor notation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
     The rotating air gap is a circular region situated 
inside the air gap of a rotating machine presented in 
Figure 8. It allows you to turn the rotor without 
changing the geometry and the mesh of the machine 
in the geometry module. When solving the problem 

Figure 7a. Distribution of the magnetic potential vector 

Figure 7b. The magnetic potential vector along the air gap 
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and for each rotor position, the coordinates of the 
nodes of the rotor are recalculated and the finite 
elements of the rotating air gap are reconstructed. 
 

 

 

 

 

 

 

 

 

 

 

 

     All the vector quantities (flux density, magnetic  

 

field….) can be represented in the form of vectors 
on a  region as shown in Figure 9. The vectors are 
computed in each finite element, in the integration 
point where the quantity has a maximum value. 
Figure 10 indicate the flux density components 

xB , yB  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. The flux density components Bx et By along 
the air-gap 

 

     Here are presented the results of the transient 
analysis in the case of three phase bolded short 
circuit applied on the terminals of the synchronous 
generator. 

     The responses of phase currents, field current 
and the electromechanical torque are obtained when 
magnetic field solutions are coupled with 
simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Rotating the machine 

Figure 9. Magnetic flux density vectors 

Figure 11. Variation of the inductance with the position 

Bx By 
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 The Figures 11 to 13 respectively,  shows the 
variation of inductance,  the current and the torque 
of the machine.  The torque is maximum for  45° 
mechanical when the current and the derivative of 
inductance are  maximum.   

     Moreover, there is creation of a engine torque 
parasites between 90°  and 180° mechanical which 
causes the reduce of the average Torque.   

     The Figure 14 shows the characteristic flux-
current of  the machine at the time of a cycle of 
operation.  It is noticed that  converted energy is 
reduced compared with DC machines.  

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 14. Characteristic flux-current of  the machine 

 

4.  CONCLUSION 

 
     In this paper the results of an analysis 
electromagnetic design of brushless synchronous 
generator using numerical methods as the boundary 
element and the finite element method were 
presented and discussed. The results comprehended 
the analysis of the proposed design of the generator 
done by the software Matlab. 
     This new method is used in order to analyze the 
induced current in the armature windings. This 
technique take the external power source into 
account including the motional electromotive force 
in a rotating of the electric machines. 
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