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ABSTRACT 
 
Parallel query processing has attained a lot of attention in the database community because customer 
applications on databases are growing in size and complexity with an ever increasing demand for 
performance. The main objective of parallel query processing is to achieve speedup, scaleup and high 
throughput. Earlier bracket model was used for parallelization. In case of bracket model it is not possible to 
possible to execute two operators in one process without resorting to some thread or coroutine facility. Also 
bracket model involves expensive interprocess communication system calls even in the cases when an 
entire query is evaluated on a single CPU. To overcome all these difficulties of bracket model we have 
developed a new model in which a single operator is used for parallelization. As compared to bracket 
model, all issues of control are localized in one operator (parallelizing operator) in this model. Also we can 
execute a complex query in a single or with a number of processes by using one or more parallelism 
operators in the query evaluation plan. 
  
Keywords: Parallel query processing, interoperation parallelism, intraoperation parallelism, Bracket 

model, Operator model. 
 
1.    INTRODUCTION 
 

Timely information has become increasingly 
important for today’s competitive world. The 
number of information services or business relying 
on timely information is growing fast. It is reported 
that the data volume is increasing by 25-35 % per 
year, while at the same time the amount of data 
stored per person is increasing. Moreover, the 
massive amount of data is not only used for simple 
data intensive applications, but it is also used to 
extract information by relating the data stored. 
These demands foreseen cannot be easily met using 
traditional disk-based data-base technology, 
because the I/O bottleneck forms a physical 
limitation to improve responsiveness. Disk 
technology has shown an improvement of only a 
factor of 2 over last 10 years in response time and 
throughput. In contrast the CPU speed has been 
doubling every year [8]. These developments have 
led to research in parallel data-base systems 
consisting of a large number of off-the shelf, and 
therefore, cheap processors. The processors are 
interconnected by a high speed network. Typically 
each processor is equipped with a large amount of 
memory and a disk. By declustering the data over 
the available processors data can be accessed in 
parallel, leading to an improved response time [15]. 

In order to provide real-time responses to complex 
queries involving large volumes of data, it has 
become necessary to exploit parallelism in query 
processing. All high-performance computers today 
employ some form of parallelism in their 
processing hardware. It seems obvious that 
software written to manage large data volumes 
ought to be able to exploit parallel execution 
capabilities [3].    
 

The goal of parallel systems is to obtain 
speedup and scaleup [4]. Speedup considers 
additional hardware resources for a constant 
problem size; linear speedup is considered optimal. 
In other words, N times as many resources should 
solve a constant-size problem in l/N of the time.  
 

An alternative measure for a parallel system’s 
design and implementation is scaleup, in which the 
problem size is altered with the resources. Linear 
scaleup is achieved when N times as many 
resources can solve a problem with 1/N times as 
much data in the same amount of time.  
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2. QUERY PROCESSING IN PARALLEL 
DATABASE SYSTEMS 
 
Conventional query processing assumes a 
uniprocessor environment and query plans are 
executed sequentially. A query plan for a 
uniprocessor environment is called a sequential 
plan. Each sequential plan basically specifies a 
partial order for the operations. We call a query 
plan for a parallel environment a parallel plan. If 
the parallel plan satisfies the same partial order of 
operations as a sequential plan, it is called a 
parallelization of the sequential plan and each 
sequential plan may have many different 
parallelization. Parallelization can be characterized 
in the following three aspects : 
 
Forms of Parallelism 
We can exploit parallelism within each operators 
i.e. intra-operation parallelism and parallelism 
between different operators i.e. inter-operation 
parallelism. Intra-operation parallelism is achieved 
by partitioning data among multiple processors and 
having those processors execute this same 
operation in parallel. Inter-operation parallelism can 
be achieved either by executing independent 
operations in parallel or executing consecutive 
operations in a pipeline. 
 
Units of Parallelism 
Unit of Parallelism refers to the group of operations 
that is assigned to the same processor for execution.  
 
Degree of Parallelism 
Degree of Parallelism is the number of processes 
that are used to execute a plan fragment. In theory, 
the degree of parallelism can be greater than the 
number of available processors. 
 
3.    IMPLEMENTATION STRATEGIES 
 

The purpose of the query execution engine 
is to provide mechanisms for query execution from 
which the query optimizer can choose - the same 
applies for the means and mechanisms for parallel 
execution. The general approach to parallelize a 
query execution engine is bracket model. The 
bracket model has been used in distributed-memory 
systems such as Bubba and Gamma [2, 5]. 
  

In the bracket model, there is a generic 
process template that can receive and send data and 
can execute exactly one operator at any point of 
time. A schematic diagram of a template process is 
shown in Figure1, together with two possible 

operators, aggregation and join. In order to execute 
a specific operator, e.g., a scan, the code that makes 
up the generic template “loads” the operator into its 
place (by switching to this operator’s code) and 
initiates the operator which then controls execution; 
network I/O on the receiving and sending sides is 
performed as a service to the operator on its request 
and initiation and is implemented as procedures to 
be called by the operator. The 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
number of inputs that can be active at any point of 
time is limited to two since there are only unary and 
binary operators in most database systems. The 
operator is surrounded by generic template code, 
which shields it from its environment, for example, 
the operator that produce its input and consume its 
output. For parallel query execution, many 
templates are executed concurrently in the system, 
using one process per template. One problem with 
the bracket model is that because each operator is 
written with the implicit assumption that this 
operator controls all activities in its process, it is 
not possible to execute two operators in one process 
without resorting to some thread or coroutine 
facility. Second problem in a query-processing 
system using the bracket model, that passing a data 
item from one operator to another always involves 
expensive interprocess communication system 
calls, even in the cases  when an entire query is 
evaluated on a single CPU or when data do not 
need to be repartitioned among nodes in a network. 
The reason is that each operator is its own locus of 
control, and network flow control must be used to 
coordinate multiple operators, e.g., to match two 
operators’ speed in a producer-consumer 
relationship.  

 

Figure1. Bracket model of parallelization.
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To overcome the limitations of bracket 
model we are introducing an alternative to the 
bracket model called operator model. In this model, 
all issues of control are localized in one operator 
that uses and provides the standard iterator interface 
to the operators above and below in a query tree. 
Figure 2 shows a simple computatioin that 
combines temperature and pressure data for some 
further calculation such as digital filtering and 
display. Figure 3 shows a possible parallelization of 
this computation using the operator model, i.e., by 
inserting parallelism operators into a sequential 
plan. The parallelism operator is an iterator like all 
other operators in the system with open, next, and 
close procedures; therefore, the other operators are 
entirely unaffected by the presence of parallelism 
operator in a query evaluation plan. The parallelism 
operator does not contribute to data manipulation; 
thus, on the logical level, it is a “no-op” that has no 
place in a logical query algebra such as the 
relational algebra. On the physical level of 
algorithms and processes, however, it provides 
control not provided by any of the normal 
operators, i.e., process management, data 
redistribution, and flow control. Therefore, it is a 
control operator or a meta-operator. Separation of 
data manipulation from process control and 
interprocess communication can be considered an 
important advantage of the operator model of 
parallel query processing, because it permits 
design, implementation, and execution of new data 
manipulation algorithms such as N-ary hybrid hash 
join without regard to the execution environment. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
A second issue important to point out is 

that the parallelism operator only provides 
mechanisms for parallel query processing; it does 
not determine or presuppose policies for using its 
mechanisms. Policies for parallel processing such 
as the degree of parallelism, partitioning functions, 
and allocation of processes to processors can be set 
either by a query optimizer or by a human 
experimenter. The design of the parallelism 
operator permits execution of a complex query in a 
single or with a number of processes by using one 
or more parallelism operators in the query 
evaluation plan. The mapping of a sequential plan 
to a parallel plan by inserting parallelism operator 
permits one process per operator as well as multiple 
processes for one operator (using data partitioning) 
or multiple operators per process, which is useful 
for executing a complex query plan with a 
moderate number of processes. Earlier parallel 
query execution engines did not provide this degree 
of flexibility; the bracket model used in the Gamma 
design, for example, requires a separate process for 
each operator [5].Figure 4 shows the processes 
created by the parallelizing operator in the previous 
figure, with each circle representing a process. Note 
that this set of processes is only one possible 
parallelization. Furthermore, the degrees of data 
parallelism, i.e., the number of processes in each 
process group, can be controlled using an argument 
to the parallelizing operator. 
 
 

         Figure 3:  Operator model of parallelization 

              Figure2: Simple specific computation
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The difference with respect to performance is 
that the operator model permits multiple data 
manipulation operators such as join in a single 
process, i.e., operator synchronization and data 
transfer between operators with a single procedure 
call without operating system involvement. The 
important advantages of the operator model are that 
it permits easy parallelization of an existing 
sequential system as well as development and 
maintenance of operators and algorithms in a 
familiar and relatively simple single-process 
environment [10]. 
 
4.    LOAD BALANCING AND SKEW 
 

For optimal speedup and scaleup, pieces of the 
processing load must be assigned carefully to 
individual processors and disks to ensure equal 
completion times for all pieces. In interoperator 
parallelism, operators must be grouped to ensure 
that no one processor becomes the bottleneck for an 
entire pipeline. Balanced processing loads are very 
hard to achieve because intermediate set sizes 
cannot be anticipated with accuracy and certainty in 
database query optimization. Thus, no existing or 
proposed query processing engine relies solely on 
interoperator parallelism. In intraoperator 
parallelism, data sets must be partitioned such that 
the processing load is nearly equal for each 
processor. Notice that in particular for binary 
operations such as join, equal processing loads can 

be different from equal-sized partitions. There are 
several research efforts developing techniques to 
avoid skew or to limit the effects of skew in parallel 
query processing, e.g. [1,7,9,11,13,14,17,18,19,21]. 
However, all of these methods have their 
drawbacks, for example, additional  equirements 
for local processing to determine quantiles. 
 

Skew management methods can be divided 
into basically two groups. First, skew avoidance 
methods rely on determining suitable partitioning 
rules before data is exchanged between processing 
nodes or processes. For range partitioning, 
quantiles can be determined or estimated from 
sampling the data set to be partitioned, from catalog 
data, e.g., histograms, or from a preprocessing step.  
 

Second, skew resolution repartitions some or 
all of the data if an initial partitioning has resulted 
in skewed loads. Repartitioning is relatively easy in 
shared-memory machines, but can also be done in 
distributed-memory architectures, albeit at the 
expense of more network activity. Skew resolution 
can be based on rehashig in hash partitioning or on 
quantile adjustment in range partitioning.  
 
5.     PARALLEL DATABASE ARCHITECTURES 
 
Historically, the database community distinguished 
three types of system architecture as platforms  for 
parallel database systems : 
 
Shared nothing (SN): In this architecture, as the 
name indicates, processors have their own 
individual memory as well as disk space and do not 
share anything. Data coherency control is not a 
problem in a SN system. Processor and memory are 
physically localized in a node, and memory-access 
latency is not a problem. However, SN systems are 
very sensitive to data skew problems. When the 
data are seriously skewed, re-balancing the data 
load among processing nodes is necessary to 
resume good system performance. 
 
Shared disk (SD): In this architecture, the 
processors have their own individual memory, but 
share disk space. Just like in SE, in SD, inter-
processor coherency control is necessitated due to 
the caching of the shared database pages in main 
memory database buffers. The buffer invalidation 
problem tends to limit the size of a SD system.  
 
Shared everything: In this architecture, processors 
share a single global memory address space. The 
shared memory is typically physically distributed 
memory to accommodate the aggregate demand on 

 Figure 4. Processes created by Parallelizing operator 
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the shared memory from a large number of 
processors. An interconnection network is usually 
used to allow any processor to access any memory 
module. This communication network increases 
memory-access latency, which effects the 
performance of conventional processors. To 
remedy this, a popular solution is to have cache 
memory with each processor. This again leads to 
cache coherency problems. Cache coherency 
control again requires a lot of interrogation and 
hence uses of the communication network. Hence 
Shared Everything model does not scale that well.  
 

Since shared disk and SMP architectures 
are very similar in many respects, the comparison 
between shared nothing systems (mostly referred to 
as “massively parallel processing” (MPP-
architecture)) on one hand and SMP systems on the 
other hand represent the architectural alternative for 
modern parallel database systems. Let us briefly 
compare them from the perspective of handling 
parallel database operators. 
 

The properties of MPP-architectures can be 
characterized as follows: 

• Such systems scale to hundreds and, 
maybe, thousands of processors. 

• No data are shared among processors. 
• Data living on different processors must be 

combined using messages. 
• Data in the database are partitioned 

statically. 
 
The properties of SMP-architectures can be 
characterized as follows: 

• Such systems scale to tens, maybe 
hundreds of processors. 

• Data are shared among all processors. 
• Data are combined via shared memory. 
• Data can be partitioned among processors 

dynamically, depending on the load 
situation. 

 
The main disadvantage of MPP systems for 

parallel databases is the necessity of static 
partitioning. This means it is difficult to vary the 
number of partitions, it is hard to size the partitions 
such that they are approximately equal for a wide 
range of operations, and there is basically no way to 
exercise control over difficult value distributions. 
As an example, consider hash joins. Re-partitioning 
the tuples based on the hash function in an MPP-
system means that each tuple is sent via messages 
to the processor that represent the respective hash 
class. 

 
Dynamic partitions, which can be created in 

SMP-architectures, allow to assign data to 
processors on demand, one can vary the number of 
logical processors (tasks) at run-time, and heavily 
skewed value distributions have the only effect of 
not creating the same load for each task. Hash joins 
in such a system are performed such that the shared 
memory is partitioned into n hash classes, and 
tuples are simply put into the partition 
corresponding to their hash class. 
 

So SMP systems are more flexible in terms of 
load balancing, the number of options for parallel 
algorithms is higher because of the possibility of 
data sharing, and the need for reorganization is less 
than with MPP systems. Manageability is also 
easier for SMP systems. The big advantage of MPP 
systems, on the other hand, is their scalability over 
wide ranges of processor numbers. 
 
6.  SUMMARY AND CONCLUSION 
 

In this paper we have discussed a new 
mechanism of parallel query execution in which a 
single operator is used for parallelizing a query 
execution plan. As compared to bracket model, all 
issues of control are localized in one operator 
(parallelizing operator) in this model. Also we can 
execute a complex query in a single or with a 
number of processes by using one or more 
parallelism operators in the query evaluation plan.  
Other operators did not require any modifications 
when we introduce a parallelizing operator a 
sequential query execution plan.  For  extensible 
database systems, the parallelizing operator 
presents an effective means for exploiting 
parallelism and parallel architectures, thus 
permitting  database system designers to combine 
extensibility and high functionality with parallelism 
and high performance. We have noted that the 
objectives of parallel query processing cannot be 
achieved merely by the use of parallel machines, it 
is necessary to exploit the inherent parallelism 
available within queries to efficient utilize the 
resources, in particular, processors to achieve the 
projected speedup and throughput of database 
systems.  
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