
Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

547

MECHANISMS FOR PARALLEL QUERY EXECUTION

1 PUSHPA R. SURI, 2 SUDESH RANI

 1 Reader, Department of Computer Sc. & Applications, K. U., Kurukshetra , India-1361191
 2 Ph.D. Student , Department of Computer Sc. & Applications, K. U. , Kurukshetra , India-136119

E-mail: 1pushpa.suri@yahoo.com, 2dhillon_sudesh@rediffmail.com

ABSTRACT

Parallel query processing has attained a lot of attention in the database community because customer
applications on databases are growing in size and complexity with an ever increasing demand for
performance. The main objective of parallel query processing is to achieve speedup, scaleup and high
throughput. Earlier bracket model was used for parallelization. In case of bracket model it is not possible to
possible to execute two operators in one process without resorting to some thread or coroutine facility. Also
bracket model involves expensive interprocess communication system calls even in the cases when an
entire query is evaluated on a single CPU. To overcome all these difficulties of bracket model we have
developed a new model in which a single operator is used for parallelization. As compared to bracket
model, all issues of control are localized in one operator (parallelizing operator) in this model. Also we can
execute a complex query in a single or with a number of processes by using one or more parallelism
operators in the query evaluation plan.

Keywords: Parallel query processing, interoperation parallelism, intraoperation parallelism, Bracket

model, Operator model.

1. INTRODUCTION

Timely information has become increasingly
important for today’s competitive world. The
number of information services or business relying
on timely information is growing fast. It is reported
that the data volume is increasing by 25-35 % per
year, while at the same time the amount of data
stored per person is increasing. Moreover, the
massive amount of data is not only used for simple
data intensive applications, but it is also used to
extract information by relating the data stored.
These demands foreseen cannot be easily met using
traditional disk-based data-base technology,
because the I/O bottleneck forms a physical
limitation to improve responsiveness. Disk
technology has shown an improvement of only a
factor of 2 over last 10 years in response time and
throughput. In contrast the CPU speed has been
doubling every year [8]. These developments have
led to research in parallel data-base systems
consisting of a large number of off-the shelf, and
therefore, cheap processors. The processors are
interconnected by a high speed network. Typically
each processor is equipped with a large amount of
memory and a disk. By declustering the data over
the available processors data can be accessed in
parallel, leading to an improved response time [15].

In order to provide real-time responses to complex
queries involving large volumes of data, it has
become necessary to exploit parallelism in query
processing. All high-performance computers today
employ some form of parallelism in their
processing hardware. It seems obvious that
software written to manage large data volumes
ought to be able to exploit parallel execution
capabilities [3].

The goal of parallel systems is to obtain
speedup and scaleup [4]. Speedup considers
additional hardware resources for a constant
problem size; linear speedup is considered optimal.
In other words, N times as many resources should
solve a constant-size problem in l/N of the time.

An alternative measure for a parallel system’s
design and implementation is scaleup, in which the
problem size is altered with the resources. Linear
scaleup is achieved when N times as many
resources can solve a problem with 1/N times as
much data in the same amount of time.

548

2. QUERY PROCESSING IN PARALLEL
DATABASE SYSTEMS

Conventional query processing assumes a
uniprocessor environment and query plans are
executed sequentially. A query plan for a
uniprocessor environment is called a sequential
plan. Each sequential plan basically specifies a
partial order for the operations. We call a query
plan for a parallel environment a parallel plan. If
the parallel plan satisfies the same partial order of
operations as a sequential plan, it is called a
parallelization of the sequential plan and each
sequential plan may have many different
parallelization. Parallelization can be characterized
in the following three aspects :

Forms of Parallelism
We can exploit parallelism within each operators
i.e. intra-operation parallelism and parallelism
between different operators i.e. inter-operation
parallelism. Intra-operation parallelism is achieved
by partitioning data among multiple processors and
having those processors execute this same
operation in parallel. Inter-operation parallelism can
be achieved either by executing independent
operations in parallel or executing consecutive
operations in a pipeline.

Units of Parallelism
Unit of Parallelism refers to the group of operations
that is assigned to the same processor for execution.

Degree of Parallelism
Degree of Parallelism is the number of processes
that are used to execute a plan fragment. In theory,
the degree of parallelism can be greater than the
number of available processors.

3. IMPLEMENTATION STRATEGIES

The purpose of the query execution engine
is to provide mechanisms for query execution from
which the query optimizer can choose - the same
applies for the means and mechanisms for parallel
execution. The general approach to parallelize a
query execution engine is bracket model. The
bracket model has been used in distributed-memory
systems such as Bubba and Gamma [2, 5].

In the bracket model, there is a generic
process template that can receive and send data and
can execute exactly one operator at any point of
time. A schematic diagram of a template process is
shown in Figure1, together with two possible

operators, aggregation and join. In order to execute
a specific operator, e.g., a scan, the code that makes
up the generic template “loads” the operator into its
place (by switching to this operator’s code) and
initiates the operator which then controls execution;
network I/O on the receiving and sending sides is
performed as a service to the operator on its request
and initiation and is implemented as procedures to
be called by the operator. The

number of inputs that can be active at any point of
time is limited to two since there are only unary and
binary operators in most database systems. The
operator is surrounded by generic template code,
which shields it from its environment, for example,
the operator that produce its input and consume its
output. For parallel query execution, many
templates are executed concurrently in the system,
using one process per template. One problem with
the bracket model is that because each operator is
written with the implicit assumption that this
operator controls all activities in its process, it is
not possible to execute two operators in one process
without resorting to some thread or coroutine
facility. Second problem in a query-processing
system using the bracket model, that passing a data
item from one operator to another always involves
expensive interprocess communication system
calls, even in the cases when an entire query is
evaluated on a single CPU or when data do not
need to be repartitioned among nodes in a network.
The reason is that each operator is its own locus of
control, and network flow control must be used to
coordinate multiple operators, e.g., to match two
operators’ speed in a producer-consumer
relationship.

Figure1. Bracket model of parallelization.

Output

Inputs

Aggregation

Join

549

To overcome the limitations of bracket
model we are introducing an alternative to the
bracket model called operator model. In this model,
all issues of control are localized in one operator
that uses and provides the standard iterator interface
to the operators above and below in a query tree.
Figure 2 shows a simple computatioin that
combines temperature and pressure data for some
further calculation such as digital filtering and
display. Figure 3 shows a possible parallelization of
this computation using the operator model, i.e., by
inserting parallelism operators into a sequential
plan. The parallelism operator is an iterator like all
other operators in the system with open, next, and
close procedures; therefore, the other operators are
entirely unaffected by the presence of parallelism
operator in a query evaluation plan. The parallelism
operator does not contribute to data manipulation;
thus, on the logical level, it is a “no-op” that has no
place in a logical query algebra such as the
relational algebra. On the physical level of
algorithms and processes, however, it provides
control not provided by any of the normal
operators, i.e., process management, data
redistribution, and flow control. Therefore, it is a
control operator or a meta-operator. Separation of
data manipulation from process control and
interprocess communication can be considered an
important advantage of the operator model of
parallel query processing, because it permits
design, implementation, and execution of new data
manipulation algorithms such as N-ary hybrid hash
join without regard to the execution environment.

A second issue important to point out is

that the parallelism operator only provides
mechanisms for parallel query processing; it does
not determine or presuppose policies for using its
mechanisms. Policies for parallel processing such
as the degree of parallelism, partitioning functions,
and allocation of processes to processors can be set
either by a query optimizer or by a human
experimenter. The design of the parallelism
operator permits execution of a complex query in a
single or with a number of processes by using one
or more parallelism operators in the query
evaluation plan. The mapping of a sequential plan
to a parallel plan by inserting parallelism operator
permits one process per operator as well as multiple
processes for one operator (using data partitioning)
or multiple operators per process, which is useful
for executing a complex query plan with a
moderate number of processes. Earlier parallel
query execution engines did not provide this degree
of flexibility; the bracket model used in the Gamma
design, for example, requires a separate process for
each operator [5].Figure 4 shows the processes
created by the parallelizing operator in the previous
figure, with each circle representing a process. Note
that this set of processes is only one possible
parallelization. Furthermore, the degrees of data
parallelism, i.e., the number of processes in each
process group, can be controlled using an argument
to the parallelizing operator.

 Figure 3: Operator model of parallelization

 Figure2: Simple specific computation

Dispaly

Calculation

Interploate

Join

Tempreture Pressure

Calculation

 Parallelizing
 operator

 Join

Join
Parallelizing

 operator

Parallelizing
operator

Scan Scan Scan

Display

Parallelizing
operator

550

The difference with respect to performance is
that the operator model permits multiple data
manipulation operators such as join in a single
process, i.e., operator synchronization and data
transfer between operators with a single procedure
call without operating system involvement. The
important advantages of the operator model are that
it permits easy parallelization of an existing
sequential system as well as development and
maintenance of operators and algorithms in a
familiar and relatively simple single-process
environment [10].

4. LOAD BALANCING AND SKEW

For optimal speedup and scaleup, pieces of the
processing load must be assigned carefully to
individual processors and disks to ensure equal
completion times for all pieces. In interoperator
parallelism, operators must be grouped to ensure
that no one processor becomes the bottleneck for an
entire pipeline. Balanced processing loads are very
hard to achieve because intermediate set sizes
cannot be anticipated with accuracy and certainty in
database query optimization. Thus, no existing or
proposed query processing engine relies solely on
interoperator parallelism. In intraoperator
parallelism, data sets must be partitioned such that
the processing load is nearly equal for each
processor. Notice that in particular for binary
operations such as join, equal processing loads can

be different from equal-sized partitions. There are
several research efforts developing techniques to
avoid skew or to limit the effects of skew in parallel
query processing, e.g. [1,7,9,11,13,14,17,18,19,21].
However, all of these methods have their
drawbacks, for example, additional equirements
for local processing to determine quantiles.

Skew management methods can be divided
into basically two groups. First, skew avoidance
methods rely on determining suitable partitioning
rules before data is exchanged between processing
nodes or processes. For range partitioning,
quantiles can be determined or estimated from
sampling the data set to be partitioned, from catalog
data, e.g., histograms, or from a preprocessing step.

Second, skew resolution repartitions some or
all of the data if an initial partitioning has resulted
in skewed loads. Repartitioning is relatively easy in
shared-memory machines, but can also be done in
distributed-memory architectures, albeit at the
expense of more network activity. Skew resolution
can be based on rehashig in hash partitioning or on
quantile adjustment in range partitioning.

5. PARALLEL DATABASE ARCHITECTURES

Historically, the database community distinguished
three types of system architecture as platforms for
parallel database systems :

Shared nothing (SN): In this architecture, as the
name indicates, processors have their own
individual memory as well as disk space and do not
share anything. Data coherency control is not a
problem in a SN system. Processor and memory are
physically localized in a node, and memory-access
latency is not a problem. However, SN systems are
very sensitive to data skew problems. When the
data are seriously skewed, re-balancing the data
load among processing nodes is necessary to
resume good system performance.

Shared disk (SD): In this architecture, the
processors have their own individual memory, but
share disk space. Just like in SE, in SD, inter-
processor coherency control is necessitated due to
the caching of the shared database pages in main
memory database buffers. The buffer invalidation
problem tends to limit the size of a SD system.

Shared everything: In this architecture, processors
share a single global memory address space. The
shared memory is typically physically distributed
memory to accommodate the aggregate demand on

 Figure 4. Processes created by Parallelizing operator

 Calculation

 Join

 Join

Scan

 Display

Scan Scan

551

the shared memory from a large number of
processors. An interconnection network is usually
used to allow any processor to access any memory
module. This communication network increases
memory-access latency, which effects the
performance of conventional processors. To
remedy this, a popular solution is to have cache
memory with each processor. This again leads to
cache coherency problems. Cache coherency
control again requires a lot of interrogation and
hence uses of the communication network. Hence
Shared Everything model does not scale that well.

Since shared disk and SMP architectures
are very similar in many respects, the comparison
between shared nothing systems (mostly referred to
as “massively parallel processing” (MPP-
architecture)) on one hand and SMP systems on the
other hand represent the architectural alternative for
modern parallel database systems. Let us briefly
compare them from the perspective of handling
parallel database operators.

The properties of MPP-architectures can be
characterized as follows:

• Such systems scale to hundreds and,
maybe, thousands of processors.

• No data are shared among processors.
• Data living on different processors must be

combined using messages.
• Data in the database are partitioned

statically.

The properties of SMP-architectures can be
characterized as follows:

• Such systems scale to tens, maybe
hundreds of processors.

• Data are shared among all processors.
• Data are combined via shared memory.
• Data can be partitioned among processors

dynamically, depending on the load
situation.

The main disadvantage of MPP systems for

parallel databases is the necessity of static
partitioning. This means it is difficult to vary the
number of partitions, it is hard to size the partitions
such that they are approximately equal for a wide
range of operations, and there is basically no way to
exercise control over difficult value distributions.
As an example, consider hash joins. Re-partitioning
the tuples based on the hash function in an MPP-
system means that each tuple is sent via messages
to the processor that represent the respective hash
class.

Dynamic partitions, which can be created in

SMP-architectures, allow to assign data to
processors on demand, one can vary the number of
logical processors (tasks) at run-time, and heavily
skewed value distributions have the only effect of
not creating the same load for each task. Hash joins
in such a system are performed such that the shared
memory is partitioned into n hash classes, and
tuples are simply put into the partition
corresponding to their hash class.

So SMP systems are more flexible in terms of
load balancing, the number of options for parallel
algorithms is higher because of the possibility of
data sharing, and the need for reorganization is less
than with MPP systems. Manageability is also
easier for SMP systems. The big advantage of MPP
systems, on the other hand, is their scalability over
wide ranges of processor numbers.

6. SUMMARY AND CONCLUSION

In this paper we have discussed a new
mechanism of parallel query execution in which a
single operator is used for parallelizing a query
execution plan. As compared to bracket model, all
issues of control are localized in one operator
(parallelizing operator) in this model. Also we can
execute a complex query in a single or with a
number of processes by using one or more
parallelism operators in the query evaluation plan.
Other operators did not require any modifications
when we introduce a parallelizing operator a
sequential query execution plan. For extensible
database systems, the parallelizing operator
presents an effective means for exploiting
parallelism and parallel architectures, thus
permitting database system designers to combine
extensibility and high functionality with parallelism
and high performance. We have noted that the
objectives of parallel query processing cannot be
achieved merely by the use of parallel machines, it
is necessary to exploit the inherent parallelism
available within queries to efficient utilize the
resources, in particular, processors to achieve the
projected speedup and throughput of database
systems.

 REFERENCES

[1] C. K. Baru, and O. Frieder, “Database

operations in a cube-connected multicomputer
system”, IEEE Trans. Comput, vol. 38, No.,
1989, pp. 920-927.

552

[2] H. Boral, W. Alexander, L. Clay, G.

Copeland, S. Danforth, M. Franklin, B.
Hart, M. Smith, and P. Valduriez,
“Prototyping Bubba, a highly parallel
database system”, IEEE Trans. Knowledge
Data Engg., Vol. 2, No. 1,1990, pp. 4-24.

[3] W. Davison, “Parallel index building in

Informix OnLine 6.0”, Proceeding of 1992
ACM Sigmod Conference, San Deigo, 1992,
pp. 103-103.

[4] D. J. Dewitt, R. H. Gerber, G. Graefe, M. L.

Heytens, K. B. Kumar, and M. Muralikrishna,
1986, “GAMMA - A high performance
dataflow database machine”,. Proceedings of
the International 1986 Conference on Very
Large Data Bases. VLDB Endowment, 1986,
pp. 228-237 .

[5] D. J. Dewitt, S. Ghandeharizadeh, D. Schneider,

A. Bricker, H. I. Hsiao, and R. Rasmussen,
“The Gamma Database Machine Project”,
IEEE Trans. Knowledge Data Engg., Vol. 2,
No. 1, 1990, pp. 44-62.

[6] D. J. Dewitt, “The Wisconsin benchmark: Past,

present, and future”, The Benchmark
Handbook , 1991, pp. 119-165.

[7] D. J. Dewitt, J. Naughton, and D. Schneider,

”Parallel sorting on a shared-nothing
architecture using probabilistic splitting”,
Proceedings of the International 1991
Conference on Parallel and Distributed
Information Systems, Miami Beach, Fla,
1991, pp. 280-291.

[8] M. Gondran, and M. Minoux, “Graphs and

Algorithms”, Interscience Series in Discrete
Mathematics. Wiley,1984.

[9] K.A. Hua, and C. Lee, “Handling data skew in

multicomputer database computers using
partition tuning”, Proceedings of 1991
International Conference on Very Large Data
Bases. VLDB Endowment, 525, Barcelona,
Spain,1991, pp. 525-535.

[10] T. Keller, G. Graefe, and D. Maier,

“Efficient assembly of complex objects”,
ACM SIGMOD Record, Vol. 20, No. 2, 1991,
pp. 148-157.

[11] M. Kitwregawa, and Y. Ogawa, “Bucket
spreading parallel hash: A new, robust,
parallel hash join method for skew in the
super database computer (SDC)”,
Proceedings of 1990 International
Conference on Very Large Data Bases. VLDB
Endowment, 210, Brisbane, Australia, 1990,
pp. 210-221.

[12] M. S Lakshmi and P. S. Yu, “Effect of skew

on join performance in parallel architectures”,
Proceedings of 2000 International
Symposium on Databases in Parallel and
Distributed Systems, Austin, Texas, 2000, pp.
107-120.

[13] M. S. Lakshmi and P. S. Yu, “Effectiveness of

parallel joins”, IEEE Trans. Knowledge Data
Engg., Vol. 2, No. 4, 1990, pp. 410-424.

[14] E. Omiecinski, “Performance analysis of a

load balancing relational hash-join algorithm
for a shared-memory multiprocessor”,
Proceedings of 1990 International
Conference on Very Large Data Bases, VLDB
Endowment, 375, Barcelona, Spain, 1991, pp.
375-385.

[15] J. E. Richardson and M. J. Carey,

“Programming Constructs for Database
System Implementation in Exodus”,
Proceedings of 1997 ACM SIGMOD
Conference, CA, San Francisco, 1987, pp.
208-219.

[16] P. G. Selinger, M. M. Astrahan, D. D.

Chamberlain, R. A. Lorie, and G. Prwe,
“Access path selection in a relational database
management system”, Proceedings of 1979
ACM SIGMOD Conference. ACM, 23, New
York, 1979, pp: 23-34.

[17]] S. Seshadri and J. F. Naughton, “Sampling

issues in parallel database systems”,
Proceedings of 1992 International
Conference on Extending Database
Technology, Vienna, Austria, 1992, pp. 328-
343.

[18] C. B. Walton, “Investigating skew and

scalability in parallel joins”, Computer
Science Tech. Rep. 89-39, Univ. of Texas,
Austin, 1989.

[19] C. B. Walton, A. G. Dale and R. M. Jenevein,

“A taxonomy and performance model of data

553

skew effects in parallel joins”, Proceedings of
1991 International Conference on Very Large
Data Bases. VLDB Endowment, 537,
Barcelona, Spain, 1991, pp. 537-548.

[20] J. L. Wolf, D. M. Dias and P S. Yu, “An

effective algorithm for parallelizing sort
merge in the presence of data skew”,
Proceedings of 1990 International Symposium
on Database in Parallel and Distributed
Systems, Dublin, Ireland, 1990, pp. 103-
115.

[21] J. L. Wolf, D. M. Dias, P. S. Yu and J. Turek,

“ An effective algorithm for parallelizing hash
joins in the presence of data skew”,
Proceedings of 1991 IEEE Conference on
Data Engineering, New York, 1991, pp. 200-
209.

554

