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ABSTRACT 
 

In Network Security various attacks have been identified at different stages of intrusion and attempts. 
Security measures are designed for overcoming individual attacks. These attacks are random in nature 
and an attempt is made to the multi scale autoregressive model to combine all attempts to attack a 
network and to measure the total damage done to the machine or network.  
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1. INTRODUCTION   
 

A Significant security problem for networked 
systems is hostile, or at least unwanted, trespass by 
users or software. User trespass can take the form 
of unauthorized logon to machines or in the case 
of an authorized user, acquisition of privileges or 
performance of actions beyond those that have 
been authorized. Software trespass can take the 
form of a virus, worm or Trojan horse. One of the 
two most publicized threats to security is the 
intruder (the other is viruses), generally referred to 
as a hacker or cracker. In an important early study 
of intrusion, Anderson [1] identified three classes 
of intruders   

 
               1. Masquerader  
               2. Misfeasor  
              3. Clandestine user  
 
 Inevitably, the best intrusion prevention system 

will fail. A system’s second line of defense is 
intrusion detection, and this has been the focus of 
much research in recent years. 

  
       We identified the following approaches to 

intrusion detection [2] 
 
2. STATISTICAL ANOMALY DETECTION:  
 

Involves the collection of data relating to the 
behavior of legitimate users   over a period of 
time. Then statistical tests are applied to observe 

behavior to   determine with a high level of 
confidence whether that behavior is not legitimate 
user behavior.  
 
3. RULE BASED DETECTION:  
 

Involves an attempt to define a set of rules that 
can be used to divide that a given behavior is that 
of an intruder.  

 
The requirements of Information Security in an 

organization have undergone two major changes 
for automated tools for protecting files from 
hackers is computer security. Network security 
measures are needed to protect data during their 
transmission between terminal user and computer, 
between computer and computer. There are no 
clear boundaries with in these two forms of 
security. Each attack and its damage to a system is 
being modeled and studied separately by different 
users under various platforms and systems designs. 
The simultaneous and over all damage and 
ultimate halt of an operating system is to be given 
in such a way that the inter dependency between 
various attacks is to be studied. The attack by 
different hackers can be viewed as a time series 
with different scales and different origins. As such 
we are led to give a multi-scale auto regressive 
time series model for the over all damage by 
different hackers. Each one is probabilistic in 
nature and we need to estimate the coefficients of 
the partial regression of one and the ultimate.  
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The  ultimate  damage  experienced  by  an  
organization  through  different  types  of  attacks  
is  to  be designed so as to make measures for 
controlling such attacks, the joint covariance are 
considered. Here we take up four major attempts 
to attack an organization. A model of the form  
 

Y
−

= A X
−

 

is derived where Y
−

 is the ultimate damage vector 
(y1,y2,y3,y4)  and A is  covariance matrix 

with       aij = E    (xi - X
−

i ) (xj - X
−

j  )   
 

and X
−

= (x1,x2,x3,x4). This in turn put in to 
wavelet transmission to refine the coefficients to 
origin and scaling.  
 
   Thus  we  obtain  a  multi  scale  auto  regressive  
model  along  with  wavelets  refining  the  
coefficients.  This gives  a  measure  of  
approximation  to  the  ultimate  damage  to  the  
network  through  different  attacks.  This model 
can be generalized to any number of individual 
attempts and thus giving a better service after the 
control.  
 
4. BASIC CONCEPTS 
 
4.1 MAR PROCESS 
 

Multi Scale autoregressive (MAR) process [3] 
are tree - indexed stochastic process.  We can 
consider only dyadic trees.  Our notation for 
referring to nodes of a dyadic tree is indicated in 
(figure).  The root node represents the coarsest 
scale which we denote as scale zero.  The children 
of the root node represent the first scale.   
Continuing leaf nodes constitutes the finest scale 
which we denote as the jth scale.  We will denote 
by xj the stacked vector consisting of xj(n) for 
n=0,1,…2j-1 that is the finest scale-sub process. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure1. A MAR process on a dyadic Tree. The root 
node state is X 0(0). The parent of state Xj (n) 
Is Xj-1([n/2]) while its children are Xj+1(2n) andXj+1(2n) 
 
 xj(n) = Aj(n) xj-1 ([n/2]) + Wj(n) (1) 
 

We have showed that through a particular 
definition of the state vector xj(n), the MAR 
dynamics can be chosen to match the 
reconstruction algorithm associated  with any 
compactly supported  orthogonal or  biorthogonal 
wavelet. 

 
Given the statistics of a random signal which we 

view as indexed by the leaf nodes of a tree, we 
focus on building a MAR model to capture those 
given statistics with high fidelity [4] 

 
An important property is that MAR process 

possesses is wide-sense Markovianity.  This MAR 
"Markov property" as we shall call it is a 
generalization of the wide-sensee Markovianity of 
state-space processes.  For a state-space process, 
the present is a boundary between the past and 
future in that it conditionally décorrelates them,  
Analogously, for a MAR process,  the node (j, n) 
is a boundary  between  the sub-trees extending 
away from it; the value of the MAR process  
indexed by these sub trees are mutually  
conditionally  décorrelated by xj(n), the Markov 
property means that xj(n) summarizes all the 
relevant  stochastic properties of one sub-tree 
leading from (j, n) for optimal statistical reasoning 
about the other sub-trees leading from(j, n) and 
therefore justifies our terminology in calling xj(n) 
a MAR state. 
 
4.2 ADVANTAGES OF INTERNAL MAR 
PROCESS 
 

An internal MAR process is one for which the 
state at every node (j, n) is a linear functional of 
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the states which reside at the fine-scale nodes 
which  descend from (j, n) in general there are no 
constraints on how the MAR states should  be 
defined but internality is a property which is very 
useful for many reasons. 

 
Internal models are intellectually important in 

the context of statistical modeling and are widely 
used in stochastic realization theory for time -
series. 

 
In many applications there is need to fuse 

measurements taken at different scales.  
Frequently, the non-local coarse-scale variables 
(example tomographic measurements).  Since 
internal MAR models include as coarse states non-
local functions of the finest scale, they allow 
efficient fusion of non-local and local 
measurement with no increase in complexity as 
compared to the case of fusing only fine scale data. 
Internality provides a convenient parameterization 
of the information content of the MAR states.  
Using this parameterization leads to the MAR 
dynamics that incorporate a powerful optimal 
prediction of a child state from its parent.  This 
optimal prediction will have important and 
significant consequence for out ability to 
accurately models signals using MAR processes 
based on wavelets.  
 
4.3 WAVELET-BASED INTERNAL MAR 
PROCESSES [5] 
 

We use the statistics of the process to be 
modeled to derive the dynamics of our internal 
MAR - wavelet models.  While wavelet have nice 
de correlation properties, the de correlation that 
provide is not exact in general therefore, our MAR 
models based on wavelets are approximate. 
 
 1. In the internal models, we assumed that 
prediction errors are white.  This assumption is the 

reasons that white noises are children of the 
Brownian motion.    
           2. Another property that MAR process must 
posses is low state dimensionality. 
 

We will see that the state dimension of our 
MAR - wavelet models grows only linearly  with 
the lengths of a support of the scaling functions, 
which are related  in some cases, such as 
orthogonal wavelets, to the number of vanishing 
movements of analyzing  wavelet.  However the 
fact that wavelets with a large number of vanishing  
moments do a good job of whitening  and 
stationarization a large class of process does not 
imply that the degree of statistical fidelity of our 
internal models necessarily increases with the 
number of varnishing movements. 
  

With internal MAR - wavelet models it is 
possible to build accurate models using wavelets 
with fairly short supports and thus without 
dramatically increasing the state dimension.  We 
use the fine-scale statistics of the process to be 
modeled to derive the dynamics of the MAR 
model.[6] 
  

The first decoupled dynamics wavelet system 
that support a fast estimation algorithm whose 
structure takes the form of a set of monadic trees 
in scale.  The second generalize the work in to 
wavelet packets and develops a fast estimation 
framework whose structure takes the form of a set 
of dyadic trees.  They assumed that the detail co-
efficients are white. 
            

In our models, we make no such assumption to 
perform estimation in the frameworks of the data 
must be transformed into the wavelet domain.  
Therefore, there no way to handle sparse or 
irregular measurements which our framework can 
handle easily.[7] 

 
                                                                
 
 
 
 
 
          
 
               aj(n)                               aj(n+1)                               aj(n+2)       aj(n+3)    
                             
                                    
 
                               Figure 2. The Haar dependency graph is a dyadic tree. Harr n is even 

   
   aj-1(n/2) 
   dj-1(n/2) 

   
   aj-1(n/2+1) 
   dj-1(n/2+!) 
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      aj(n-1)                                aj(n)                                             aj(n+1)                                     aj(n+2) 

  
Figure 3. Dependency graph for the Daubechies 4-tap filter. Here n is even 

 
The following diagram is the example of the internal MAR – Wavelet process with the Daubechies 4-

tap filter, Scaling coefficients in bold illustrate the necessary transmitted from one scale to the next. The 
boxed coefficients are a linear function of the coefficients of the children by the wavelet decomposition 
algorithm. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Example of Internal MAR-Wavelet process 

   aj-1(n/2) 
   dj-1(n/2) 

  aj-1(n/2+1) 
   dj-1(n/2+!)   aj-1(n/2+1) 

   dj-1(n/2+!) 

a1() 
a1(1) 
a1(2) 
d1(0) 
d1(1) 
d1(2) 

a0(-1) 
a0(0) 
a0(1) 
a0(-1) 
a0(0) 
a0(1)

a2(1) 
a2(2) 
a2(3) 
d2(1) 
d2(2) 
d1(3) 
a0(1) 

a2 (-1) 
a2(0) 
a2(1) 
d2(-1) 
d2(0) 
d2(1) 
a0(-1) 

a2() 
a2(1) 
a2(2) 
d2(0) 
d2(1) 
d2(2) 
a0(1) 

a1(-1) 
a1(0) 
a1(1) 
d1(-1) 
d1(0) 
d1(1) 

a2(2) 
a2(3) 
a2(4) 
d2(2) 
d2(3) 
d2(4) 
a0(1) 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2008 JATIT. All rights reserved.                                                                      
 

www.jatit.org 

 
414 

 

 
 
 
5. PROBLEM FORMULATION 
 

We consider for our discussion the three major 
types of attacks namely interruption, modification 
and fabrication. As the attempts are random in 
nature we take them as the outcome of a periodic 
Markov chain sending to limiting distribution 
which is uniform. We consider the covariance 
matrix of the joint attack of the three and these 
coefficients are subjected to convolution product 
of discrete wavelet transform to adjust for location 
and scaling. We fit the model in the refined form 

                                    
−

Y  = c 
−

X  
               
 6. DATA AND ANALYSIS 
 
X1 =  73,35,3,11,57,30,2,17,21,38,6,2,5,8,4,3  
X2 = 4,4,16,26,8,1,9,7,8,3,7,13,4,2,2,2  
X3=19,55,12,17,76,90,2,33,30,29,154,48,3,12,24,4  
X4 = 22,9,56,82,66,11,32,59,12,9,55,9,1,2,19,11  
 
 C11    C21   C31     C41           X1                  Y1  
 
 C12     C22   C32   C42            X2       =         Y2  
 
 C13     C23    C33   C43          X3                  Y3  
 
 C14    C24     C34   C44         X4                  Y4  
 
 
Where   
            C11 = 1,    
            C21 = -0.234911,   
            C31 = 0.164347,    
            C41 = -0.0488822,  
            C12 = -0.234911,   
            C22 = 1,   
            C32 = -0.104447,  
            C42   = 0.602825,  
            C13 = 0.164347,   
            C32 = -0.104447,   
            C33   =1,   
            C43 = 0.187686,  
            C14 = -0.0488822,   
            C24   = 0.602825,  
 
−

Y  = CX 
 
 
Values of discrete wavelets are  

    
       0.34151 
     0.59151 
     0.15849 
    - 0. 09151 
 
 
    
 
7. OUTPUT   
 
For  X1 = 73, x2 = 4, X3 = 19, X4 = 22  
 
       Y1 = 74.1, Y2 = -1.870503, Y3 = 34.6934, 
Y4 = 24.4072  
 
8. CONCLUSION  
   

We have followed the analysis given by Khalid 
Daoudi, et al, on the Multi Scale Auto Regressive 
Model and wavelets to our problem. This results 
obtained give a better understanding of the joint 
impact of major attacks to a crypto system. The 
combined effect will be given by a linear non in 
inner product space of these vector.   
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