
Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

348

SECURE AND EFFICIENT DECENTRALIZED GROUP KEY
ESTABLISHMENT PROTOCOL FOR ROBUST GROUP

COMMUNICATION

Rakesh Chandra Gangwar
Assistant Professor, Department of Computer Science

Beant College of Engineering and Technology,Gurdaspur (Punjab)-143521 India
{rakeshgangwar1965}@gmail.com

Abstract

Now-a-days Internet has become the common media of communication. Many group communication
application such as pay-per-view, stock quote distribution, voice- and video-conferencing, white-boards,
distributed simulations, and replicated servers of all types, etc can easily be conducted on the Internet.
For conducting such applications, group key is often needed, which can be established by group key
establishment protocol. Although many group key establishment protocols have been proposed in the
literature, yet nothing has been done to establish their suitability for aforementioned applications. In this
paper, we present the succinct description of different decentralized group key establishment protocols
and analyze them against parameters such as key independence, one-affects-all, local rekey, data
transformation.

Keywords: Protocol, Key Management, Communication, Group Key Establishment Architecture

1. INTRODUCTION

 The explosive growth of the Internet has
increased both the number and the popularity of
applications that require a reliable group
communication infrastructure, such as pay-per-
view, stock quote distribution, voice- and video-
conferencing, white-boards, distributed
simulations, and replicated servers of all types.
Secure group communication is crucial for
building distributed applications that work in
dynamic network environments and communicate
over insecure networks such as the global Internet.
Key management is the base for providing
common security services (data secrecy,
authentication and integrity) for group
communication. There are several approaches to
group key management.
 In this paper we present the working of
different decentralized group key establishment
protocols briefly and subsequently do the
complexity analysis of them to judge their
suitability for secure and efficient conduct of
aforementioned applications.

The rest of the paper is structured as
follows: Section 2 presents the group key
establishment architecture. Section 3 describes the
decentralized group key establishment protocols,
where rekeying is performed based on
membership. Section 4 describes the decentralized
group key establishment protocols, where rekeying
is performed based on time. Section 5 present the
complexity analysis and finally Section 6
concludes the paper

2. GROUP KEY ESTABLISHMENT

ARCHITECTURE

 Group key establishment in group
communication can broadly be classified into two
categories: first is distributory wherein the group
is created by a single entity that is group controller
and key server (GCKS), and second is
contributory, wherein the group key is established
by the equal contribution of all participants.
Distributory approach can further be classified into
to categories such as centralized and decentralized.
In centralized key establishment protocol, the key
server is solely responsible for creation and
distribution of group key. And in decentralized

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

349

group key establishment protocol, hierarchy of key
servers share the burden of distributing the group
key to group members in order to avoid
bottlenecks and single point of failure. We
distinguish two subcategories of decentralized
group key establishment protocols, where the
group key is modified after each membership
change (membership based), or systematically
after each slot of time (time based). The complete
group key establishment architecture is shown in
Fig. 1.

Group Key
Establishment

Centralized Decentralized

Contributory

Rekeying based
on membership

Rekeying
based on time

[1,2,3,4,5,6,7] [8,9,11,12,13]

Distributory

Figure 1: Group Key Establishment
Architecture

3. REKEYING BASED ON MEMBERSHIP

In this subcategory of protocols, the group key
is changed each time a join or a leave operation
occurs in the group. We present some protocols
based on this approach.

3.1. Scalable Multicast Key Distribution

Ballardie[1] proposed the scalable multicast
key distribution (SMKD) protocol, which uses the
tree built by the Core Based Tree (CBT) multicast
routing protocol [2,3] to deliver keys to multicast
group members. In the CBT architecture, the
multicast tree is rooted at a main core. Secondary
cores can exist eventually. The main core creates
an access control list (ACL). Group key and key
encryption key (KEK) are used to update the
group key. The ACL, the group key and the key
encryption key are transmitted to secondary cores
and other nodes, when they join the multicast tree
after their authentication. Any router or secondary
core authenticated with the primary core can
authenticate joining members and use the ACL to
distribute the keys, but only the main core

generates those keys. The SMKD protocol does
not provide the forward secrecy when a member
leaves the group. It has to execute afresh each time
when a member departs.

3.2. Intra-domain Group Key Management

Protocol

 DeCleene et al. [4,5] proposed the Intra-domain
Group Key Management Protocol IGKMP.
Architecture divides the network into
administratively scoped areas. There are a Domain
Key Distributor (DKD) and many Area Key
Distributors (AKDs). Each AKD is responsible for
one area. Fig. 2 exemplifies this architecture. The
group key is generated by the DKD and is
propagated to the group members through the
AKDs. The DKD and AKDs belong to a multicast
group called All-KD-Group. The DKD uses this
group to transmit re-key messages to the AKDs
who re-key in turn their respective areas.

AKD1 AKD2 AKD3
GK GK GK

mm mmm m mm m

GK DKD

all-KD-group

local area group local area grouplocal area group

Figure 2: Intra-domain Group Key
Management Protocol architecture

 This architecture suffers from a single point of
failure, which is the DKD that is the entity
responsible for generating the group key. Besides,
in case of an AKD failure, members belonging to
the same area will be not able to access the group
communication.

3.3. Hydra protocol

 Rafeli and Hutchison [6] proposed Hydra
protocol, wherein the group is organized into
smaller subgroups and a server called the Hydra
server (HSi) controls each subgroup i. If a
membership change occurs at subgroup i, the
corresponding HSi generates the group key and
sends it to the other HSj involved in that session.
In order to have the same group key distributed to
all HSs, a special protocol is used to ensure that
only a single valid HS is generating the new group

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

350

key whenever required. Fig 3 depicts the Hydra
architecture.

Subgroup 1
HS1

mm m

Hydra group

HS-group

Subgroup 2
HS2

mm m

Subgroup n
HSn

mm m

GC

Layer 2

Layer 1

Figure 3: Hydra architecture

3.4. Baal protocol

 Baal Chaddoud et al. [7] proposed a protocol
that is known as Baal protocol, which defines
three entities:
1. The Group Controller (GC): It maintains a
participant list and creates and distributes the
group key to group members via local controllers.
2. Local Controllers (LC): The GC delegates a LC
to each subnet (generally a local network) to
manage the keys within its subnet. When a LC
receives a new group key, it distributes it to the
members connected to its subnet. Besides, a LC
can play the role of the GC by generating and
distributing new group keys after membership
changes following some coordination rules.
3. Group member: It belongs to participation list.
 When a membership change occurs at a subnet,
the corresponding LC can generate a new group
key and distribute it to its subnet and to the other
members via their LCs. To assure that a single LC
generates a new group key at a time, the GC
assigns a priority to each LC and when many LCs
distribute simultaneously a new group key, the
LCs are instructed to commit to the group key
issued by the LC having the highest priority.

4. REKEYING BASED-ON-TIME

 In this subcategory of protocols, the group key
is changed after each specific period of time.
Thereby, the departing members are not excluded
immediately from having access to the secure
content. Similarly, new members are delayed up to
the beginning of a new interval of time. Some
protocols based on this concept are as follows:

4.1. Kronos protocol

 Setia et al. [8] proposed the Kronos protocol,
which is driven by periodic re-keying rather than
membership changes that means a new group key
is generated after each time interval rather than

after each membership change. In Kronos
protocol, each domain is divided into many areas
managed by different AKDs as in IGKMP
protocol. However, in Kronos, the DKD does not
multicast the group key each time to the AKDs.
Instead of that, each AKD generates independently
the same group key whenever required and re-keys
the members belonging to its area. To implement
this scheme, the AKDs’ clocks should be
synchronized, and the AKDs have to agree on a
re-key period. Second, the DKD transmits secret
factors K and 0G to AKDs using secure
channels. To generate the group key 1+iG , AKDs
calculate after each period of time:

1 ()+ =i K iG E G , which is the encryption of the
previous group key (iG) with the encryption
algorithm E using the secret key K .

4.2. MARKS protocol

 In MARKS protocol, Briscoe [9] suggests
slicing the time length to be protected into small
portions of time and using a different key for
encrypting each slice. The encryption keys are
leaves in a binary hash tree that is generated from
a single seed. A blinding function, such as MD5
[10] is used to create the tree nodes. Fig. 4 depicts
an example of the generated binary tree whose
leaves are the keys that correspond to the different
slices.

S00

S10

S20 S21

S11

S22 S23

GK0 GK1 GK2 GK3

T0 T1 T2 T3

Time

MD5(RS(S
00))

MD5(RS(S
11))

MD5(LS(S 00
))

MD5(L
S(S 10

)) MD5(RS(S
10)) MD5(L

S(S 11
))

LS: Left shift operation RS: Right shift operation

Figure 4: MARKS key generation tree

Each intermediate node (including the root) is
allowed to generate two children (left and right
children). The left node is generated by shifting
its’ parent one bit to the left and applying the

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

351

blinding function on it. The right node is generated
by shifting its’ parent one bit to the right and
applying the blinding function on it. Users willing
to access the group communication receive the
seeds needed to generate the required keys.
 The system cannot be used in situations where
a membership change requires the change of the
group key, since the keys are changed as a
function of the time. The distribution of the seeds
and the management of receivers’ queries are
assured by a set of key managers.

4.3. Dual Encryption Protocol

A common drawback of most of decentralized
protocols is the involvement of a high number of
intermediary parties. In practice it is difficult to
assume trustiness for all of these entities. In order
to solve the problem of trusting third parties,
Dondeti et al. [11,12,13] proposed the Dual
Encryption Protocol (DEP). In their work, they
suggest hierarchical subgrouping of the group
members where a sub-group manager (SGM)
controls each subgroup. There are three type of
KEKs and one Data Encryption Key (DEK),
KEKi1 is shared between a SGMi and its subgroup
members, KEKi2 is shared between the Key Server
(KS), and the group members of subgroup i
excluding SGMi. Finally, KS shares KEKi3 with
SGMi. In order to distribute the DEK to the group
members, the KS generates and transmits a
package containing the DEK encrypted with
KEKi2 and encrypted again with KEKi3. Upon
receiving the package, SGMi decrypts its part of
the message using KEKi3 and recovers the DEK
encrypted with its subgroup KEK (KEKi2), which
is not known by the SGMi. SGMi encrypts this
encrypted DEK using KEKi1 shared with its
subgroup members and sends it out to subgroup i.
Each member of subgroup i decrypt the message
using KEKi1 and then, decrypting the message
using KEKi2 (shared with KS) and receives DEK.
Therefore, the DEK cannot be recovered by any
entity that does not know both keys. Hence,
although there are third parties involved in the
management (SGMs), they do not have access to
the group key (DEK). When the membership of
subgroup i changes, the SGMi changes KEKi1 and
sends it to its members. Future DEK changes
cannot be accessed by members of subgroup i that
did not received the new KEKi1.

5. COMPLEXITY ANALYSIS

Table 1 presents the comparison of above
protocols based on the parameters such as one-
affects-all , key independence, local rekey
(membership changes in a sub-group should be
treated locally), data transformation (data is
transformed using some means when messages
pass from a sub-group to another).

6. CONCLUSION

 The drawback of Kronos protocol is key
independence because it generates new keys based
on old ones. In such scenario, if any previous key
is compromised, all successive keys are disclosed.
The same thing happens with MARKS if a seed is
compromised, all keys are compromised. Although
all aforementioned protocols divide the whole
group into subgroups, yet they suffer from one-
affects-all phenomena because of using the same
group key for all subgroups. Hydra and Baal
protocols show the best results for different
parameters.

REFERENCES

[1] A. Ballardie, “Scalable Multicast Key

Distribution”, May 1996. RFC 1949.

[2] A. Ballardie, “Core Based Trees (CBT

version 2) Multicast Routing protocol
specification”, September 1997. RFC 2189.

[3] T. Ballardie, I.P. Francis, and J. Crowcroft,

“Core Based Trees: an Architecture for
Scalable Inter-domain Multicast Routing”,
ACM SIGCOMM, pages 85–95, 1993.

[4] B. DeCleene, L. Dondeti, S. Griffin, T.

Hardjono, D. Kiwior, J. Kurose, D. Towsley,
S. Vasudevan, and C. Zhang, “Secure group
communications for wireless networks”,
MILCOM, June 2001.

[5] T. Hardjono, B. Cain, and I. Monga, “Intra-

domain Group Key Management for Multicast
Security”, IETF Internet draft, September
2000.

[6] S. Rafaeli and D. Hutchison., “Hydra: a

decentralized group key management”, 11th
IEEE International WETICE: Enterprise
Security Workshop, June 2002.

[7] G. Chaddoud, I. Chrisment, and A. Shaff,

“Dynamic Group Communication Security”,

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

352

6th IEEE Symposium on computers and
communication, 2001.

[8] S. Setia, S. Koussih, S. Jajodia, and E.

Harder., “Kronos: A scalable group re-keying
approach for secure multicast”, IEEE
Symposium on Security and Privacy, May
2000.

[9] B. Briscoe, “MARKS: Multicast key

management using arbitrarily revealed key
sequences”, 1st International Workshop on
Networked Group Communication, November
1999.

[10] R. Rivest., “The MD5 Message-Digest

Algorithm”, April 1992. RFC 1321.

[11] L. R. Dondeti, S. Mukherjee, and A. Samal,

“Scalable secure one-to-many group
communication using dual encryption”,
Computer Communications, 23(17):1681–
1701, November 2000.

[12] L.R. Dondeti, S. Mukherjee, and A. Samal,

“Comparison of Hierarchical Key Distribution
Schemes”, IEEE Globcom Global Internet
Symposium, 1999.

[13] L.R. Dondeti, S. Mukherjee, and A. Samal,

“Survey and Comparison of Secure Group
Communication Protocols”, 1999. Technical
Report.

Table 1: Comparison of Decentralized Group Key Establishment Protocols

Protocol one-affects-all Key independence Local rekey Data Transformation

SKMD Yes Yes No No

IGKMP Yes Yes No No

Hydra Yes Yes Yes No

Baal Yes Yes Yes No

Kronos - No No No

MARKS - No No No

DEP Yes Yes No No

