
Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

337

1 Sunil KumarGupta, 2R. K Chauhan, 3Parveen Kumar
1Asstt Prof., Department of Computer Sc. & Engg., BCET, Gurdaspur-143521, India

2 Professor, Department of Computer Science, Kurukshetra University, Kurukshetra, India
3Professor, Computer Science, APIIT, Panipat, India

1E-mail: skgbcet1965@rediffmail.com

ABSTRACT

This survey covers backward error recovery techniques for distributed systems specially the distributed
mobile systems. Backward error recovery protocols have been classified into user triggered checkpointing
and transparent checkpointing. Transparent checkpointing can be uncoordinated checkpointing,
Coordinated checkpointing, Quasi Synchronous or communication-induced checkpointing and Message
Logging based Checkpointing. Through out this survey we, highlight the research issues that are at the
core of backward error recovery and present the solutions that currently address them.

Keywords: Distributed mobile system, Co-ordinated checkpointing, Domino effect, Message logging.

1. INTRODUCTION

A distributed system is a collection of processes
that communicate with each other by exchanging
messages. A distributed system consists of a
collection of autonomous computers, connected
through a network and distribution middleware,
which enables computers to co-ordinate their
activities and to share the resources of the system,
so that users perceive the systems as a single,
integrated computing facility. Recent years have
witnessed rapid development of mobile
communications. In the future, we will expect
more and more people will use some portable units
such as notebooks or personal data assistants. A
mobile distributed computing system is a
distributed system where some of the processes are
running on mobile hosts (MHs). The term
“mobile” implies able to move while retaining its
network connections. A host that can move while
retaining its network connections is an MH. An
MH communicates with other nodes of the system
via a special node called mobile support station
(MSS) [1], [2], [15], [16]. An MH can directly
communicate with an MSS (and vice versa) only if
the MH is physically located within the cell
serviced by the MSS. A cell is a geographical area
around an MSS in which it can support an MH. An
MH can change its geographical position freely
from one cell to another or even to an area covered
by no cell. At any given instant of time, an MH

may logically belong to only one cell; its current
cell defines the MH’s location, and the MH is
considered local to the MSS providing wireless
coverage in the cell. An MSS has both wired and
wireless links and acts as an interface between the
static network and a part of the mobile network.
Static network connects all MSSs. A static node
that has no support to MH can be considered as an
MSS with no MH. Critical applications are
required to execute fault-tolerantly on such
systems [1], [2], [7], [50], [66].
 The system model for supporting host
mobility consists of two distinct sets of entities: a
large number of MHs and relatively fewer
numbers of MSSs. All fixed hosts and the
communication path between them constitute the
static/fixed network. The fixed network connects
islands of wireless cells, each comprising of an
MSS and the local MHs. The static network
provides reliable, sequenced delivery of messages
between any two MSSs, with arbitrary message
latency. Similarly, the wireless network within a
cell ensures FIFO delivery of messages between
an MSS and a local MH, i.e., there exists a FIFO
channel from an MH to its local MSS, and another
FIFO channel from the MSS to the MH. If an MH
did not leave the cell, then every message sent to it
from the local MSS would be received in the
sequence in which they are sent [1], [2], [15], [16],
[25].

BACKWARD ERROR RECOVERY PROTOCOLS IN DISTRIBUTED

MOBILE SYSTEMS: A SURVEY

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

338

Message communication from an MH MH1 to
another MH MH2 occurs as follows. MH1 first
sends the message to its local MSS MSS1 using the
wireless link. MSS1 forwards it to MSS2, the local
MSS of MH2, via the fixed network.

MSS2 then transmits it to MH2 over its wireless
network. However, the location of MH2 may not
be known to MSS1, therefore, MSS1 may require to
first determining the location of MH2. This is
essentially the problem faced by network layer
routing protocols [13], [30], [57], [62].
Mobile Hosts often disconnect from the rest of the
network. In our model, disconnection is distinct
from failure. Disconnections are elective or
volunteer by nature, so a mobile host informs the
system prior to its occurrence and executes an
application-specific disconnection protocol if
necessary [2]. Disconnection can be voluntary on
involuntary [35]. We use the term “disconnection”
to always imply a voluntary disconnection. We
refer to an abrupt or involuntary disconnection as
a failure.
2. BACKWARD ERROR RECOVERY

Fault tolerance can be achieved through some kind
of redundancy. Redundancy can be temporal or
spatial. In temporal redundancy, i.e., checkpoint-
restart, an application is restarted from an earlier
checkpoint or recovery point after a fault. This

may result in the loss of some processing and
applications may not be able to meet strict timing
targets. In spatial redundancy, many copies of the
application execute on different processors
concurrently and strict timing constraints can be
met. But the cost of providing fault tolerance using

spatial redundancy is quite high and may require
extra hardware. Checkpoint-Restart or Backward
error recovery is quite inexpensive and does not
require extra hardware in general. Besides
providing fault tolerance, checkpointing can be
used for process migration, debugging distributed
applications, job swapping, postmortem analysis
and stable property detection [63].
There are two approaches for error recovery:

• Forward Error Recovery
• Backward Error Recovery

In forward error recovery techniques, the
nature of errors and damage caused by faults must
be completely and accurately assessed and so it
becomes possible to remove those errors in the
process state and enable the process to move
forward [46]. In distributed system, accurate
assessment of all the faults may not be possible.

In backward error recovery techniques,
the nature of faults need not be predicted and in
case of error, the process state is restored to
previous error-free state. It is independent of the

WIRED NETWORK

mh
mh

MSS
MSS

MSS

Wireless Cell

mh

mh mh

Wireless Cell

mh

Wireless Cell

MSS

mh

FIXED HOST

Wireless Cell

Figure 1.1 The system model for supporting host mobility

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

339

nature of faults. Thus, backward error recovery is
more general recovery mechanism [14], [42].

There are three steps involved in backward-
error recovery. These are:

• Checkpointing the error-free state
periodically

• Restoration in case of failure
• Restart from the restored state

Backward error recovery is also known as
checkpoint-restore-restart (CRR) or checkpoint-
restart (CR). The checkpointing process is
executed periodically to advance the recovery line.
 A checkpoint is a local state of a
process saved on stable storage. In a distributed
system, since the processes in the system do not
share memory, a global state of the system is
defined as a set of local states, one from each
process. The state of channels corresponding to a
global state is the set of messages sent but not yet
received. A lost or in-transit message is one, the
sending of which has been recorded by the sender
but whose receiving could not be recorded by the
receiving process. An orphan message is a
message whose receive event is recorded, but its
send event is lost. A global state is said to be
“consistent” if it contains no orphan message and
all the in-transit messages are logged. In Figure
2.1, the initial global state {C10, C20, C30, C40, C50}
is consistent. It should be noted that initial global
state is always consistent, because, it can not
contain any orphan message. The Global State
{C11, C21, C31, C41, C51} is also consistent, because,
it does not possess any orphan message. It needs to
be noted that by definition, m0 is not an orphan

message but in-transit message. The Global State
{C12, C22, C32, C42, C52} is inconsistent because it
includes the orphan message m8. By definition, m8
is an orphan message. To recover from a failure,
the system restarts its execution from a previous
consistent global state saved on the stable storage
during fault-free execution. This saves all the
computation done up to the last checkpointed state

and only the computation done thereafter needs to
be redone [8], [51], [52].
 After a failure, a system must be
restored to a consistent system state. Essentially, a
system state is consistent if it could have occurred
during the preceding execution of the system from
its initial state, regardless of the relative speeds of
individual processes. This assumes that the total
execution of the system is equivalent to some fault
free execution [8]. It has been shown that two local
checkpoints being causally unrelated is a necessary
but not sufficient condition for them to belong to
the same consistent global checkpoint. This
problem was first addressed by Netzer and Xu who
introduced the notion of a Z-path between local
checkpoints to capture both their causal and
hidden dependencies [44]. Considering a
checkpoint and communication pattern, the
rollback dependency trackability property
stipulates that there is no hidden dependency
between local checkpoints [11]. To be able to
recover a system state, all of its individual process
states must be able to be restored. A consistent
system state in which each process state can be
restored is thus called a recoverable system state.

m
m

m m

m
P1

P

P3

P4

P5

m

m

m

m
m10

m

m5

C10

C20

C30

C40

C

C

C

C

C

C

C

C52

C32

C

C12

Checkpoint
Computation Message

Figure 2.1 Consistent and Inconsistent

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

340

 Processes in a distributed system
communicate by sending and receiving messages.
A process can record its own state and messages it
sends and receives; it can record nothing else. To
determine a global system state, a process Pi must
enlist the cooperation of other processes that must
record their own local states and send the recorded
local states to Pi. All processes cannot record their
local states at precisely the same instant unless
they have access to a common clock. We assume
that processes do not share clocks or memory. The
problem is to devise algorithms by which
processes record their own states and the states of
communication channels so that the set of process
and channel states recorded form a global system
state. The global state detection algorithm is to be
superimposed on the underlying computation; it
must run concurrently with, but not alter, this
underlying computation [19].
 The state detection algorithm plays the
role of a group of photographers observing a
panoramic, dynamic scene, such as a sky filled
with migrating birds- a scene so vast that it can not
be captured by a single photograph. The
photographers must take several snapshots and
piece the snapshots together to form a picture of
the overall scene. All snapshots cannot be taken at
precisely the same instant because of
synchronization problems. Furthermore, the

photographers should not disturb the process that
is being photographed. Yet, the composite picture
should be meaningful. The problem before us is to
define meaningful and then to determine how the
photographs should be taken [19].

 The problem of taking a checkpoint in a
message passing distributed system is quite
complex because any arbitrary set of checkpoints
cannot be used for recovery [19], [51], [52].
This is due to the fact that the set of checkpoints

used for recovery must form a consistent global
state.

In backward error recovery, depending on
the programmer’s intervention in process of
checkpointing, the classification can be:

• User-Triggered checkpointing
• Transparent Checkpointing

User triggered checkpointing schemes
require user interaction and are useful in reducing
the stable storage requirement [20]. These are
generally employed where the user has the
knowledge of the computation being performed
and can decide the location of the checkpoints. The
main problem is the identification of the
checkpoint location by a user.

The transparent checkpointing
techniques do not require user interaction and can
be classified into following categories:

• Uncoordinated Checkpointing
• Coordinated Checkpointing
• Quasi-Synchronous or Communication-

induced Checkpointing
• Message Logging based Checkpointing

2.1 UNCOORDINATED CHECKPOINTING

In uncoordinated or independent
checkpointing, processes do not coordinate their
checkpointing activity and each process records
its local checkpoint independently [14], [54], [64].

It allows each process the maximum

autonomy in deciding when to take checkpoint,
i.e., each process may take a checkpoint when it is
most convenient. It eliminates coordination
overhead all together and forms a consistent global
state on recovery after a fault [14]. After a failure,
a consistent global checkpoint is established by
tracking the dependencies. It may require cascaded
rollbacks that may lead to the initial state due to
domino-effect [36], [51], [52]. It requires multiple
checkpoints to be saved for each process and

Figure 2.2 Domino-effect

FailureC10

C21 C22 C23

C11 C12 C13

m0
m1

m3
m4

m5
m6

Checkpoint

P1

P2

C20

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

341

periodically invokes garbage collection algorithm
to reclaim the checkpoints that are no longer
needed. In this scheme, a process may take a
useless checkpoint that will never be a part of
global consistent state. Useless checkpoints incur
overhead without advancing the recovery line [20].
 The main disadvantage of this approach is the
domino-effect [Figure 2.2]. In this example,
processes P1 and P2 have independently taken a
sequence of checkpoints. The interleaving of
messages and checkpoints leave no consistent set
of checkpoints for P1 and P2, except the initial one
at {C10, C20). Consequently, after P1 fails, both P1
and P2 must roll back to the beginning of the
computation [36]. It should be noted that global
state {C11, C21} is inconsistent due to orphan
message m1. Similarly, global state {C12, C22} is
inconsistent due to orphan message m4.

2.2 COORDINATED CHECKPOINTING

In coordinated or synchronous checkpointing,
processes take checkpoints in such a manner that
the resulting global state is consistent. Mostly it
follows two-phase commit structure [19], [21],
[36]. In the first phase, processes take tentative
checkpoints and in the second phase, these are
made permanent. The main advantage is that only
one permanent checkpoint and at most one
tentative checkpoint is required to be stored. In
case of a fault, processes rollback to last
checkpointed state. A permanent checkpoint can
not be undone. It guarantees that the computation
needed to reach the checkpointed state will not be
repeated. A tentative checkpoint, however, can be
undone or changed to be a permanent checkpoint.
 A straightforward approach to
coordinated checkpointing is to block
communications while the checkpointing protocol
executes [56]. A coordinator takes a checkpoint
and broadcasts a request message to all processes,
asking them to take a checkpoint. When a process
receives the message, it stops its executions,
flushes all the communication channels, takes a
tentative checkpoint, and sends an
acknowledgement message back to the
coordinator. After the coordinator receives
acknowledgements from all processes, it
broadcasts a commit message that completes the
two-phase checkpoint protocol. On receiving
commit, a process converts its tentative checkpoint
into permanent one and discards its old permanent
checkpoint, if any. The process is then free to
resume execution and exchange messages with
other processes.

 The coordinated checkpointing
protocols can be classified into two types:
blocking and non-blocking. In blocking
algorithms, as mentioned above, some blocking of
processes takes place during checkpointing [36],
[56]. In non-blocking algorithms, no blocking of
processes is required for checkpointing [19], [21].
The coordinated checkpointing algorithms can also
be classified into following two categories:
minimum-process and all process algorithms. In
all-process coordinated checkpointing algorithms,
every process is required to take its checkpoint in
an initiation [19], [21]. In minimum-process
algorithms, minimum interacting processes are
required to take their checkpoints in an initiation
[36].

2.3 QUASI-SYNCHRONOUS OR COMMU-
NICATION INDUCED CHECKPOINTING

 Communication-induced checkpointing
avoids the domino-effect without requiring all
checkpoints to be coordinated [12], [26], [41]. In
these protocols, processes take two kinds of
checkpoints, local and forced. Local checkpoints
can be taken independently, while forced
checkpoints are taken to guarantee the eventual
progress of the recovery line and to minimize
useless checkpoints. As opposed to coordinated
checkpointing, these protocols do no exchange any
special coordination messages to determine when
forced checkpoints should be taken. But, they
piggyback protocol specific information [generally
checkpoint sequence numbers] on each application
message; the receiver then uses this information to
decide if it should take a forced checkpoint. This
decision is based on the receiver determining if
past communication and checkpoint patterns can
lead to the creation of useless checkpoints; a
forced checkpoint is taken to break these patterns
[20], [41].

2.4 MESSAGE LOGGING BASED
CHECKPOINTING PROTOCOLS

 Message-logging protocols (for
example [3], [4], [5], [6], [9], [22], [23], [33], [49],
[55], [58], [59], [60], [61]), are popular for
building systems that can tolerate process crash
failures. Message logging and checkpointing can
be used to provide fault tolerance in distributed
systems in which all inter-process communication
is through messages. Each message received by a
process is saved in message log on stable storage.
No coordination is required between the
checkpointing of different processes or between

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

342

message logging and checkpointing. The execution
of each process is assumed to be deterministic
between received messages, and all processes are
assumed to execute on fail stop processes.
 When a process crashes, a new process
is created in its place. The new process is given the
appropriate recorded local state, and then the
logged messages are replayed in the order the
process originally received them. All message-
logging protocols require that once a crashed
process recovers, its state needs to be consistent
with the states of the other processes [20], [65].
This consistency requirement is usually expressed
in terms of orphan processes, which are surviving
processes whose states are inconsistent with the
recovered states of crashed processes. Thus,
message- logging protocols guarantee that upon
recovery, no process is an orphan. This
requirement can be enforced either by avoiding the
creation of orphans during an execution, as
pessimistic protocols do, or by taking appropriate
actions during recovery to eliminate all orphans as
optimistic protocols do. Bin Yao et al. [65]
describes a receiver-based message logging
protocol for mobile hosts, mobile support stations
and home agents in a Mobile IP environment,
which guarantees independent recovery.
Checkpointing is utilized to limit log size and
recovery latency.

3. CHECKPOINTING ISSUES IN DISTRI-
BUTED MOBILE SYSTEMS

The existence of mobile nodes in a distributed
system introduces new issues that need proper
handling while designing a checkpointing
algorithm for such systems. These issues are
mobility, disconnections, finite power source,
vulnerable to physical damage, lack of stable
storage etc. [1], [10]. The location of an MH
within the network, as represented by its current
local MSS, changes with time. Checkpointing
schemes that send control messages to MHs, will
need to first locate the MH within the network, and
thereby incur a search overhead [2]. Due to
vulnerability of mobile computers to catastrophic
failures, disk storage of an MH is not acceptably
stable for storing message logs or local
checkpoints. Checkpointing schemes must
therefore, rely on an alternative stable repository
for an MH’s local checkpoint [2]. Disconnections
of one or more MHs should not prevent recording
the global state of an application executing on
MHs. It should be noted that disconnection of an
MH is a voluntary operation, and frequent
disconnections of MHs is an expected feature of

the mobile computing environments [2]. The
battery at the MH has limited life. To save energy,
the MH can power down individual components
during periods of low activity [24]. This strategy is
referred to as the doze mode operation. The MH in
doze mode is awakened on receiving a message.
Therefore, energy conservation and low bandwidth
constraints require the checkpointing algorithms to
minimize the number of synchronization messages
and the number of checkpoints.
 The new issues make traditional
checkpointing techniques unsuitable to checkpoint
mobile distributed systems [1], [18], [43], [48].
Prakash-Singhal [48] proposed that a good
checkpointing protocol for mobile distributed
systems should have low memory overheads on
MHs, low overheads on wireless channels and
should avoid awakening of an MH in doze mode
operation. The disconnection of MHs should not
lead to infinite wait state. The algorithm should be
non-intrusive, coordinated, and should force
minimum number of processes to take their local
checkpoints.
 Minimum-process coordinated
checkpointing is an attractive approach to
introduce fault tolerance in mobile distributed
systems transparently. It avoids domino-effect,
minimizes stable storage requirements, and forces
only minimum interacting processes to checkpoint.
To recover from a failure, the system simply
restarts its execution from a previous consistent
global checkpoint saved on the stable storage. But,
it has the following disadvantages. Some blocking
of processes takes place or some useless
checkpoints are taken. In order to record a
consistent global checkpoint, processes must
synchronize their checkpointing activities. In other
words, when a process initiates checkpointing
procedure, it asks all relevant processes to take
their checkpoints. Therefore, coordinated
checkpointing suffers from high overhead
associated with the checkpointing process.
Sometimes, checkpoint sequence numbers are
piggybacked along with computation messages. If
a single process fails to checkpoint, the whole
checkpointing effort of the particular initiation
goes waste.
 Acharya, A. [2] cast distributed
systems with mobile hosts into a two tier structure:
1) a network of fixed hosts with more resources in
terms of storage, computing, and communication,
and 2) mobile hosts, which may operate in a
disconnected, or doze mode, connected by a low
bandwidth wireless connection to this network.
They propose a two-tier principle for structuring
distributed algorithms for this model:

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

343

 To the extent possible, computation
and communication costs of an algorithm is borne
by the static network. The core objective of the
algorithm is achieved through a distributed
execution amongst the fixed hosts while
performing only those operations at the mobile
hosts that are necessary for the desired overall
functionality.
 In wireless cellular network, mobile
computing based on a two-tier coordinated
checkpointing algorithm reduces the number of
synchronization messages [37].

4. PRELIMINARIES

When processes interact with each other by
exchanging messages, dependency is introduced
among the events of different processes, making it
difficult to have a total ordering of events.
Lamport [40] pointed out this and he proposed a
relation called ‘happened before’ (denoted by →)
to have a partial ordering of events in a distributed
system. This is an irreflexive, anti-symmetric,
transitive relation.
 If a and b are two events occurring in
the same process and if a occurs before b, then
a→b. If a is the event of sending a message and b
is the event of receiving the same message, then
a→b. Two events a and b are said to be concurrent
if and only if a does not happen before b and b
does not happen before a. Local checkpoint is an
event that records the state of a process at a
processor at a given instant. Global checkpoint is a
collection of local checkpoints, one from each
process. A global state is said to be consistent if all
the included events form a concurrent set. A
consistent global checkpoint is a collection of local
checkpoints, one from each process, such that each
local checkpoint is concurrent to every other local
checkpoint. Rollback recovery is a process of
resuming/recovering a computation from a
consistent global checkpoint.
 The messages generated by the
underlying computation are referred to as
computation messages or simply messages and are
denoted by mi or m. The processes are denoted by
Pi. The ith CI of a process denotes all the
computation performed between its ith and (i+1)th
checkpoint, including the ith checkpoint but not
the (i+1)th checkpoint.
 A process Pi directly depends upon Pj
only if there exist m such that: (i) Pi has processed
m sent by Pj (ii) Pi has not taken any permanent
checkpoint after processing m (iii) Pj has not taken
any permanent checkpoint after sending m. Direct
dependencies at Pi can be stored in a bit vector of

length n for n processes [say ddvi[]]. ddvi[j]=1
implies Pi is directly dependent upon Pj. In
minimum-process coordinated checkpointing, if Pi
takes its checkpoint and Pi is dependent upon Pj,
then Pj should also take its checkpoint. Minimum
set is the set of processes, which need to
checkpoint in an initiation. A process is in the
minimum set only if the initiator process is
transitively dependent upon it. A process that
initiates checkpointing is called initiator process or
simply initiator. The minimum-process algorithms
are generally based on keeping track of direct
dependencies among processes and computing
minimum set [38], [45].
 Once the system has rolled back to a
consistent state, the nodes have to retrace their
computation that was undone during the rollback.
The following types of messages have to be
handled while retracing the lost computation [48].
• Orphan Messages: Messages whose reception

has been recorded, but the record of their
transmission has been lost. This situation
arises when the sender node rolls back to a
state prior to sending the message while the
receiver node still has the record of its
reception.

• Lost Messages: Messages whose transmission
has been recorded, but the record of their
reception has been lost. This happens if the
receiver rolls back to a state prior to the
reception of the message, while the sender does
not roll back to a state prior to their sending.

• Duplicate Messages: This happens when more
than one copy of the same message arrives at a
node; perhaps one corresponding to the original
computation and one generated during recovery
phase. If the first copy has been processed, all
subsequent copies should be discarded.

 In deterministic systems, if two processes start
in the same state, and both receive the identical
sequence of inputs, they will produce the
identical sequence outputs and will finish in the
same state. The state of a process is thus
completely determined by its starting state and
by sequence of messages it has received [31],
[32].

 Chandy-Lamport algorithm [19] works
with FIFO channels only. If a message m1
followed by m2 is sent from Pi to Pj, m1 reaches
before m2 when the channels are FIFO. Advantage
of a FIFO channel is that without explicitly
sending any message sequence numbers with
messages, it is possible to arrange the messages in
a sequence. Non-FIFO channels necessitate
headers with regular messages to ensure correct
ordering of messages [53]. Headers should

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

344

contain sequence numbers of regular messages.
The possibility of non-FIFO channel is justified in
a distributed environment, since it is possible for
messages to be routed through different channels
and reach the destination out of order.
 In a centralized algorithm like Chandy-
lamport [19], there is one node, which always
initiates the checkpoints and coordinates the
participating nodes. The disadvantage of a
centralized algorithm is that all nodes have to
initiate checkpoints whenever the centralized node
decides to checkpoint. Nodes can be given
autonomy in initiating checkpoints by allowing
any node in the system to initiate checkpoints.
Such a distributed checkpointing algorithm can
initiate complete checkpointing [39] or selective
checkpointing [36].

5. CONCLUSION

 We have reviewed different approaches to
rollback recovery with respect to a set of
properties including performance overhead,
storage over-head, ease of recovery, freedom from
domino effect, freedom from orphan processes,
and the extent of rollback. Checkpointing
protocols require the processes to take periodic
checkpoints with varying degrees of coordination.
Coordinated checkpointing requires the processes
to coordinate their checkpoints to form global
consistent system states. Coordinated
checkpointing generally simplifies recovery and
garbage collection, and yields good performance
in practice. At the other end of the spectrum,
uncoordinated checkpointing does not require the
processes to coordinate their checkpoints, but it
suffers from potential domino effect, complicates
recovery, and still requires coordination to perform
output commit or garbage collection. Between
these two ends are communication-induced
checkpointing schemes that depend on the
communication patterns of the applications to
trigger checkpoints. These schemes do not suffer
from the domino effect and do not require
coordination. Recent studies, however, have
shown that the non-deterministic nature of these
protocols complicates garbage collection and
degrades performance. Log-based rollback
recovery is often a natural choice for applications
that frequently interact with the outside world. It
allows efficient output commit, and has three
flavors, pessimistic, optimistic, and causal. This
form of logging simplifies recovery, output
commit, and protects surviving processes from
having to roll back. These advantages have made
pessimistic logging attractive in commercial

environment where simplicity and robustness are
necessary. Causal logging reduces the overhead
while still preserving the properties of fast output
commit and orphan-free recovery.

REFERENCES

[1] Acharya A. and Badrinath B. R.,

“Checkpointing Distributed Applications
on Mobile Computers,” Proceedings of
the 3rd International Conference on
Parallel and Distributed Information
Systems, pp. 73-80, September 1994.

[2] Acharya A., “Structuring Distributed
Algorithms and Services for networks
with Mobile Hosts”, Ph.D. Thesis,
Rutgers University, 1995.

[3] Alvisi, Lorenzo and Marzullo, Keith,“

Message Logging: Pessimistic,
Optimistic, Causal, and Optimal”, IEEE
Transactions on Software Engineering,
Vol. 24, No. 2, February 1998, pp. 149-
159.

[4] L. Alvisi, Hoppe, B., Marzullo, K.,

“Nonblocking and Orphan-Free message
Logging Protocol,” Proc. of 23rd Fault
Tolerant Computing Symp., pp. 145-154,
June 1993.

[5] L. Alvisi,“ Understanding the Message
Logging Paradigm for Masking Process
Crashes,“ Ph.D. Thesis, Cornell Univ.,
Dept. of Computer Science, Jan. 1996.
Available as Technical Report TR-96-
1577.

[6] L. Alvisi and K. Marzullo,“ Tradeoffs in
implementing Optimal Message Logging
Protocol”, Proc. 15th Symp. Principles of
Distributed Computing, pp. 58-67, ACM,
June, 1996.

[7] Adnan Agbaria, Wiilliam H Sanders,“
Distributed Snapshots for Mobile
Computing Systems”, IEEE Intl. Conf.
PERCOM’04, pp. 1-10, 2004.

[8] Avi Ziv and Jehoshua Bruck, “

Checkpointing in Parallel and Distributed
Systems”, Book Chapter from Parallel
and Distributed Computing Handbook
edited by Albert Z. H. Zomaya, pp. 274-
302, Mc Graw Hill, 1996.

[9] A. Borg, J. Baumbach, and S. Glazer,“ A

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

345

Message System Supporting Fault
Tolerance”, Proc. Symp. Operating
System Principles, pp. 90-99, ACM SIG
OPS, Oct. 1983.

[10] Adnan Agbaria, William H. Sanders, “

Distributed Snapshots for Mobile
Computing Systems”, Proceedings of the
Second IEEE Annual Conference on
Pervasive Computing and
Communications (Percom’04), pp. 1-10,
2004.

[11] Baldoni R., Hélary J-M., Mostefaoui A.

and Raynal M., “ Rollback Dependency
Trackability: A Minimial
Characterization and its Protocol”,
Information and Computation, 165, pp.
144-173, 2003.

[12] Baldoni R., Hélary J-M., Mostefaoui A.

and Raynal M., “A Communication-
Induced Checkpointing Protocol that
Ensures Rollback-Dependency
Trackability,” Proceedings of the
International Symposium on Fault-
Tolerant-Computing Systems, pp. 68-77,
June 1997.

[13] Bhagwat P., and Perkins, C.E., “A mobile

Networking System based on Internet
Protocol (IP)”,USENIX Symposium on
Mobile and Location-Independent
Computing, August 1993.

[14] Bhargava B. and Lian S. R., “Independent

Checkpointing and Concurrent Rollback
for Recovery in Distributed Systems-An
Optimistic Approach,” Proceedings of
17th IEEE Symposium on Reliable
Distributed Systems, pp. 3-12, 1988.

[15] Badrinath B. R, Acharya A., T. Imielinski
“Structuring Distributed Algorithms for
Mobile Hosts”, Proc. 14th Int. Conf.
Distributed Computing Systems, June
1994.

[16] Badrinath B. R, Acharya A., T. Imielinski
“ Designing Distributed Algorithms for
Mobile Computing Networks”, Computer
Communications, Vol. 19, No. 4, 1996.

[17] Cao G. and Singhal M., “On the

Impossibility of Min-process Non-
blocking Checkpointing and an Efficient
Checkpointing Algorithm for Mobile

Computing Systems,” Proceedings of
International Conference on Parallel
Processing, pp. 37-44, August 1998.

[18] Cao G. and Singhal M., “Mutable

Checkpoints: A New Checkpointing
Approach for Mobile Computing
systems,” IEEE Transaction On Parallel
and Distributed Systems, vol. 12, no. 2,
pp. 157-172, February 2001.

[19] Chandy K. M. and Lamport L.,

“Distributed Snapshots: Determining
Global State of Distributed Systems,”
ACM Transaction on Computing Systems,
vol. 3, No. 1, pp. 63-75, February 1985.

[20] Elnozahy E.N., Alvisi L., Wang Y.M. and

Johnson D.B., “A Survey of Rollback-
Recovery Protocols in Message-Passing
Systems,” ACM Computing Surveys, vol.
34, no. 3, pp. 375-408, 2002.

[21] Elnozahy E.N., Johnson D.B. and

Zwaenepoel W., “The Performance of
Consistent Checkpointing,” Proceedings
of the 11th Symposium on Reliable
Distributed Systems, pp. 39-47, October
1992.

[22] Elnozahy and Zwaenepoel W, “ Manetho:
Transparent Roll-back Recovery with
Low-overhead, Limited Rollback and
Fast Output Commit,” IEEE Trans.
Computers, vol. 41, no. 5, pp. 526-531,
May 1992.

[23] Elnozahy and Zwaenepoel W, “ On the

Use and Implementation of Message
Logging,” 24th Int’l Symp. Fault Tolerant
Computing, pp. 298-307, IEEE Computer
Society, June 1994.

[24] George H. Forman and John Zahorjan,
“The Challenges of Mobile Computing”,
IEEE Computers vol. 27, no. 4, pp. 38-47,
April 1994.

[25] Richard C. Gass and Bidyut Gupta,“ An

Efficient Checkpointing Scheme for
Mobile Computing Systems”, European
Simulation Symposium, Oct 18-20, 2001,
pp. 1-6.

[26] Hélary J. M., Mostefaoui A. and Raynal

M., “Communication-Induced
Determination of Consistent Snapshots,”

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

346

Proceedings of the 28th International
Symposium on Fault-Tolerant
Computing, pp. 208-217, June 1998.

[27] Higaki H. and Takizawa M.,
“Checkpoint-recovery Protocol for
Reliable Mobile Systems,” Trans. of
Information processing Japan, vol. 40,
no.1, pp. 236-244, Jan. 1999.

[28] Higaki H. and Takizawa M., “Recovery

Protocol for Mobile Checkpointing”,
IEEE 9th International Conference on
Database Expert Systems Applications,
Vienna, pp. 520-525, 1998

[29] Higaki H. and Takizawa M., “Checkpoint
Recovery Protocol for Reliable Mobile
Systems”, 17th Symposium on Reliable
Distributed Systems, pp. 93-99, Oct.
1998.

[30] Ioannidis, J., Duchamp, D., and Maguire,
G.Q., “IP-based protocols for Mobile
Internetworking”, In Proc. of ACM
SIGCOMM Symposium on
Communications, Architectures, and
Protocols, pp. 235-245, September 1991.

[31] Johnson, D.B., Zwaenepoel, W., “Sender-

based message logging”, In Proceedingss
of 17th international Symposium on Fault-
Tolerant Computing, pp 14-19, 1987.

[32] Johnson, D.B., Zwaenepoel, W.,
“Recovery in Distributed Systems using
optimistic message logging and
checkpointing. In 7th ACM Symposium on
Principles of Distributed Computing, pp
171-181, 1988.

[33] D. Johnson, “Distributed System Fault
Tolerance Using Message Logging and
Checkpointing,” Ph.D. Thesis, Rice
Univ., Dec. 1989.

[34] JinHo Ahn, Sung-Gi Min, Chong-Sun

Hwang, “A Causal Message Logging
Protocol for Mobile Nodes in Mobile
Computing Environments”, Future
Generation Computer Systems 20, pp
663-686, 2004.

[35] Kistler, J., and Satyanaranyan, M., “

Disconnected Operation in the Coda file
system”, ACM Trans. on Computer
Systems Vol.10, No.1, February 1992.

[36] Koo R. and Toueg S., “Checkpointing
and Roll-Back Recovery for Distributed

Systems,” IEEE Trans. on Software
Engineering, vol. 13, no. 1, pp. 23-31,
January 1987.

[37] Kyne-Sup BYUN, Sung_Hwa LIM, Jai-

Hoon KIM,“ Two-Tier Checkpointing
Algorithm Using MSS in Wireless
Networks”, IEICE Trans.
Communications, Vol E86-B, No. 7, pp.
2136-2142, July 2003.

[38] L. Kumar, M. Misra, R.C. Joshi, “Low

overhead optimal checkpointing for
mobile distributed systems” Proceedings.
19th IEEE International Conference on
Data Engineering, pp 686 – 88, 2003.

[39] T.H. Lai and T.H. Yang,“ On Distributed

Snapshots”, Information Processing
Letters, vol. 25, pp. 153-158, 1987.

[40] L. Lamport, “Time, clocks and ordering

of events in a distributed system” Comm.
ACM, vol.21, No.7, pp. 558-565, July
1978.

[41] Manivannan D. and Singhal M., “Quasi-

Synchronous Checkpointing: Models,
Characterization, and Classification,”
IEEE Trans. Parallel and Distributed
Systems, vol. 10, No. 7, pp. 703-713, July
1999.

[42] Manivannan D., Netzer R. H. and Singhal
M., “Finding Consistent Global
Checkpoints in a Distributed
Computation,” IEEE Transactions on
Parallel & Distributed Systems, vol. 8,
no. 6, pp. 623-627, June 1997.

[43] Yoshifumi Manabe,“ A Distributed

Consistent Global Checkpoint Algorithm
for Distributed Mobile Systems”, 8th Int’l
Conference on Parallel and Distributed
Systems”, pp. 125-132, 2001.

[44] Netzer, R.H. and Xu,J ,“Necessary and
Sufficient Conditions for Consistent
Global Snapshots”, IEEE Trans. Parallel
and Distributed Systems Vol. 6, No.2, pp
165-169, 1995.

[45] Parveen Kumar, Lalit Kumar, R K

Chauhan, V K Gupta “A Non-Intrusive
Minimum Process Synchronous
Checkpointing Protocol for Mobile
Distributed Systems” Proceedings of
IEEE ICPWC-2005, January 2005.

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

347

[46] Pradhan D.K. and Vaidya N., “Roll-

forward Checkpointing Scheme:
Concurrent Retry with Non-dedicated
Spares,” Proceedings of the IEEE
Workshop on Fault-Tolerant Parallel and
Distributed Systems, pp. 166-174, July
1992.

[47] Pushpendra Singh, Gilbert Cabillic, “A

Checkpointing Algorithm for Mobile
Computing Environment”, LNCS, No.
2775, pp 65-74, 2003.

[48] Prakash R. and Singhal M., “Low-Cost

Checkpointing and Failure Recovery in
Mobile Computing Systems,” IEEE
Transaction On Parallel and Distributed
Systems, vol. 7, no. 10, pp. 1035-1048,
October1996.

[49] M.L. Powell and D.L. Presotto,

“Publishing: A Reliable Broad case
Communication Mechanism”, Proc. ninth
Symp. Operating System Principles, pp.
100-109, ACM SIGOPS, Oct. 1983.

[50] Quagila, F., Ciciani, R., Baldoni, R., “

Checkpointing Protocols in Distributed
Systems with Mobile Hosts: A
Performance Analysis”, IPPS/SPDP
Workshop, pp. 742-755, 1998.

[51] Randall, B, “ System Structure for

Software Fault Tolerance”, IEEE Trans.
on Software Engineering, Vol.1,No.2, pp
220-232, 1975.

[52] Russell, D.L., “State Restoration in
Systems of Communicating Processes”,
IEEE Trans. Software Engineering,
Vol.6,No.2, pp 183-194, 1980.

[53] Silva, L.M. and J.G. Silva, “Global

checkpointing for distributed programs”,
Proc. 11th symp. Reliable Distributed
Systems, pp. 155-62, Oct. 1992.

[54] Storm R., and Temini, S., “Optimistic
Recovery in Distributed Systems”, ACM
Trans. Computer Systems, Aug, 1985, pp.
204-226.

[55] A.P. Sistla and J.L. Welch,“ Efficient

Distributed Recovery Using Message
Logging”, Proc. 18th Symp. Principles of
Distributed Computing”, pp 223-238,
Aug. 1989.

[56] Tamir, Y., Sequin, C.H., “Error Recovery
in multi-computers using global
checkpoints”, In Proceedings of the
International Conference on Parallel
Processing, pp. 32-41, 1984.

[57] Terakota, F., Yokote, Y., and Tokoro, M.,

“A Network Architecture providing host
migration transparency”, Proc, of ACM
SIGCOMM 91, September 1991.

[58] S. Venketasan and T.Y. Juang, “Efficient

Algorithms for Optimistic Crash
recovery”, Distributed Computing, vol. 8,
no. 2, pp. 105-114, June 1994.

[59] S. Venketasan, “Message-Optimal

Incremental Snapshots”, Computer and
Software Engineering, vol.1, no.3, pp.
211-231, 1993.

[60] S. Venketasan, “ Optimistic Crash

recovery Without Rolling back Non-
Faulty Processors”, Information Sciences,
1993.

[61] S. Venketasan and T.T.Y. Juang, “Low

Overhead optimistic crash Recovery”,
Proc. 11 Int. Conf. Distributed
Computing systems, pp. 454-461, 1991.

[62] Wada H., Yozawa, T., Ohnishi, T. and
Tanaka, Y., “Mobile Computing
Environment based on internet packet
forwarding”, Winter Usenix, Jan. 1993.

[63] Wang Y. M., Huang Y., Vo K.P., Chung

P.Y. and Kintala C., “Checkpointing and
its Applications,” Proceedings of the 25th
International Symposium on Fault-
Tolerant Computing (FTCS-25), pp. 22-
31, June 1995.

[64] Wood, W.G., “A Decentralized Recovery
Control Protocol”, IEEE Symposium on
Fault Tolerant Computing, 1981.

[65] Bin Yao, Kuo-Feng Ssu & W. Kect

Fuchs, “Message Logging in Mobile
Computing”, Proceedings of
international conference on FTCS, pp
294-301, 1999.

[66] Yasuro Sato, Michiko Inoue, Toshimitsu

Masuzawa, Hideo Fujiwara, “ A Snapshot
Algorithm for Distributed Mobile
Systems” Proceedings of the 16th ICDCS,
pp734-743,1996.

