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ABSTRACT 
 

This survey covers backward error recovery techniques for distributed systems specially the distributed 
mobile systems. Backward error recovery protocols have been classified into user triggered checkpointing 
and transparent checkpointing. Transparent checkpointing can be uncoordinated checkpointing, 
Coordinated checkpointing, Quasi Synchronous or communication-induced checkpointing and Message 
Logging based Checkpointing. Through out this survey we, highlight the research issues that are at the 
core of backward error recovery and present the solutions that currently address them. 
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1. INTRODUCTION  
 
A distributed system is a collection of processes 
that communicate with each other by exchanging 
messages. A distributed system consists of a 
collection of autonomous computers, connected 
through a network and distribution middleware, 
which enables computers to co-ordinate their 
activities and to share the resources of the system, 
so that users perceive the systems as a single, 
integrated computing facility. Recent years have 
witnessed rapid development of mobile 
communications. In the future, we will expect 
more and more people will use some portable units 
such as notebooks or personal data assistants. A 
mobile distributed computing system is a 
distributed system where some of the processes are 
running on mobile hosts (MHs). The term 
“mobile” implies able to move while retaining its 
network connections. A host that can move while 
retaining its network connections is an MH.  An 
MH communicates with other nodes of the system 
via a special node called mobile support station 
(MSS) [1], [2], [15], [16]. An MH can directly 
communicate with an MSS (and vice versa) only if 
the MH is physically located within the cell 
serviced by the MSS. A cell is a geographical area 
around an MSS in which it can support an MH. An 
MH can change its geographical position freely 
from one cell to another or even to an area covered 
by no cell. At any given instant of time, an MH 

may logically belong to only one cell; its current 
cell defines the MH’s location, and the MH is 
considered local to the MSS providing wireless 
coverage in the cell.   An MSS has both wired and 
wireless links and acts as an interface between the 
static network and a part of the mobile network. 
Static network connects all MSSs. A static node 
that has no support to MH can be considered as an 
MSS with no MH. Critical applications are 
required to execute fault-tolerantly on such 
systems [1], [2], [7], [50], [66].  
 The system model for supporting host 
mobility consists of two distinct sets of entities: a 
large number of MHs and relatively fewer 
numbers of MSSs. All fixed hosts and the 
communication path between them constitute the 
static/fixed network. The fixed network connects 
islands of wireless cells, each comprising of an 
MSS and the local MHs. The static network 
provides reliable, sequenced delivery of messages 
between any two MSSs, with arbitrary message 
latency. Similarly, the wireless network within a 
cell ensures FIFO delivery of messages between 
an MSS and a local MH, i.e., there exists a FIFO 
channel from an MH to its local MSS, and another 
FIFO channel from the MSS to the MH. If an MH 
did not leave the cell, then every message sent to it 
from the local MSS would be received in the 
sequence in which they are sent [1], [2], [15], [16], 
[25].  
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Message communication from an MH MH1 to 
another MH MH2 occurs as follows. MH1 first 
sends the message to its local MSS MSS1 using the 
wireless link. MSS1 forwards it to MSS2, the local 
MSS of MH2, via the fixed network. 
 

 
 
MSS2 then transmits it to MH2 over its wireless 
network. However, the location of MH2 may not 
be known to MSS1, therefore, MSS1 may require to 
first determining the location of MH2. This is 
essentially the problem faced by network layer 
routing protocols [13], [30], [57], [62]. 
Mobile Hosts often disconnect from the rest of the 
network. In our model, disconnection is distinct 
from failure. Disconnections are elective or 
volunteer by nature, so a mobile host informs the 
system prior to its occurrence and executes an 
application-specific disconnection protocol if 
necessary [2]. Disconnection can be voluntary on 
involuntary [35]. We use the term “disconnection” 
to always imply a voluntary disconnection. We 
refer to an   abrupt or involuntary disconnection as 
a failure. 
2. BACKWARD ERROR RECOVERY 
 
Fault tolerance can be achieved through some kind 
of redundancy. Redundancy can be temporal or 
spatial. In temporal redundancy, i.e., checkpoint-
restart, an application is restarted from an earlier 
checkpoint or recovery point after a fault. This 

may result in the loss of some processing and 
applications may not be able to meet strict timing 
targets. In spatial redundancy, many copies of the 
application execute on different processors  
concurrently and strict timing constraints can be 
met. But the cost of providing fault tolerance using  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
spatial redundancy is quite high and may require 
extra hardware. Checkpoint-Restart or Backward 
error recovery is quite inexpensive and does not 
require extra hardware in general. Besides 
providing fault tolerance, checkpointing can be 
used for process migration, debugging distributed 
applications, job swapping, postmortem analysis 
and stable property detection [63].  
There are two approaches for error recovery: 

• Forward Error Recovery 
• Backward Error Recovery 

In forward error recovery techniques, the 
nature of errors and damage caused by faults must 
be completely and accurately assessed and so it 
becomes possible to remove those errors in the 
process state and enable the process to move 
forward [46]. In distributed system, accurate 
assessment of all the faults may not be possible. 

In backward error recovery techniques, 
the nature of faults need not be predicted and in 
case of error, the process state is restored to 
previous error-free state. It is independent of the 
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nature of faults. Thus, backward error recovery is 
more general recovery mechanism [14], [42]. 

There are three steps involved in backward-
error recovery. These are: 

• Checkpointing the error-free state 
periodically 

• Restoration in case of failure 
• Restart from the restored state 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
Backward error recovery is also known as 
checkpoint-restore-restart (CRR) or checkpoint-
restart (CR). The checkpointing process is 
executed periodically to advance the recovery line.  
 A checkpoint is a local state of a 
process saved on stable storage. In a distributed 
system, since the processes in the system do not 
share memory, a global state of the system is 
defined as a set of local states, one from each 
process. The state of channels corresponding to a 
global state is the set of messages sent but not yet 
received. A lost or in-transit message is one, the 
sending of which has been recorded by the sender 
but whose receiving could not be recorded by the 
receiving process. An orphan message is a 
message whose receive event is recorded, but its 
send event is lost.  A global state is said to be 
“consistent” if it contains no orphan message and 
all the in-transit messages are logged. In Figure 
2.1, the initial global state {C10, C20, C30, C40, C50} 
is consistent. It should be noted that initial global 
state is always consistent, because, it can not 
contain any orphan message. The Global State 
{C11, C21, C31, C41, C51} is also consistent, because, 
it does not possess any orphan message. It needs to 
be noted that by definition, m0 is not an orphan 

message but in-transit message. The Global State 
{C12, C22, C32, C42, C52} is inconsistent because it 
includes the orphan message m8. By definition, m8 
is an orphan message. To recover from a failure, 
the system restarts its execution from a previous 
consistent global state saved on the stable storage 
during fault-free execution. This saves all the 
computation done up to the last checkpointed state  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and only the computation done thereafter needs to 
be redone [8], [51], [52]. 
 After a failure, a system must be 
restored to a consistent system state. Essentially, a 
system state is consistent if it could have occurred 
during the preceding execution of the system from 
its initial state, regardless of the relative speeds of 
individual processes. This assumes that the total 
execution of the system is equivalent to some fault 
free execution [8]. It has been shown that two local 
checkpoints being causally unrelated is a necessary 
but not sufficient condition for them to belong to 
the same consistent global checkpoint. This 
problem was first addressed by Netzer and Xu who 
introduced the notion of a Z-path between local 
checkpoints to capture both their causal and 
hidden dependencies [44]. Considering a 
checkpoint and communication pattern, the 
rollback dependency trackability property 
stipulates that there is no hidden dependency 
between local checkpoints [11].  To be able to 
recover a system state, all of its individual process 
states must be able to be restored. A consistent 
system state in which each process state can be 
restored is thus called a recoverable system state.  
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 Processes in a distributed system 
communicate by sending and receiving messages. 
A process can record its own state and messages it 
sends and receives; it can record nothing else. To 
determine a global system state, a process Pi must 
enlist the cooperation of other processes that must 
record their own local states and send the recorded 
local states to Pi. All processes cannot record their 
local states at precisely the same instant unless 
they have access to a common clock. We assume 
that processes do not share clocks or memory. The 
problem is to devise algorithms by which 
processes record their own states and the states of 
communication channels so that the set of process 
and channel states recorded form a global system 
state. The global state detection algorithm is to be 
superimposed on the underlying computation; it 
must run concurrently with, but not alter, this 
underlying computation [19].  
 The state detection algorithm plays the 
role of a group of photographers observing a 
panoramic, dynamic scene, such as a sky filled 
with migrating birds- a scene so vast that it can not 
be captured by a single photograph. The 
photographers must take several snapshots and 
piece the snapshots together to form a picture of 
the overall scene. All snapshots cannot be taken at 
precisely the same instant because of 
synchronization problems. Furthermore, the  
 
 
 

 
 
photographers should not disturb the process that 
is being photographed. Yet, the composite picture 
should be meaningful. The problem before us is to 
define meaningful and then to determine how the 
photographs should be taken [19].     

 The problem of taking a checkpoint in a 
message passing distributed system is quite 
complex because any arbitrary set of checkpoints 
cannot be used for     recovery [19], [51], [52]. 
This is due to the fact that the set of checkpoints 

used for recovery must form a consistent global 
state.  

In backward error recovery, depending on 
the programmer’s intervention in process of 
checkpointing, the classification can be: 

• User-Triggered checkpointing 
• Transparent Checkpointing 

User triggered checkpointing schemes 
require user interaction and are useful in reducing 
the stable storage requirement [20]. These are 
generally employed where the user has the 
knowledge of the computation being performed 
and can decide the location of the checkpoints. The 
main problem is the identification of the 
checkpoint location by a user.  

The transparent checkpointing 
techniques do not require user interaction and can 
be classified into following categories: 

• Uncoordinated Checkpointing 
• Coordinated Checkpointing  
• Quasi-Synchronous or Communication-

induced Checkpointing 
• Message Logging based Checkpointing 
 

2.1 UNCOORDINATED CHECKPOINTING 
 

In uncoordinated or independent 
checkpointing, processes do not coordinate their 
checkpointing activity   and each process records 
its local checkpoint independently [14], [54], [64].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It allows each process the maximum 

autonomy in deciding when to take checkpoint, 
i.e., each process may take a checkpoint when it is 
most convenient. It eliminates coordination 
overhead all together and forms a consistent global 
state on recovery after a fault [14].  After a failure, 
a consistent global checkpoint is established by 
tracking the dependencies. It may require cascaded 
rollbacks that may lead to the initial state due to 
domino-effect [36], [51], [52].  It requires multiple 
checkpoints to be saved for each process and 

Figure 2.2  Domino-effect  
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periodically invokes garbage collection algorithm 
to reclaim the checkpoints that are no longer 
needed. In this scheme, a process may take a 
useless checkpoint that will never be a part of 
global consistent state. Useless checkpoints incur 
overhead without advancing the recovery line [20]. 
  The main disadvantage of this approach is the 
domino-effect [Figure 2.2]. In this example, 
processes P1 and P2 have independently taken a 
sequence of checkpoints. The interleaving of 
messages and checkpoints leave no consistent set 
of checkpoints for P1 and P2, except the initial one 
at {C10, C20). Consequently, after P1 fails, both P1 
and P2 must roll back to the beginning of the 
computation [36]. It should be noted that global 
state {C11, C21} is inconsistent due to orphan 
message m1. Similarly, global state {C12, C22} is 
inconsistent due to orphan message m4.  
 
2.2 COORDINATED CHECKPOINTING 
 
In coordinated or synchronous checkpointing, 
processes take checkpoints in such a manner that 
the resulting global state is consistent. Mostly it 
follows two-phase commit structure [19], [21], 
[36]. In the first phase, processes take tentative 
checkpoints and in the second phase, these are 
made permanent. The main advantage is that only 
one permanent checkpoint and at most one 
tentative checkpoint is required to be stored. In 
case of a fault, processes rollback to last 
checkpointed state. A permanent checkpoint can 
not be undone. It guarantees that the computation 
needed to reach the checkpointed state will not be 
repeated. A tentative checkpoint, however, can be 
undone or changed to be a permanent checkpoint.   
 A straightforward approach to 
coordinated checkpointing is to block 
communications while the checkpointing protocol 
executes [56]. A coordinator takes a checkpoint 
and broadcasts a request message to all processes, 
asking them to take a checkpoint. When a process 
receives the message, it stops its executions, 
flushes all the communication channels, takes a 
tentative checkpoint, and sends an 
acknowledgement message back to the 
coordinator. After the coordinator receives 
acknowledgements from all processes, it 
broadcasts a commit message that completes the 
two-phase checkpoint protocol. On receiving 
commit, a process converts its tentative checkpoint 
into permanent one and discards its old permanent 
checkpoint, if any. The process is then free to 
resume execution and exchange messages with 
other processes.  

 The coordinated checkpointing 
protocols can be classified into two types: 
blocking and non-blocking. In blocking 
algorithms, as mentioned above, some blocking of 
processes takes place during checkpointing [36], 
[56].  In non-blocking algorithms, no blocking of 
processes is required for checkpointing [19], [21]. 
The coordinated checkpointing algorithms can also 
be classified into following two categories: 
minimum-process and all process algorithms. In 
all-process coordinated checkpointing algorithms, 
every process is required to take its checkpoint in 
an initiation [19], [21]. In minimum-process 
algorithms, minimum interacting processes are 
required to take their checkpoints in an initiation 
[36].  
 
2.3 QUASI-SYNCHRONOUS OR COMMU-
NICATION  INDUCED CHECKPOINTING  
 
 Communication-induced checkpointing 
avoids the domino-effect without requiring all 
checkpoints to be coordinated [12], [26], [41]. In 
these protocols, processes take two kinds of 
checkpoints, local and forced.  Local checkpoints 
can be taken independently, while forced 
checkpoints are taken to guarantee the eventual 
progress of the recovery line and to minimize 
useless checkpoints.  As opposed to coordinated 
checkpointing, these protocols do no exchange any 
special coordination messages to determine when 
forced checkpoints should be taken. But, they 
piggyback protocol specific information [generally 
checkpoint sequence numbers] on each application 
message; the receiver then uses this information to 
decide if it should take a forced checkpoint. This 
decision is based on the receiver determining if 
past communication and checkpoint patterns can 
lead to the creation of useless checkpoints; a 
forced checkpoint is taken to break these patterns 
[20], [41].  
 
2.4 MESSAGE LOGGING BASED 
CHECKPOINTING PROTOCOLS  
 
 Message-logging protocols (for 
example [3], [4], [5], [6], [9], [22], [23], [33], [49], 
[55], [58], [59], [60], [61]), are popular for 
building systems that can tolerate process crash 
failures. Message logging and checkpointing can 
be used to provide fault tolerance in distributed 
systems in which all inter-process communication 
is through messages. Each message received by a 
process is saved in message log on stable storage. 
No coordination is required between the 
checkpointing of different processes or between 
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message logging and checkpointing. The execution 
of each process is assumed to be deterministic 
between received messages, and all processes are 
assumed to execute on fail stop processes.  
 When a process crashes, a new process 
is created in its place. The new process is given the 
appropriate recorded local state, and then the 
logged messages are replayed in the order the 
process originally received them. All message-
logging protocols require that once a crashed 
process recovers, its state needs to be consistent 
with the states of the other processes [20], [65]. 
This consistency requirement is usually expressed 
in terms of orphan processes, which are surviving 
processes whose states are inconsistent with the 
recovered states of crashed processes. Thus, 
message- logging protocols guarantee that upon 
recovery, no process is an orphan. This 
requirement can be enforced either by avoiding the 
creation of orphans during an execution, as 
pessimistic protocols do, or by taking appropriate 
actions during recovery to eliminate all orphans as 
optimistic protocols do.   Bin Yao et al. [65] 
describes a receiver-based message logging 
protocol for mobile hosts, mobile support stations 
and home agents in a Mobile IP environment, 
which guarantees independent recovery. 
Checkpointing is utilized to limit log size and 
recovery latency.    
 
3. CHECKPOINTING ISSUES IN DISTRI-
BUTED MOBILE SYSTEMS  
   
The existence of mobile nodes in a distributed 
system introduces new issues that need proper 
handling while designing a checkpointing 
algorithm for such systems. These issues are 
mobility, disconnections, finite power source, 
vulnerable to physical damage, lack of stable 
storage etc. [1], [10].  The location of an MH 
within the network, as represented by its current 
local MSS, changes with time. Checkpointing 
schemes that send control messages to MHs, will 
need to first locate the MH within the network, and 
thereby incur a search overhead [2]. Due to 
vulnerability of mobile computers to catastrophic 
failures, disk storage of an MH is not acceptably 
stable for storing message logs or local 
checkpoints. Checkpointing schemes must 
therefore, rely on an alternative stable repository 
for an MH’s local checkpoint [2]. Disconnections 
of one or more MHs should not prevent recording 
the global state of an application executing on 
MHs. It should be noted that disconnection of an 
MH is a voluntary operation, and frequent 
disconnections of MHs is an expected feature of 

the mobile computing environments [2]. The 
battery at the MH has limited life. To save energy, 
the MH can power down individual components 
during periods of low activity [24]. This strategy is 
referred to as the doze mode operation. The MH in 
doze mode is awakened on receiving a message. 
Therefore, energy conservation and low bandwidth 
constraints require the checkpointing algorithms to 
minimize the number of synchronization messages 
and the number of checkpoints.    
 The new issues make traditional 
checkpointing techniques unsuitable to checkpoint 
mobile distributed systems [1], [18], [43], [48]. 
Prakash-Singhal [48] proposed that a good 
checkpointing protocol for mobile distributed 
systems should have low memory overheads on 
MHs, low overheads on wireless channels and 
should avoid awakening of an MH in doze mode 
operation. The disconnection of MHs should not 
lead to infinite wait state. The algorithm should be 
non-intrusive, coordinated, and should force 
minimum number of processes to take their local 
checkpoints.  
 Minimum-process coordinated 
checkpointing is an attractive approach to 
introduce fault tolerance in mobile distributed 
systems transparently. It avoids domino-effect, 
minimizes stable storage requirements, and forces 
only minimum interacting processes to checkpoint. 
To recover from a failure, the system simply 
restarts its execution from a previous consistent 
global checkpoint saved on the stable storage. But, 
it has the following disadvantages. Some blocking 
of processes takes place or some useless 
checkpoints are taken. In order to record a 
consistent global checkpoint, processes must 
synchronize their checkpointing activities. In other 
words, when a process initiates checkpointing 
procedure, it asks all relevant processes to take 
their checkpoints. Therefore, coordinated 
checkpointing suffers from high overhead 
associated with the checkpointing process. 
Sometimes, checkpoint sequence numbers are 
piggybacked along with computation messages. If 
a single process fails to checkpoint, the whole 
checkpointing effort of the particular initiation 
goes waste.       
 Acharya, A. [2] cast distributed 
systems with mobile hosts into a two tier structure: 
1) a network of fixed hosts with more resources in 
terms of storage, computing, and communication, 
and 2) mobile hosts, which may operate in a 
disconnected, or doze mode, connected by a low 
bandwidth wireless connection to this network. 
They propose a two-tier principle for structuring 
distributed algorithms for this model: 
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 To the extent possible, computation 
and communication costs of an algorithm is borne 
by the static network. The core objective of the 
algorithm is achieved through a distributed 
execution amongst the fixed hosts while 
performing only those operations at the mobile 
hosts that are necessary for the desired overall 
functionality.    
 In wireless cellular network, mobile 
computing based on a two-tier coordinated 
checkpointing algorithm reduces the number of 
synchronization messages [37].  
 
4. PRELIMINARIES  
 
When processes interact with each other by 
exchanging messages, dependency is introduced 
among the events of different processes, making it 
difficult to have a total ordering of events. 
Lamport [40] pointed out this and he proposed a 
relation called ‘happened before’ (denoted by →) 
to have a partial ordering of events in a distributed 
system. This is an irreflexive, anti-symmetric, 
transitive relation.   
 If a and b are two events occurring in 
the same process and if a occurs before b, then 
a→b. If a is the event of sending a message and b 
is the event of receiving the same message, then 
a→b. Two events a and b are said to be concurrent 
if and only if a does not happen before b and b 
does not happen before a. Local checkpoint is an 
event that records the state of a process at a 
processor at a given instant. Global checkpoint is a 
collection of local checkpoints, one from each 
process. A global state is said to be consistent if all 
the included events form a concurrent set. A 
consistent global checkpoint is a collection of local 
checkpoints, one from each process, such that each 
local checkpoint is concurrent to every other local 
checkpoint. Rollback recovery is a process of 
resuming/recovering a computation from a 
consistent global checkpoint.  
 The messages generated by the 
underlying computation are referred to as 
computation messages or simply messages and are 
denoted by mi or m. The processes are denoted by 
Pi. The ith CI of a process denotes all the 
computation performed between its ith and (i+1)th 
checkpoint, including the ith checkpoint  but not 
the (i+1)th checkpoint.  
 A process Pi directly depends upon Pj 
only if there exist m such that: (i) Pi has processed 
m sent by Pj (ii) Pi has not taken any permanent 
checkpoint after processing m (iii) Pj has not taken 
any permanent checkpoint after sending m. Direct 
dependencies at Pi can be stored in a bit vector of 

length n for n processes [say ddvi[]]. ddvi[j]=1 
implies Pi is directly dependent upon Pj. In 
minimum-process coordinated checkpointing, if Pi 
takes its checkpoint and Pi is dependent upon Pj, 
then Pj should also take its checkpoint. Minimum 
set is the set of processes, which need to 
checkpoint in an initiation. A process is in the 
minimum set only if the initiator process is   
transitively dependent upon it. A process that 
initiates checkpointing is called initiator process or 
simply initiator. The minimum-process algorithms 
are generally based on keeping track of direct 
dependencies among processes and computing 
minimum set [38], [45]. 
 Once the system has rolled back to a 
consistent state, the nodes have to retrace their 
computation that was undone during the rollback. 
The following types of messages have to be 
handled while retracing the lost computation [48].  
• Orphan Messages: Messages whose reception 

has been recorded, but the record of their 
transmission has been lost. This situation 
arises when the sender node rolls back to a 
state prior to sending the message while the 
receiver node still has the record of its 
reception.     

• Lost Messages: Messages whose transmission 
has been recorded, but the record of their 
reception has been lost. This happens if the 
receiver rolls back to a state prior to the 
reception of the message, while the sender does 
not roll back to a state prior to their sending.  

• Duplicate Messages: This happens when more 
than one copy of the same message   arrives at a 
node; perhaps one corresponding to the original 
computation and one generated during recovery 
phase. If the first copy has been processed, all 
subsequent copies should be discarded.   

 In deterministic systems, if two processes start 
in the same state, and both receive the identical 
sequence of inputs, they will produce the 
identical sequence outputs and will finish in the 
same state. The state of a process is thus 
completely determined by its starting state and 
by sequence of messages it has received [31], 
[32].  

 Chandy-Lamport algorithm [19] works 
with FIFO channels only. If a message m1 
followed by m2 is sent from Pi to Pj, m1 reaches 
before m2 when the channels are FIFO. Advantage 
of a FIFO channel is that without explicitly 
sending any message sequence numbers with 
messages, it is possible to arrange the messages in 
a sequence. Non-FIFO channels necessitate 
headers with regular messages to ensure correct 
ordering of messages [53].  Headers should 
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contain sequence numbers of regular messages. 
The possibility of non-FIFO channel is justified in 
a distributed environment, since it is possible for 
messages to be routed through different channels 
and reach the destination out of order.  
 In a centralized algorithm like Chandy-
lamport [19], there is one node, which always 
initiates the checkpoints and coordinates the 
participating nodes. The disadvantage of a 
centralized algorithm is that all nodes have to 
initiate checkpoints whenever the centralized node 
decides to checkpoint. Nodes can be given 
autonomy in initiating checkpoints by allowing 
any node in the system to initiate checkpoints. 
Such a distributed checkpointing algorithm can 
initiate complete checkpointing [39] or selective 
checkpointing [36]. 
  
5. CONCLUSION 
 
 We have reviewed different approaches to 
rollback recovery with respect to a set of 
properties including performance overhead, 
storage over-head, ease of recovery, freedom from 
domino effect, freedom from orphan processes, 
and the extent of rollback. Checkpointing 
protocols require the processes to take periodic 
checkpoints with varying degrees of coordination. 
Coordinated checkpointing requires the processes 
to coordinate their checkpoints to form global 
consistent system states. Coordinated 
checkpointing generally simplifies recovery and 
garbage collection, and yields good performance 
in practice. At the other end of the spectrum, 
uncoordinated checkpointing does not require the 
processes to coordinate their checkpoints, but it 
suffers from potential domino effect, complicates 
recovery, and still requires coordination to perform 
output commit or garbage collection. Between 
these two ends are communication-induced 
checkpointing schemes that depend on the 
communication patterns of the applications to 
trigger checkpoints. These schemes do not suffer 
from the domino effect and do not require 
coordination. Recent studies, however, have 
shown that the non-deterministic nature of these 
protocols complicates garbage collection and 
degrades performance. Log-based rollback 
recovery is often a natural choice for applications 
that frequently interact with the outside world. It 
allows efficient output commit, and has three 
flavors, pessimistic, optimistic, and causal. This 
form of logging simplifies recovery, output 
commit, and protects surviving processes from 
having to roll back. These advantages have made 
pessimistic logging attractive in commercial 

environment where simplicity and robustness are 
necessary. Causal logging reduces the overhead 
while still preserving the properties of fast output 
commit and orphan-free recovery.  
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