
Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

269

IMPROVED SELECTION OPERATOR FOR GA

1Omar Al Jadaan, 2Lakishmi Rajamani, 3C. R. Rao
1 Dept. CSE, EC. Osmania University, Hyderabad 500-007, INDIA.

2 Prof, Dept. CSE, EC. Osmania University, Hyderabad 500-007, INDIA.
3 Prof., Department of CIS, University of Hyderabad, Hyderabad500-046, INDIA.

E-mail: o_jadaan@yahoo.com, Lakshmiraja@yahoo.com, crrcs@uohyd.ernet.in

ABSTRACT

Selection operator is one of the important aspects in the GA process. There are several ways for selection.
Some of them are Tournament selection, Ranking selection, and Proportional selection. There are many
ways for proportional selection. The most popular are Roulette Wheel Selection (RWS), Stochastic
Reminder Roulette Wheel Selection (SRRWS), and Stochastic Universal Sampling (SUS). In this paper a
modified RWS method is proposed to increase the gain of resources, reliability and diversity; and
decrease the uncertainty in selection process.
Keywords: Elitism, Genetic Algorithms, Selection, Optimization, Robust.

1. INTRODUCTION

John Holland proposed the first Genetic
Algorithm (GA) in 1975 [1], and GAs became
popularized by the publication of David
Goldberg’s book in 1989 [2]. Since that time,
GAs have been used in a wide range of
applications where optimization is needed. GAs
are evolved from evolutionary process and based
on evolutionary operators like selection, mutation
and crossover with the help of survival
characteristics through fitness for arriving at the
best solutions for specified problems. A modified
algorithm of RWS (named ranked based roulette
wheel selection RRWS) is presented in this paper.
It is faster and robust than RWS.
This paper is organized as follows: Section 2 is an
Introduction to GA, Section 3 presents Design of
GA with Ranked Based Roulette, Section 4
illustrates the experimental work, followed by
Section 5 which discusses the Results, and ends
with Section 6 the Conclusions.

2. AN INTRODUCTION TO GA

Genetic Algorithms are among several types of
optimization methods that use a stochastic
approach to randomly search for good solutions to
a specified problem, including Simulated
Annealing [3], Tabu search [4], and numerous
variations. These stochastic approaches use
various analogies to natural systems to build from

promising solutions, ensuring greater efficiency
than completely random search. The advantage of
using these types of approaches over traditional
optimization methods, such as nonlinear
programming, is that they can solve any type of
problem without explicit specifications of
problem characteristics (e.g. derivatives of the
objective function). This property is particularly
important for complex applications, where the
optimization problem often involves integer
decision variables or potential solutions that must
be evaluated with complex existing simulation
models, where derivative calculations would be
difficult or impossible. Stochastic approaches also
perform broad global search, unlike traditional
nonlinear optimization approaches such as
nonlinear programming that can converge to local
minima in multimodal optimization problems.
These benefits have resulted in widespread use
and acceptance of these approaches among the
researchers. The disadvantages of these
approaches are that they are not guaranteed to find
the globally optimal solution and they can be
substantially slower than traditional optimization
methods for problems that can be solved using
traditional approaches. Therefore, they
recommend the use of these methods only for
problems that cannot be effectively solved using
traditional optimization approaches, such as those
with numerous integer decision variables, non-
convexities, or other irregularities. When applied
to such problems, these algorithms have

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

270

demonstrated to find substantially better solutions
than could be found using traditional search
algorithms. Numerous types and variations of
genetic algorithms exist, but this paper will
provide details of the most widely used approach
called the binary simple genetic algorithm (SGA).
The basic operations of an SGA, First, the
decision variables are encoded into binary form,
called a “chromosome” (or sometimes “string”)
because it gives the genetic encoding (“genes” or
“bits”) describing each potential solution. Next,
an initial “population” of potential solutions is
created, usually by filling a set of chromosomes
(population “members”/“individuals”) with
random initial values. Each member of the
population is then evaluated to see how well it
performs (i.e., its “fitness”) with respect to the
user-specified objective function and constraints
(“fitness function”). Then the population is
transformed into a new population (the next
“generation”) using three primary operations:
selection, crossover, and mutation. A fourth
operator, elitism, is also usually included to
ensure that good solutions are not lost from one
generation to the next. This transformation
process from one generation to the next continues
until the population converges to the optimal
solution, which usually occurs when a certain
percentage of the population (e.g., 90%) has the
same optimal chromosome. For more details on
the GA process can be found in Goldberg [2].

A. Selection (or Reproduction)

The selection operator involves randomly
choosing members of the population to enter a
mating pool. The operator is carefully formulated
to ensure that better members of the population
(with higher fitness) have a greater probability of
being selected for mating, but that worse members
of the population still have a small probability of
being selected. Having some probability of
choosing worse members is important to ensure
that the search process is global and does not
simply converge to the nearest local optimum.
Selection is one of the important aspects of the
GA process, and there are several ways for the
selection: some of these are Tournament
selection, Ranking selection, and Proportional
selection. In the proportional selection a string is
selected for the mating with a probability
proportional to its fitness. There are many ways of
proportional selection: the most popular are
Roulette Wheel Selection (RWS), Stochastic
Reminder Roulette Wheel Selection (SRRWS),
and Stochastic Universal Sampling (SUS).

B. Crossover

Crossover creates a new individual's
representation from parts of its parent’s
representations. During crossover, pairs of
chromosomes (parents) are randomly selected
from the mating population. With a user-specified
crossover probability, Pc, genes from one parent
chromosome are swapped with corresponding
genes on the other parent chromosome to create
two children. When the swap does not occur
(probability 1- Pc), the two parents are transferred
to the child population unchanged. In multi-point
crossover, multiple locations on the chromosome
are selected for gene exchange, each with
probability Pc. The highest amount of exchange
occurs during uniform crossover, where every
gene has a probability Pc of being exchanged with
its corresponding gene on the other parent
chromosome.

C. Mutation

Mutation is a genetic operator used to maintain
genetic diversity from one generation of a
population of chromosomes to the next. It is
analogous to biological mutation. Once the
children are created during crossover, the
mutation operator is applied to each child. Each
gene has a user-specified mutation probability,
Pm, of being mutated. In binary mutation, a value
of 0 converted to a value of 1, or vice versa.

D. Elitism

Elitism involves replacing worst chromosomes
in the children population with the best members
of the parent population. This operator has proved
to increase the speed of convergence of the GA
because it ensures that the best solution found in
each generation is retained. While this operator
could be applied more broadly (e.g. retaining the
2 or 3 best solutions or 10% - 20% of the
population size) overuse of it can lead to
premature convergence to the incorrect solution.
Next section will be design of the GA with
Ranked based Roulette Wheel.

3. DESIGN OF THE GA WITH RANKED

BASED ROULETTE WHEEL

Let us first explain how Roulette wheel
selection method.

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

271

1) Roulette Wheel Selection

Roulette wheel probabilistically selects
individuals based on their fitness values Fi. A
real-valued interval, S, is determined as either the
sum of the individuals expected selection

probabilities S =∑Pi, where
∑

=
Fi

Fi Pi or the

sum of the raw fitness values S=∑Fi over all the
individuals in the current population. Individuals
are then mapped one-to-one into contiguous
intervals in the range [0, S]. The size of each
individual interval corresponds to the fitness value
of the associated individual. The circumference of
the roulette wheel is the sum of all fitness values
of the individuals. The fittest individual occupies
the largest interval, whereas the least fit have
correspondingly smaller intervals within the
roulette wheel. To select an individual, a random
number is generated in the interval [0, S] and the
individual whose segment spans the random
number is selected. This process is repeated until
the desired number of individuals has been
selected.

2) Ranked Based Roulette Wheel Selection

This paper uses modified roulette wheel
selection algorithm where each individual is
assigned a fitness value equal to its rank in the
population: the highest rank has the highest
probability to be selected. The probability is
calculated as illustrated in the following equation:

1)(N_Pop *N_Pop
Rank* 2

+
=Pi

4. EXPERIMENTAL WORK

In this paper, Matlab code has been developed
to assess the performance of the ranked roulette
wheel selection GA in contrast with the classical
roulette wheel selection GA. It considers standard
test functions for illustrative proposes.

The study of ranked roulette wheel selection
GA is confined to a single point crossover with
probability Pc =1.00, binary mutation with

probability
⎭
⎬
⎫

⎩
⎨
⎧

sizePopL
Max

_
1,1

, population

size Pop_size=1.4L, and number of generations
N_gen=2L, where L is the length of the
chromosome. The same specifications are used

for roulette wheel selection GA with only one
different parameter: the roulette wheel selection
operator is used. Next section discusses the
results.

5. RESULTS

This section presents the results of the
comparison between applying the roulette wheel
selection GA and ranked based roulette wheel
selection GA, by applying them on eight test
functions from the GA literature, see table 1.
In this paper, all the results have been gathered by
applying the RWS GA and RRWS GA on the test
functions, each function with 10 variables, each
of them encoded with 10 bits. All the graphs and
tables are in appendix A. The graphs X-1and X-2
for each test function are for a single run, and the
graphs from X-3 to X-12 for each test function
are for 100 runs. During those runs, the best
values and mean ones as well as average values
are collected and the performance graphs are
plotted using STD 1.96 mean ± and,

STD 3 mean ± , Where STD is the standard
deviation.
We will discuss two test functions out of eight
because of the space limitation, for more
information contacts the authors. Figure 1.1
shows the best, average and poorest results of
single run for RWS GA; while figure 1.2 shows
the best, average and poorest results of single run
for RRWS GA. From the figures, the RRWS
steadily converging close to the optimum solution
in both best and average graphs whereas the
fluctuation is bigger in both the best and average
RWS graphs. RRWS hits the optimum value at
generation 30 whereas RWS does not hit it. This
means the number of trials required to converge
to the optimum solution in RRWS is smaller than
RWS number. This means by using RRWS GA
the average resource saving is 170/200 ≈ 85%.
Table 2 explains the first hit of the optimum
solution for both (RWS and RRWS). From
Table 2, RRWS GA solutions dominate RWS GA
solutions. From figure 1.3, mean of RRWS GA
(ranking) hits the optimum value at generation 40
whereas the RWS GA hits it at generation 180.
This means that the number of trials required to
converge to the optimum solution in RRWS is
smaller than RWS number. This means by using
RRWS GA the average resource saving is
140/180 ≈ 78%. Table 3 explains the first hit of
the optimum solution for both (RWS and RRWS)
and the average resource saving for the remaining
test functions. From Table 3, RRWS GA succeeds
88% (seven out of eight succeeds) in reaching the

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

272

optimum solution. From figure 1.4 RRWS GA
hits the zero value deviation at generation 50
whereas RWS GA hits it at generation 200. This
means that the RRWS GA captures the optimal
solution earlier than RWS GA, which, using
RRWS GA, indicates that the average resource
saving is 150/200 ≈ 75%. Table 4 explains the
first hit of the zero deviation value for both (RWS
and RRWS) and the average resource saving for
the remaining test functions. From Table 4,
RRWS GA succeeds 62.5% (five out of eight
succeeds) in reaching the zero deviation value.
Figures 1.5 and 1.6 show the performance graphs
of RWS and RRWS (by
drawing STD 1.96 mean ±) where the RRWS
graphs are fit to one graph at generation 40
whereas in RWS graphs do not fit up to 200
generation. This means that 95% of the values
(solutions) are close to the optimum solution. And
this indicates that RRWS is faster in getting
closer to the optimum value than RWS in
160/200 ≈ 80%.

Table 5 depicts this for the remaining test
functions From Table 5, RRWS GA succeeds
62.5% (five out of eight succeeds) outperforming
RWS. Figures 1.7 and 1.8 show the 95%
performance graph of average values of RWS and
RRWS (by drawing STD 1.96 mean ±). The
band created by RRWS is narrower than the band
created by RWS, which implies that the
fluctuation of RRWS is less than that of RWS.
RWS is more uncertain than RRWS; and this is
applicable to all the performance graphs of the
remaining test functions. Figures 1.9 and 1.10
show the performance graph of RWS and RRWS
(by drawing STD 3 mean ±) where the RRWS
are fit to one graph at generation 60 whereas in
RWS graphs do not fit up to 200 generation. This
means that 99% of the values (solutions) close to
the optimum solution, which indicate that RRWS
is faster in getting closer to the optimum value
than RWS in 140/200 ≈ 70%. Table 6 displays
this for the remaining test functions. From
Table 6, RRWS GA succeeds 62.5% (five out of
eight succeeds) outperforming RWS.

Figures 1.11 and 1.12 show the 99%
performance graph of average values of RWS and
RRWS (by drawing STD 3 mean ±). The band
created by RRWS is narrower than the band
created by RWS, which implies that the
fluctuation of RRWS is less than that of RWS.
RRWS is more reliable than RWS, and this is
applicable to all the remaining test functions
graphs. In a general overview of all the graphs,
RRWS graphs looked more stable than RWS

graphs. Next section ends up with the
conclusions.

6. CONCLUSIONS

Roulette wheel selection is easy to implement
and mimics nature more faithfully and therefore is
much more appealing. But it is slower than the
ranked based roulette wheel selection in
convergence to near the optimum solution. If
good solution is discovered early, its fitness value
dominates other fitness values. Then it will
occupy majority portions of the mating pool. This
will reduce the diversity in the mating pool and
cause the GAs to converge to wrong solutions.
Ranked roulette wheel selection overcomes this
problem and increases the diversity. By using
RRWS the GA becomes steadier and faster
towards the optimum solutions than RWS.

RRWS is outperforming the conventional RWS
in convergence, time, reliability, certainty, and
more robustness. GA can help find very good
solutions to difficult real-world problems.

REFERENCES

[1] Holland, J. H., Adaptation in Natural and

Artificial Systems, University of Michigan
Press, Ann Arbor, MI, 1975.

[2] Goldberg, D. E., Genetic Algorithms in

Search, Optimization, and Machine Learning,
Addison-Wesley, New York, NY, 1989.

[3] Aarts, E. and Korst, J. Simulated Annealing

and Boltzmann Machines: A Stochastic
Approach to Combinatorial Optimization and
Neural Computing, Wiley. Chichester 1989

[4] Glover, F., Future Paths for integer

programming and links to artificial
intelligence, Comp.and Operations Res., 5,
533-549, 1986.

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

273

APPENDIX A

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

274

Objfun1

0 20 40 60 80 100 120 140 160 180 200
-250

-200

-150

-100

-50

0

Generations

Fi
tn

es
s Best

Average
Poorest

RWS

Figure 1.1

0 20 40 60 80 100 120 140 160 180 200
-180

-160

-140

-120

-100

-80

-60

-40

-20

0

Generations

Fi
tn

es
s

Best
Average
Poorest

RRWS

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 1.6

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

275

Figure 1.7

Figure 1.8

Figure 1.9

 Figure 1.10

Figure 1.11

Figure 1.12

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

276

Objfun8

0 20 40 60 80 100 120 140 160 180 200
-900

-800

-700

-600

-500

-400

-300

-200

-100

0

Generations

Fi
tn

es
s

Best
Average
Poorest

RWS

Figure 8.1

0 20 40 60 80 100 120 140 160 180 200
-500

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

Generations

Fi
tn

es
s

Best
Average
Poorest

RRWS

Figure 8.2

Figure 8.3

Figure 8.4

Figure 8.5

Figure 8.6

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

277

Figure 8.7

Figure 8.8

Figure 8.9

Figure 8.10

Figure 8.11

Figure 8.12

