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ABSTRACT 
 

Selection operator is one of the important aspects in the GA process. There are several ways for selection. 
Some of them are Tournament selection, Ranking selection, and Proportional selection. There are many 
ways for proportional selection. The most popular are Roulette Wheel Selection (RWS), Stochastic 
Reminder Roulette Wheel Selection (SRRWS), and Stochastic Universal Sampling (SUS). In this paper a 
modified RWS method is proposed to increase the gain of resources, reliability and diversity; and 
decrease the uncertainty in selection process. 
Keywords: Elitism, Genetic Algorithms, Selection, Optimization, Robust. 
 
1. INTRODUCTION  
 

John Holland proposed the first Genetic 
Algorithm (GA) in 1975 [1], and GAs became 
popularized by the publication of David 
Goldberg’s book in 1989 [2]. Since that time, 
GAs have been used in a wide range of 
applications where optimization is needed. GAs 
are evolved from evolutionary process and based 
on evolutionary operators like selection, mutation 
and crossover with the help of survival 
characteristics through fitness for arriving at the 
best solutions for specified problems. A modified 
algorithm of RWS (named ranked based roulette 
wheel selection RRWS) is presented in this paper. 
It is faster and robust than RWS. 
This paper is organized as follows: Section 2 is an 
Introduction to GA, Section 3 presents Design of 
GA with Ranked Based Roulette, Section 4 
illustrates the experimental work, followed by 
Section 5 which discusses the Results, and ends 
with Section 6 the Conclusions. 
 
2. AN INTRODUCTION TO GA 
 

Genetic Algorithms are among several types of 
optimization methods that use a stochastic 
approach to randomly search for good solutions to 
a specified problem, including Simulated 
Annealing [3], Tabu search [4], and numerous 
variations. These stochastic approaches use 
various analogies to natural systems to build from 

promising solutions, ensuring greater efficiency 
than completely random search. The advantage of 
using these types of approaches over traditional 
optimization methods, such as nonlinear 
programming, is that they can solve any type of 
problem without explicit specifications of 
problem characteristics (e.g. derivatives of the 
objective function). This property is particularly 
important for complex applications, where the 
optimization problem often involves integer 
decision variables or potential solutions that must 
be evaluated with complex existing simulation 
models, where derivative calculations would be 
difficult or impossible. Stochastic approaches also 
perform broad global search, unlike traditional 
nonlinear optimization approaches such as 
nonlinear programming that can converge to local 
minima in multimodal optimization problems. 
These benefits have resulted in widespread use 
and acceptance of these approaches among the 
researchers. The disadvantages of these 
approaches are that they are not guaranteed to find 
the globally optimal solution and they can be 
substantially slower than traditional optimization 
methods for problems that can be solved using 
traditional approaches. Therefore, they 
recommend the use of these methods only for 
problems that cannot be effectively solved using 
traditional optimization approaches, such as those 
with numerous integer decision variables, non-
convexities, or other irregularities. When applied 
to such problems, these algorithms have 
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demonstrated to find substantially better solutions 
than could be found using traditional search 
algorithms. Numerous types and variations of 
genetic algorithms exist, but this paper will 
provide details of the most widely used approach 
called the binary simple genetic algorithm (SGA). 
The basic operations of an SGA, First, the 
decision variables are encoded into binary form, 
called a “chromosome” (or sometimes “string”) 
because it gives the genetic encoding (“genes” or 
“bits”) describing each potential solution. Next, 
an initial “population” of potential solutions is 
created, usually by filling a set of chromosomes 
(population “members”/“individuals”) with 
random initial values. Each member of the 
population is then evaluated to see how well it 
performs (i.e., its “fitness”) with respect to the 
user-specified objective function and constraints 
(“fitness function”). Then the population is 
transformed into a new population (the next 
“generation”) using three primary operations: 
selection, crossover, and mutation. A fourth 
operator, elitism, is also usually included to 
ensure that good solutions are not lost from one 
generation to the next. This transformation 
process from one generation to the next continues 
until the population converges to the optimal 
solution, which usually occurs when a certain 
percentage of the population (e.g., 90%) has the 
same optimal chromosome. For more details on 
the GA process can be found in Goldberg [2]. 
 
A. Selection (or Reproduction) 
 

The selection operator involves randomly 
choosing members of the population to enter a 
mating pool. The operator is carefully formulated 
to ensure that better members of the population 
(with higher fitness) have a greater probability of 
being selected for mating, but that worse members 
of the population still have a small probability of 
being selected. Having some probability of 
choosing worse members is important to ensure 
that the search process is global and does not 
simply converge to the nearest local optimum. 
Selection is one of the important aspects of the 
GA process, and there are several ways for the 
selection: some of these are Tournament 
selection, Ranking selection, and Proportional 
selection. In the proportional selection a string is 
selected for the mating with a probability 
proportional to its fitness. There are many ways of 
proportional selection: the most popular are 
Roulette Wheel Selection (RWS), Stochastic 
Reminder Roulette Wheel Selection (SRRWS), 
and Stochastic Universal Sampling (SUS). 

 
 
B. Crossover 
 

Crossover creates a new individual's 
representation from parts of its parent’s 
representations. During crossover, pairs of 
chromosomes (parents) are randomly selected 
from the mating population. With a user-specified 
crossover probability, Pc, genes from one parent 
chromosome are swapped with corresponding 
genes on the other parent chromosome to create 
two children. When the swap does not occur 
(probability 1- Pc), the two parents are transferred 
to the child population unchanged. In multi-point 
crossover, multiple locations on the chromosome 
are selected for gene exchange, each with 
probability Pc. The highest amount of exchange 
occurs during uniform crossover, where every 
gene has a probability Pc of being exchanged with 
its corresponding gene on the other parent 
chromosome. 
 
C. Mutation 
 

Mutation is a genetic operator used to maintain 
genetic diversity from one generation of a 
population of chromosomes to the next. It is 
analogous to biological mutation. Once the 
children are created during crossover, the 
mutation operator is applied to each child. Each 
gene has a user-specified mutation probability, 
Pm, of being mutated. In binary mutation, a value 
of 0 converted to a value of 1, or vice versa. 
 
D. Elitism 
 

Elitism involves replacing worst chromosomes 
in the children population with the best members 
of the parent population. This operator has proved 
to increase the speed of convergence of the GA 
because it ensures that the best solution found in 
each generation is retained. While this operator 
could be applied more broadly (e.g. retaining the 
2 or 3 best solutions or 10% - 20% of the 
population size) overuse of it can lead to 
premature convergence to the incorrect solution. 
Next section will be design of the GA with 
Ranked based Roulette Wheel. 
 
3. DESIGN OF THE GA WITH RANKED 

BASED ROULETTE WHEEL 
 

Let us first explain how Roulette wheel 
selection method.  
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1) Roulette Wheel Selection 
 

Roulette wheel probabilistically selects 
individuals based on their fitness values Fi. A 
real-valued interval, S, is determined as either the 
sum of the individuals expected selection 

probabilities S =∑Pi, where 
∑

=
Fi

Fi Pi or the 

sum of the raw fitness values S=∑Fi over all the 
individuals in the current population. Individuals 
are then mapped one-to-one into contiguous 
intervals in the range [0, S]. The size of each 
individual interval corresponds to the fitness value 
of the associated individual. The circumference of 
the roulette wheel is the sum of all fitness values 
of the individuals. The fittest individual occupies 
the largest interval, whereas the least fit have 
correspondingly smaller intervals within the 
roulette wheel. To select an individual, a random 
number is generated in the interval [0, S] and the 
individual whose segment spans the random 
number is selected. This process is repeated until 
the desired number of individuals has been 
selected.  
 
2) Ranked Based Roulette Wheel Selection 
 

This paper uses modified roulette wheel 
selection algorithm where each individual is 
assigned a fitness value equal to its rank in the 
population: the highest rank has the highest 
probability to be selected. The probability is 
calculated as illustrated in the following equation:  

1)(N_Pop *N_Pop 
Rank* 2

+
=Pi  

 
4. EXPERIMENTAL WORK 
 

In this paper, Matlab code has been developed 
to assess the performance of the ranked roulette 
wheel selection GA in contrast with the classical 
roulette wheel selection GA. It considers standard 
test functions for illustrative proposes.  

The study of ranked roulette wheel selection 
GA is confined to a single point crossover with 
probability Pc =1.00, binary mutation with 

probability 
⎭
⎬
⎫

⎩
⎨
⎧

sizePopL
Max

_
1,1

, population 

size Pop_size=1.4L, and number of generations 
N_gen=2L, where L is the length of the 
chromosome. The same specifications are used 

for roulette wheel selection GA with only one 
different parameter: the roulette wheel selection 
operator is used. Next section discusses the 
results.  
 
5. RESULTS 
 

This section presents the results of the 
comparison between applying the roulette wheel 
selection GA and ranked based roulette wheel 
selection GA, by applying them on eight test 
functions from the GA literature, see table 1. 
In this paper, all the results have been gathered by 
applying the RWS GA and RRWS GA on the test 
functions, each function with 10 variables, each 
of them encoded with 10 bits. All the graphs and 
tables are in appendix A. The graphs X-1and X-2 
for each test function are for a single run, and the 
graphs from X-3 to X-12 for each test function 
are for 100 runs. During those runs, the best 
values and mean ones as well as average values 
are collected and the performance graphs are 
plotted using STD 1.96 mean ± and, 

STD 3 mean ± , Where STD is the standard 
deviation. 
We will discuss two test functions out of eight 
because of the space limitation, for more 
information contacts the authors. Figure 1.1 
shows the best, average and poorest results of 
single run for RWS GA; while figure 1.2 shows 
the best, average and poorest results of single run 
for RRWS GA. From the figures, the RRWS 
steadily converging close to the optimum solution 
in both best and average graphs whereas the 
fluctuation is bigger in both the best and average 
RWS graphs. RRWS hits the optimum value at 
generation 30 whereas RWS does not hit it. This 
means the number of trials required to converge 
to the optimum solution in RRWS is smaller than 
RWS number. This means by using RRWS GA 
the average resource saving is 170/200 ≈ 85%. 
Table 2 explains the first hit of the optimum 
solution for both (RWS and RRWS). From  
Table 2, RRWS GA solutions dominate RWS GA 
solutions. From figure 1.3, mean of RRWS GA 
(ranking) hits the optimum value at generation 40 
whereas the RWS GA hits it at generation 180. 
This means that the number of trials required to 
converge to the optimum solution in RRWS is  
smaller than RWS number. This means by using 
RRWS GA the average resource saving is 
140/180 ≈ 78%. Table 3 explains the first hit of 
the optimum solution for both (RWS and RRWS) 
and the average resource saving for the remaining 
test functions. From Table 3, RRWS GA succeeds 
88% (seven out of eight succeeds) in reaching the 
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optimum solution. From figure 1.4 RRWS GA 
hits the zero value deviation at generation 50 
whereas RWS GA hits it at generation 200. This 
means that the RRWS GA captures the optimal 
solution earlier than RWS GA, which, using 
RRWS GA, indicates that the average resource 
saving is 150/200 ≈ 75%. Table 4 explains the 
first hit of the zero deviation value for both (RWS 
and RRWS) and the average resource saving for 
the remaining test functions. From Table 4, 
RRWS GA succeeds 62.5% (five out of eight 
succeeds) in reaching the zero deviation value. 
Figures 1.5 and 1.6 show the performance graphs 
of RWS and RRWS (by 
drawing STD 1.96 mean ± ) where the RRWS 
graphs are fit to one graph at generation 40 
whereas in RWS graphs do not fit up to 200 
generation. This means that 95% of the values 
(solutions) are close to the optimum solution. And 
this indicates that RRWS is faster in getting 
closer to the optimum value than RWS in  
160/200 ≈ 80%.  

Table 5 depicts this for the remaining test 
functions From Table 5, RRWS GA succeeds 
62.5% (five out of eight succeeds) outperforming 
RWS. Figures 1.7 and 1.8 show the 95% 
performance graph of average values of RWS and 
RRWS (by drawing STD 1.96 mean ± ). The 
band created by RRWS is narrower than the band 
created by RWS, which implies that the 
fluctuation of RRWS is less than that of RWS. 
RWS is more uncertain than RRWS; and this is 
applicable to all the performance graphs of the 
remaining test functions. Figures 1.9 and 1.10 
show the performance graph of RWS and RRWS 
(by drawing STD 3 mean ± ) where the RRWS 
are fit to one graph at generation 60 whereas in 
RWS graphs do not fit up to 200 generation. This 
means that 99% of the values (solutions) close to 
the optimum solution, which indicate that RRWS 
is faster in getting closer to the optimum value 
than RWS in 140/200 ≈ 70%. Table 6 displays 
this for the remaining test functions. From  
Table 6, RRWS GA succeeds 62.5% (five out of 
eight succeeds) outperforming RWS. 

Figures 1.11 and 1.12 show the 99% 
performance graph of average values of RWS and 
RRWS (by drawing STD 3 mean ± ). The band 
created by RRWS is narrower than the band 
created by RWS, which implies that the 
fluctuation of RRWS is less than that of RWS. 
RRWS is more reliable than RWS, and this is 
applicable to all the remaining test functions 
graphs. In a general overview of all the graphs, 
RRWS graphs looked more stable than RWS 

graphs. Next section ends up with the 
conclusions. 

 
6. CONCLUSIONS 
 

Roulette wheel selection is easy to implement 
and mimics nature more faithfully and therefore is 
much more appealing. But it is slower than the 
ranked based roulette wheel selection in 
convergence to near the optimum solution. If 
good solution is discovered early, its fitness value 
dominates other fitness values. Then it will 
occupy majority portions of the mating pool. This 
will reduce the diversity in the mating pool and 
cause the GAs to converge to wrong solutions. 
Ranked roulette wheel selection overcomes this 
problem and increases the diversity. By using 
RRWS the GA becomes steadier and faster 
towards the optimum solutions than RWS.  

RRWS is outperforming the conventional RWS 
in convergence, time, reliability, certainty, and 
more robustness. GA can help find very good 
solutions to difficult real-world problems.  
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APPENDIX A 
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Table 2 
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Table 4 
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