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ABSTRACT 
 

This paper presents an algorithm for solving optimal power flow problem through the application of 
Differential Evolution (DE). The objective is to minimize the total fuel cost of thermal generating units 
having quadratic cost characteristics subjected to limits on generator real and reactive power outputs, bus 
voltages, transformer taps and power flow of transmission lines. The proposed method has been tested 
under simulated conditions on IEEE 30-bus system .The optimal power flow results obtained using DE 
are compared with other evolutionary methods. It is shown that DE total generation fuel cost is less 
expensive than those of evolutionary programming, tabu search, hybrid tabu search, and simulated 
annealing. 
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1. INTRODUCTION  
 

Evolutionary Algorithms (EAs) are optimization 
techniques based on the concept of a population of 
individuals that evolve and improve their fitness 
through probabilistic operators like recombination 
and mutation. These individuals are evaluated and 
those that perform better are selected to compose 
the population in the next generation. After several 
generations these individuals improve their fitness 
as they explore the solution space for optimal 
value. The field of evolutionary computation has 
experienced significant growth in the optimization 
area. These algorithms are capable of solving 
complex optimization problems such as those with 
a non-continuous, non-convex and highly 
nonlinear solution space. In addition, they can 
solve problem that feature discrete or binary 
variables, which are extremely difficult. 

Several algorithms have been developed within 
the field of Evolutionary Computation (EC) being 
the most studied Genetic Algorithms were first 
conceived in the 1960’s when Evolutionary 
Computation started to get attention. Recently, the 
success achieved by EAs in the solution of 
complex problems and the improvement made in 
computation such as parallel computation have 

stimulated the development of new algorithms like 
Differential Evolution (DE), Particle Swarm 
Optimization (PSO), Ant Colony Optimization 
(ACO) and scatter search present great 
convergence characteristics and capability of 
determining global optima. Evolutionary 
algorithms have been successfully applied to many 
optimization problems within the power systems 
area and to the economic dispatch problem in 
particular [1-18]. 

 
2. OVERVIEW OF DIFFERENTIAL 
EVOLUTION  

 
One extremely powerful algorithm from 

evolutionary computation due to it’s excellent 
convergence characteristics and few control 
parameters is differential evolution. Differential 
evolution solves real valued problems based on the 
principles of natural evolution [11-15] using a 
population P of Np  floating point-encoded 
individuals (1) that evolve over G generations to 
reach an optimal solution. In differential 
Evolution, the population size remains constant 
throughout the optimization process. Each 
individual or candidate solution is a vector that 
contains as many parameters (2) as the problem 
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decision variables D.  The basic strategy employs 
the difference of two randomly selected parameter 
vectors as the source of random variations for a 
third parameter vector. In the following, we 
present a more rigorous description of this new 
optimization method. 
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Extracting distance and direction information 

from the population to generate random deviations 
result in an adaptive scheme with excellent 
convergence properties. Differential Evolution 
creates new offsprings by generating a noisy 
replica of each individual of the population. The 
individual that performs better from the parent 
vector (target) and replica (trail vector) advances 
to the next generation. 

This optimization process is carried out with 
three basic operations: 

• Mutation 
• Cross over 
• Selection 

First, the mutation operation creates mutant 
vectors by perturbing each target vector with the 
weighted difference of the two other individuals 
selected randomly. Then, the cross over operation 
generates trail vectors by mixing the parameters of 
the mutant vectors with the target vectors, 
according to a selected probability distribution. 
Finally, the selection operator forms the next 
generation population by selecting between the 
trial vector and the corresponding target vectors 
those that fit better the objective function. 

 
3.  DE OPTIMIZATION PROCESS  

A. Initialization 
The first step in the DE optimization process is to 
create an initial population of candidate solutions 
by assigning random values to each decision 
parameter of each individual of the population. 
Such values must lie inside the feasible bounds of 
the decision variable and can be generated by Eq. 
(3). In case a preliminary solution is available, 
adding normally distributed random deviations to 
the nominal solution often generates the initial 
population. 

)( minmaxmin)0(
, jjjjji YYYY −+= η                   (3) 

i  = 1,2,………. Np     , j = 1,2,………. D  

Where min
jY and max

jY  are respectively, the 

lower and upper bound of the j th decision 

parameter and jη  is a uniformly distributed 

random number within [0,1] generated anew for 
each value of j . 

B. Mutation 
After the population is initialized, this evolves 

through the operators of mutation, cross over and 
selection.  For crossover and mutation different 
types of strategies are in use. Basic scheme is 
explained here elaborately. The mutation operator 
is incharge of introducing new parameters into the 
population. To achieve this, the mutation operator 
creates mutant vectors by perturbing a randomly 
selected vector ( aY ) with the difference of two 

other randomly selected vectors ( bY and cY ) 
according Eq. (4). All of these vectors must be 
different from each other, requiring the population 
to be of at least four individuals to satisfy this 
condition. To control the perturbation and improve 
convergence, the difference vector is scaled by a 
user defined constant in the range [0, 1.2]. This 
constant is commonly known as the scaling 
constant ( S ). 
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Where cba YYY ,, , are randomly chosen vectors 

{ }Np,.........2,1∈  and icba ≠≠≠  

cba YYY ,,  are generated anew for each parent 

vector, S  is the scaling constant. For certain 
problems, it is considered ia = . 

C. Crossover 
The crossover operator creates the trial vectors, 

which are used in the selection process. A trail 
vector is a combination of a mutant vector and a 
parent (target) vector based on different 
distributions like uniform distribution, binomial 
distribution, exponential distribution is generated 
in the range [0, 1] and compared against a user 
defined constant referred to as the crossover 
constant. If the value of the random number is less 
or equal than the value of the crossover constant, 
the parameter will come from the mutant vector, 
otherwise the parameter comes from the parent 
vector as given in Eq. (5). 
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The crossover operation maintains diversity in 
the population, preventing local minima 
convergence. The crossover constant (CR ) must 
be in the range of [0, 1]. A crossover constant of 
one means the trial vector will be composed 
entirely of mutant vector parameters. A crossover 
constant near zero results in more probability of 
having parameters from the target vector in the 
trial vector. A randomly chosen parameter from 
the mutant vector is always selected to ensure that 
the trail vector gets at least one parameter from the 
mutant vector even if the crossover constant is set 
to zero. 
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Where         i = 1, 2, ……… Np  
                   j = 1, 2, ……… D  
q  is a randomly chosen index 

{ }D..,.........2,1∈  that guarantees that the trial 
vector gets at least one parameter from the mutant 
vector; '

jη  is a uniformly distributed random 

number within [0, 1) generated anew for each 
value of j .  )(

,
G
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vector. 
Another type of crossover scheme is mentioned 

in [11]. 
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Where the acute brackets 
D

denote the 

modulo function with modulus D. The starting 
index n is a randomly chosen integer from the 
interval [0, D-1]. The integer L is drawn from 
interval [0, D-1] with the probability Pr (L=v) = 
(CR) v. ]1,0[∈CR  is the crossover probability 
and constitutes a control variable for the DE 
scheme. The random decisions for both n and L 
are made anew for each trial vector. 

 

D. Selection 
The selection operator chooses the vectors that 

are going to compose the population in the next 
generation. This operator compares the fitness of 

the trial vector and fitness of the corresponding 
target vector, and selects the one that performs 
better as mentioned in Eq. (6). 
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The selection process is repeated for each pair 

of target/ trail vector until the population for the 
next generation is complete. 

 
4. APPLICATION OF DE TO OPF 

 
Differential Evolution has been applied to 

problems from several areas. Some power 
engineering problems have been solved with DE 
including: Distribution systems capacitors 
placement, harmonics voltage distribution 
reduction and passive shunt harmonic filter 
planning. DE has also been used in the design of 
filters, neural network learning, fuzzy logic 
application, and optimal control problems, among 
others. 

The objective function of OPF 
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Subjected to the constraints   
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where g  is the equality constraints and 
represent typical load flow equations. 

h  is the system operating constraints  

E. Dependent Variables 
X  is the vector of dependent variables 

consisting of slack bus power 1GP , load bus 

voltages LV , generator reactive power outputs 

GQ , and transmission line loadings lS . Hence, 

X can be expressed as 
TX =[ lGLG SQVP ,,,1 ]                      (10)   

 i.e., 
],....,,......,,....,[ 1111 NlllNgGGNpqLLG

T SSQQVVPX =

where NlNgNpq ,,  are number of load buses, 
number of generators, and number of transmission 
lines, respectively. 
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F. Independent Variables 
U  is the vector of independent variables 

consisting of generator voltages GV , generator real 

power outputs GP , except at the slack bus 1GP , 

and transformer tap settings T. Hence, U  can be 
expressed as          

 =U  ],,[ TPV GG                             (11)  
i.e.,

],.........,.........,....,.........[ 121 NtNgGGNgGG
T TTPPVVu =

 where Nt is the number of the regulating 
transformers. 

G. Initialization 
The first step in this algorithm is to create an 

initial population. All the independent variables 
],,[ TPV GG  have to be generated according to 

formula (3), where each independent parameter of 
each individual in the population is assigned a 
value inside the given feasible region of the 
generator. This creates parent vectors of 
independent variables for the first generation. As 
they have created within their limits, they readily 
satisfy the corresponding inequality constraints. To 
find dependent variables TX = [ lGLG SQVP ,,,1 ] 

corresponding to each individual, Newton-
Raphson power flow solution is implemented.  

After getting all vectors corresponding to 
dependent variables, constraint-handling method 
of penalty functions is applied to handle the 
inequality constraints related to dependent 
variables. Penalty factors corresponding to each 
dependent variable of each individual in 
population have to be calculated. If they violate a 
limit whether lower or upper, difference of that 
value and corresponding limit violated was taken 
as penalty index and it is multiplied with a 
constant so as to match with basic objective 
function i.e., fuel cost.  

The penalty functions for slack bus power, 
voltages of load buses, line flows and reactive 
power generations are considered to calculate 
fitness of each population member. Fitness 
includes fuel cost function and also penalties 
corresponding to dependent variables. Inclusion of 
these penalties in fitness gives us a great 
opportunity to assign better fitness to that 
particular population member whose control 
parameters are within the operational limits in 
addition to minimum fuel cost.   

)*4()*3()*2()*1(

1

1
,

1
,

1
, ∑∑∑

===

++++
=

Nl

i
ip

Npq

i
iP

Ng

i
iPPCOST

P

LFpfkVpfkQgpfkSpfkF
Fit

                                                                           (12) 
where  
 
Slack bus penalty     Spf→        

Line flows penalty     Lfpf→  

GQ  Penalty      Qgpf→  

Voltage penalty     Vpf→  
 

5. DE IMPLEMENTATION RESULTS 
 
The suitability of the proposed method has been 

tested for IEEE-30 bus shown in Fig.4. It is chosen 
as it is a benchmark system, has more control 
variables and provides results for comparison of 
the proposed method. The approach can be 
generalized and easily extended to large-scale 
systems. 

 The IEEE-30 bus system consists of six 
generators, four transformers, 41 lines, and two 
shunt reactors. In DE solution for OPF, the total 
control variables are 15: six unit active power 
outputs, six generator bus voltage magnitudes, and 
four transformers tap settings and are given in 
Table 1. All generator active power, and generator 
bus voltages and transformer tap setting are 
considered as continuous for simplicity. The 
generators cost coefficients of the IEEE 30-bus 
test system are given in the Table 2.The limits of 
variables for the IEEE-30 bus system is given in 
Table 3. 

In this section, the DE solution of the OPF is 
evaluated using the test system IEEE-30 bus 
system [7]. The results, which follow, are the best 
solution over the ten runs. The results are 
compared with EP and other methods.  

 
 

TABLE I 
SYSTEM DESCRIPTION OF CASE STUDY  

Sl.No. Variables 30-bus 
system 

1 
2 
3 
4 
5 
6 

Buses 
Branches 
Generators 
Generator buses 
Shunts reactors 
Tap-Changing 
transformers 

30 
41 
6 
6 
2 
4 
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TABLE  II 
GENERATOR COST COEFFICIENTS OF IEEE 30-BUS SYSTEM 

 
Bus 
No 

Real Power 
Output limit 

(MW) 

Cost Coefficients 

Min Max a b c 
1 50 200 0 2.00 0.00375 
2 20 80 0 1.75 0.01750 
5 15 50 0 1.00 0.06250 
8 10 35 0 3.25 0.00834 

11 10 30 0 3.00 0.02500 
13 12 40 0 3.00 0.02500 

 
 

TABLE III 
LIMITS OF VARIABLES FOR IEEE 30-BUS SYSTEM 

No. Description Units Lower 

Limits 

Upper 

Limits 

1 

 

2 

 

3 

Voltage PQ-

bus 

Voltage PV-

bus 

Transformer 

taps 

 

Pu 

 

Pu 

 

Pu 

 

0.95 

 

0.90 

 

0.90 

 

1.05 

 

1.10 

 

1.10 

 
 

TABLE  IV 
DE PARAMETERS FOR BEST RESULTS OF OPTIMAL POWER FLOW 

FOR IEEE 30-BUS SYSTEM 
 

Sl.No. 

Parameters of Differential evolution 

Parameters Values 

1 

2 

Population 

Generations 

20 

100 

 Penalty factors of fitness function 

5 

6 

7 

8 

Slack bus generation 

penalty factor 

Reactive power penalty 

factor 

Load bus voltage penalty 

factor 

Line flows penalty factor 

10,000 

1000 

1000 

1000 

 
Figure 4: IEEE 30-bus system 

 
TABLE  V 

OPTIMAL ACTIVE AND REACTIVE POWER GENERATION LEVELS 
FOR 30-BUS SYSTEM 

Unit 
No. 

Bus 
No 

 

Generator unit real and reactive 
power control 

Unit real 
power [MW] 

Unit reactive 
power [MVAR] 

1 
2 
3 
4 
5 
6 

1 
2 
5 
8 

11 
13 

177.3 
49.18 
12.24 
11.19 
21.23 
21.74 

-16.42 
14.31 
38.46 
36.91 
29.30 
35.75 

 
TABLE  VI 

CONTROL VARIABLES FOR THE 30-BUS SYSTEM 
Sl. 
No. 

I. Generator 
voltages 

II. Power 
generation 

III. Transformer 
taps 

Gen 
voltage 

Value Pg Value Transf. 
Tap 

Value 

1 

2 

3 

4 

5 

6 

1GV  

2GV  

5GV  

8GV  

11GV  

13GV  

1.060 

1.046 

1.100 

1.077 

1.022 

1.030 

1gP  

2gP  

5gP  

8gP  

11gP  

13gP  

177.3 

49.18 

12.24 

11.19 

21.23 

21.74 

1T  

2T        

3T        

4T  

1.0657 

0.9000 

1.0468 

0.9589 
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TABLE  VII 
COMPARISON OF THE TOTAL GENERATOR FUEL COSTS OF DE WITH TS, TS/SA, ITS, EP, AND IEP 

 

Cost ($/hr) 

Algorithm 

TS TS/SA ITS EP IEP DE 

Best cost 802.502 802.788 804.556 802.907 802.465 802.230 

Average cost 802.632 803.032 805.812 803.231 802.521 802.031 

Worst cost 802.746 803.291 806.856 803.474 802.581 802.35 

 
The DE parameters used for the optimal power 

flow solution are given in Table 4. They are 
treated as continuous controls. Table 5 shows the 
optimal setting of the generator bus active power 
and corresponding reactive generation for DE. 
Table 6 shows the optimal control variables 
obtained for the optimal power flow of the IEEE-
30 bus system. Table 7 shows the comparison of 
the cost of generation for the IEEE-30 bus system 
for the above cases with other soft computing 
methods. 
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  Figure 5:  Cost Vs Generations 
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   Figure 6:  Bus voltage profiles 
 

Figure 5 shows the convergence of DE for the 
optimal power flow problem. The operating costs 
of the best solution in the normal operation 
achieved by the DE and EP are, respectively, 
$802.230 and $802.907 per hour. It can be 
observed from Fig.5 that the convergence of DE is 
faster while obtaining a better solution in lesser 
computational time. Figure 6 shows the bus 
voltage profiles of the 30-bus system achieved by 
the DE and EP. 

 
6. CONCLUSIONS 

 
This paper presents a DE solution to the optimal 

power flow problem and is applied to an IEEE 30-
bus power system. The main advantage of DE over 
other modern heuristics is modeling flexibility, 
sure and fast convergence, less computational time 
than other heuristic methods. And it can be easily 
coded to work on parallel computers. The main 
disadvantage of DE is that it is heuristic 
algorithms, and it does not provide the guarantee 
of optimal solution for the OPF problem. The DE 
approach is useful for obtaining high-quality 
solution in a very less time compared to other 
methods. 

The future work in this area consists of the 
applicability of DE solutions to large-scale OFF 
problems of systems with several thousands of 
nodes, utilizing the strength of parallel computers. 
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