
Journal of Theoretical and Applied Information Technology

©2005 - 2008 JATIT. All rights reserved.

www.jatit.org

 178

TEST CASE PRIORITIZATION

Praveen Ranjan Srivastava
 Computer Science and Information System Group, BITS Pilani, India-333031

E-mail: praveenrsrivastava@gmail.com

ABSTRACT
Test case prioritization techniques involve scheduling over test cases in an order that improves the
performance of regression testing. It is inefficient to re execute every test cases for every program
function if once change occurs. Test case prioritization techniques organize the test cases in a test suite by
ordering such that the most beneficial are executed first thus allowing for an increase in the effectiveness
of testing. One of the performance goals i.e. the fault detection rate, is a measure of how quickly faults
are detected during the testing process. In this paper I present a new test case prioritization algorithm,
which calculates average faults found per minute. I present the results illustrating the effectiveness of
algorithm with the help of APFD metric. The main aim of my paper is to determine the effectiveness of
prioritized and non-prioritized case with the help of APFD.

Keywords: Regression Testing, Average Percentage of Faults Detected (APFD), Test Cases.

1. INTRODUCTION

Regression testing is the re-execution of some
subset of test that has already been conducted. In
regression testing as integration testing proceeds,
number of regression tests increases and it is
impractical and inefficient to re execute every test
for every program function if once change occurs.
It is an expensive testing process used to detect
regression faults. Regression test suites are often
simply test that software engineers have previously
developed, and that have been saved so that they
can be used later to perform regression testing [1,2,
3]. So regression testing can be defined as follows:
Let P be a program and P’ be a modified version of
P and T be a test suite developed for P. Regression
testing is concerned with validating P’. Regression
test selection techniques attempt to reduce the cost
of regression testing by selecting and running only
a subset of the test cases in an existing test suite

 In the previous work an Average Percentage of
Faults Detected (APFD) metric [1] was used to
determine the effectiveness of the new test case
orderings, but it considered faults and test cases
cost to be uniform.

2 Problem Statement
Rothermel at el. [2, 7] defines the test case
prioritization problem as follows:

Given: T, a test suite; PT, the set of
permutations of T; f, a function from PT to the real
numbers.

Problem: Find T’ belongs to PT such that (for
all T”) (T” belongs to PT) (T” ≠ T’) [f (T’) ≥ f
(T”)].

Here, PT represents the set of all possible
prioritizations (orderings) of T and f is a function
that, applied to any such ordering, yields an award
value for that ordering [2,7].

The objective of this research is to develop a
test case prioritization technique that prioritizes
test cases on the basis of detection of fault rate.

3 METHODOLOGIES

This section provides the methodologies that are
related to regression testing. There are four
methodologies that are available for regression
testing. These methods are [2,5, 8]
2.1 Retest all
2.2 Regression Test Selection
2.3 Test Suite Reduction
2.4 Test Case Prioritization

3.1 Retest –all.
In this technique the test cases that no longer apply
to modified version of program are discarded and
all the remaining set of test cases are used to test
the modified program.

Journal of Theoretical and Applied Information Technology

©2005 - 2008 JATIT. All rights reserved.

www.jatit.org

179

3.2 Regression test selection.
Retest all technique takes time and effort as all test
cases are used to test the program again, so may
be quite expensive. This technique much better as
it uses information about program, modified
program, test cases to select subset of test cases for
testing.

3.3 Test suite Reduction.
This technique uses information about program
and test suite to remove the test cases, which have
become redundant with time, as new functionality
is added. It is different from Regression test
selection as former does not permanently remove
test cases but selects those that are required.
Advantage of this technique is that it reduces cost
of validating, executing, managing test suites over
future releases of software, but the downside of
this is that it might reduce the fault detection
capability with the reduction of test suite size

3.4 Test Case Prioritization.
In this technique each test cases are assigned a
priority. Priority is set according to some criterion
and test cases with highest priority are scheduled
first For example criterion may be that the test
case which has faster code coverage gets the
highest priority. Advantage to previous techniques
is that it doesn’t discard or permanently remove
the test cases from test suite. Another criterion
may be rate at which fault is detected.

4 DETERMINING TEST SUITE
EFFECTIVENESS.

The performance of the prioritization technique
used in this paper, it is necessary to assess
effectiveness of the ordering of the test suite.
Effectiveness will be measured by the rate of faults
detected. The following metric is used to calculate
the level of effectiveness.

4.1 AVERAGE PERCENTAGE OF FAULTS
DETECTED (APFD) METRIC

To quantify the goal of increasing a subset of the
test suite's rate of fault detection, i use a metric
called APFD developed by Elbaum et al. [1,2,4]
that measures the average rate of fault detection
per percentage of test suite execution. The APFD
is calculated by taking the weighted average of the
number of faults detected during the run of the test
suite. APFD can be calculated using a notation:
 Let T -> The test suite under evaluation

 m -> the number of faults contained in the
program under test P
 n -> The total number of test cases and

 TFi -> The position of the first test in T that
exposes fault i.
APFD = 1 – TF1 + TF2+ + TFm + 1
 nm 2n
So as the formula for APFD shows that calculating
APFD is only possible when prior knowledge of
faults is available. APFD calculations therefore are
only used for evaluation.

5. PROPOSED WORK:
 A NEW PRIORITIZATION TECHNIQUE.

5.1 Introduction

 Earlier work [1,2,4] may take long time (may be
month or year) depending on the size of the test
suite and how long each test case takes be run.
However, through the use of an effective
prioritization technique, testers can re order the
test cases to obtain an increased rate of fault
detection.
The technique presented in this paper implemented
a new regression test suite prioritization algorithm
that prioritizes the test cases with the goal of
maximizing the number of faults that are likely to
be found during the constrained execution.

5.2 THE ALGORITHM

Input: Test suite T, number of faults detected by a
test case f, and cost to run each test case Tcost.
Output: Prioritized Test suite T’.
 1: begin
 2: set T’ empty
 3: for each test case t ε T do
 4: calculate average faults found per minute as
 f/Tcost
 5: end for
 6: sort T in descending order based on the on
 the value of each test case
 7: let T’ be T
 8: end

With the assumption that the desired execution
time to run the test cases is known in advance, one
can trace the number of faults each test case find
and in how much time it takes to find the faults. So
using this information as input the algorithm
prioritizes the test cases of particular test suite.
The algorithm calculates the average number of

Journal of Theoretical and Applied Information Technology

©2005 - 2008 JATIT. All rights reserved.

www.jatit.org

180

faults found per minute by a test case and using
this value sorts the tests cases in decreasing order
of test suite.

6. EXPERIMENTATION AND ANALYSIS

Below table shows the number of faults detected
by a test case in the test suite and total time taken
by each test case.

 APFD Result
From proposed algorithm (5.2):

VTi=fault/time(rate of fault detection)
The calculations are:
VT1=2/5=0.4 VT2=3/7=0.42,
VT3=1/11=0.09 VT4=3/4=0.75
VT5=2/10=0.2 VT6=3/12=0.25
VT7=2/6=0.33 VT8=2/15=0.133
VT9=2/8=0.25 VT10=2/9=0.22
Priority set according to decreasing order of value
of VTi, since more the rate of fault detection more
will be the priority.
Hence the prioritized order is:
T4, T2, T1, T7, T6, T9, T10, T5, T8, T3
In the above table
m=no. of faults = 10
n=no. of test cases = 10
So putting the values of m , n ,TFi(The position of
the first test in T that exposes fault i) in the
equation
APFD = 1 – TF1 + TF2+ +TFm + 1
 nm 2n
Putting values:
APFD =1- 3+1+2+4+2+1+1+2+5+3 + 1
 10*10 20

 = 0.81
APFD value for non-prioritized test case:

APFD = 1 _ 1+4+2+7+2+4+5+3+6+1 + 1
 10*10 20

=0.70

6.1Analysis of APFD

The comparison is drawn between prioritized
and non-prioritized case, which shows that value
obtained for prioritized case (new approach) is
more than previous method, hence more effective
of prioritized case
Below two graphs showing the Results for
prioritized and non-prioritized case

APFD graph for prioritized test suite

Test case order T4,T2,T1,T7,T6,T9,T10,T5,T8,T3

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

percentage of test suite executed

Pe
rc

en
ta

ge
 o

f F
au

lts
 d

et
ec

te
d

APFD =81%

APFD graph for non-prioritized test suite

Test case order T1,T2,T3,T4,T5,T6,T7,T8,T9,T10

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

percentage of test suite executed

Pe
rc

en
ta

ge
 o

f F
au

lts
 d

et
ec

te
d

APFD =70%

7. DISCUSSION AND CONCLUSION

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
F1 ∗ ∗
F2 ∗ ∗ ∗ ∗
F3 ∗ ∗ ∗ ∗
F4 ∗
F5 ∗ ∗ ∗
F6 ∗
F7 ∗ ∗
F8 ∗ ∗
F9 ∗
F1
0

∗ ∗

No.
of
fau
lt

2

3

1

3

2

3

2

2

2

2

Ti
me

5

7

11

4

10

12

6

15

8

9

Journal of Theoretical and Applied Information Technology

©2005 - 2008 JATIT. All rights reserved.

www.jatit.org

181

This paper proposed an algorithm for test case
prioritization in order to improve regression
testing. Analysis is done for prioritized and non-
prioritized cases with the help of APFD (average
percentage fault detection) metric. Graphs prove
that prioritized case is more effective. In future I
will try on test case prioritization over requirement
analysis using APFD and risk metrics.

7. REFRENCES

 [1] Alexey G. Malishevsky, Joseph R. Ruthruff,

Gregg Rothermel, Sebastian Elbaum, Cost-
cognizant Test Case Prioritization, 2006

 [2] S. Elbaum, A. Malishevsky, and G.Rothermel

Test case prioritization: A family of empirical
studies. IEEE Transactions on Software
Engineering, February 2002.

[3] Roger S. Pressman, Software engineering a

practitioner’s approach 6/e, 2005

[4] Sebastian Elbaum, Gregg Rothermel, Satya

Kanduri, Alexey G. Malishevsky, Selecting a
Cost-Effective Test Case Prioritization
Technique, April 20, 2004

[5] Aditya P.Mathur, Foundation of software

testing, Pearson Education 1st edition.

 [6] Maruan Khoury, Cost-Effective Regression

Testing, 2006

[7] G. Rothermel, R.H. Untch, C. Chu, and M.J.

Harrold, “Prioritizing Test Cases for
Regression Testing,” IEEE Trans. Software
Eng., vol. 27, no. 10, pp. 929-948, Oct. 2001.

[8] Maruan Khoury, Cost-Effective Regression

Testing, 2006

