
Journal of Theoretical and Applied Information Technology

©2005 - 2008 JATIT. All rights reserved.

www.jatit.org

212

 DESIGN AND IMPLEMENTATION OF POLYHEDRON
AS A PRIMITIVE TO REPRESENT 3D SPATIAL OBJECT

1Mr.N.Subhash Chandra, 2Dr. A.Govardhan
1Research Schalor,JNT University, Hydearbad,A-P,INDIA

2Professor, JNT University, Hydearbad,A-P,INDIA
1subhashchandra_n@yahoo.co.in, 2govardhan_cse@yahoo.co.in

ABSTRACT

Spatial objects of our world have an intrinsic three-dimensional (3D) nature; 3D data modeling and 3D
data management have been neglected in spatial database systems and Geographical Information
Systems, which map geometric data mainly to two-dimensional abstractions. But increasingly the third
dimension becomes more and more relevant for application domain like pollution control, water supply,
soil engineering, urban planning and aviation.
Spatial-DBMSs were chosen to store spatial data, because they could guarantee the safety of the data (in
2D). But with the arrival of applications depending upon correct 3D data, the present techniques do not
suffice. The solution for this problem is to implement a real 3D primitive, including functions that e.g.
return the volume or the distance between objects in 3D and validation functions. This improves the
maintainability of 3D Spatial-datasets .3D Spatial objects are stored with the polyhedron as (3D)
primitive. The proposed primitive is easy for users to model objects, can easily validated, because the
algorithms are not too difficult to implement and still result in realistic objects.

Keywords 3D spatial data, GIS

1 INTRODUCTION

Spatial-DBMSs make it possible to
manage spatial datasets in databases that can be
accessed by multiple users at the same time.
These spatial datasets usually contain 2D data,
while more and more applications depend on
3D data. Some examples are 3D cadastres,
telecommunications and town planning. These
applications mainly come from the ever-
growing tendency of using living space
multifunctional by building in the vertical
direction, e.g. apartments, buildings over
spanning a road, tunnels and bridges.

 2D Spatial data can be modeled in the
Spatial-DBMS with 2D primitives. However,
the present Spatial-DBMSs do not support 3D
primitives, but 3D spatial objects can be
modeled by using 2D primitives such as
polygons in 3D space[2]. This is possible by
using 3D coordinates, which are supported by
the Spatial-DBMSs. In this way, several 2D
polygons bound a 3D object. These 2D
polygons can be stored in one (multi-polygon)
or multiple records. The absence of a real 3D
primitive in the Spatial-DBMSs however,
results into two problems:

1) The Spatial-DBMSs do not recognize

3D objects, because they do not have a
3D primitive to model these objects.

2) This results into DBMS functions not
working properly (e.g. there is no
validation for the 3D object as a whole
and functions only work with the
projection of these objects, because the
third dimension is ignored).

3) In some cases the 2D objects, that
bound a 3D object, are stored in
multiple records; a better
administration of these large datasets
requires a 1:1 relationship between
objects in reality and objects in the
database, because then there is a clear
connection between the object in the
database and the object in reality.

Spatial-DBMSs were chosen to store spatial
data, because they could guarantee the safety of
the data (in 2D). But with the arrival of
applications depending upon correct 3D data,
the present techniques do not suffice. The
solution for this problem is to implement a real
3D primitive, including validation functions and
functions that e.g. return the volume or the
distance between objects in 3D.Many concepts
have been developed in the area of 3D

Journal of Theoretical and Applied Information Technology

©2005 - 2008 JATIT. All rights reserved.

www.jatit.org

213

modeling. The innovation of this project is that
the developed concepts have been translated
into prototype implementations of a true 3D
primitive in a DBMS environment.

Furthermore, it is important that the 3D
data in the database can be visualized. Project
emphasis on choice of a 3D primitive to model
the 3D objects and describes its
Implementation, the implementation of the most
commonly used functions (e.g. area, volume,
point-in-polyhedron and bounding box) and 3D
also methods to visualize 3D spatial objects that
are stored as 3D primitives.

1.1 3D Primitive

Now, Spatial-DBMSs are able to store,
validate and query spatial data in 2D coordinate
space. 2D spatial objects are stored as 2D
primitives (polygons)[3][8]. To store 3D spatial
objects, without the problems mentioned in the
introduction, a 3D primitive is necessary.

1.2 Definition of a polyhedron
A polyhedron is the 3D equivalent of a

polygon (in 2D space) and can be defined as a
bounded subset of 3D coordinate space enclosed
by a finite set of flat polygons (called faces)
such that every edge of a polygon is shared by
exactly one other polygon . Note that the
polyhedron should bound a single volume, i.e.
from every point (can be on boundary), every
other point (can be on boundary) can be reached
via the interior. The characteristics of the
polyhedron primitive are[4][5] :
Flatness: The polygons that make up the
polyhedron have to be flat. This means that all
points that make up the polygon must be in the
same plane. For three points this is always true,
but for more than three points this is not always
true , because of the geodetic measuring and
processing methods and the finite representation
of coordinates in a digital computer.
Furthermore, inner rings (hole in polygon) of a
face have to be in the same plane as the outer
ring that it belongs to

Fig 1 Left: Invalid polyhedron,
because the hole divides the polyhedron in two
volumes. (Note that this object is stored as one
volume minus a hole (2 connected inner rings)
and not as two separate volumes)Right: Valid
polygon with inner ring that touches boundary.

2-Manifold: This characteristic looks at a
polyhedron as a whole; it should bound only
one volume. This means that from every point
on the boundary, you should be able to reach
every other point on the boundary via the
interior (Fig 6). For the object to be valid, the
faces where the hole starts and ends have to be
modeled as a face with one or more inner rings.
The edges and vertices should be 2-manifold.
This means an edge is adjacent to exactly two
faces and a vertex is the apex of only one cone
of faces (i.e. two or more shells do not touch in
one vertex)
Simplicity: This characteristic looks at the faces
of a polyhedron. The polyhedron has to be
composed of simple features. These are closed
polygons that are not self-intersecting and have
no inner rings. The faces of a polyhedron
however, are allowed to have inner rings, as
long as the faces together form a closed
polyhedron. That is the reason this characteristic
is called simplicity and not just simple. The
inner rings of faces are not allowed to interact
with the outer ring, except for touching
boundaries. Furthermore, the vertices that span
a face are not allowed to lie all on a straight
line, i.e. the face has to have an area. A face has
exactly one outer ring and zero or more inner
rings. Finally, each edge has exactly 2 vertices.
Only straight line segments are allowed, so
there is no necessity for an edge to have more
than 2 vertices. Note that two or more (but not
all) edges are allowed to lie on a straight line, if
this is more convenient for modeling an object
Orientable: There has to be a clear outside and
inside of the polyhedron. In the field of
computer graphics the normal vectors of faces
point from inside to outside. This means that the
vertices in a face must be specified in counter-
clockwise order seen from the outside of the
object. Note that the vertices in inner rings of
faces need to be ordered in opposite direction
(clockwise). All polyhedron need to fulfill these
characteristics. The validation function is able
to check if these characteristics are met.

Journal of Theoretical and Applied Information Technology

©2005 - 2008 JATIT. All rights reserved.

www.jatit.org

214

2 POLYHEDRON MODEL
The polyhedron can be stored by

storing the vertices explicitly (x,y,z) and
describing the arrangement of these vertices in
the faces of the polyhedron (Fig 8 shows an
UML diagram). This yields a hierarchical
boundary representation. Note that edges are not
stored explicitly in this model. There are tags
that describe if the face description is an outer
or inner boundary (of a polyhedron) or an outer
or inner ring (of a face). With these elements it
is already possible to model complex objects,
e.g. objects with through-holes or objects that
are hollow inside. This set of elements is
enough for the functions to understand what the
3D spatial objects look like.

Fig 2 UML diagram of polyhedron storage.

The 3D primitive is implemented in a
geometrical model with internal topology. This
means that topology between objects is not
maintained. Internal topology (topology within
3D objects) is maintained since the vertices for
one object will be stored only once: faces are
defined by internal references to the nodes and
nodes are shared between faces.

There is a special geometry type in the
object-relational model in Oracle Spatial 9i.
This type is called sdo_geometry and is defined
as:

CREATE TYPE sdo_geometry AS OBJECT (

sdo_gtype NUMBER,

sdo_srid NUMBER,

sdo_point SDO_POINT_TYPE,

sdo_elem_info
MDSYS.SDO_ELEM_INFO_ARRAY,

sdo_ordinates
MDSYS.SDO_ORDINATE_ARRAY);

This type is stored in the MDSYS scheme. The
meaning of the elements of sdo_geometry is :

- sdo_gtype: This indicates the type of geometry
(point, linestring, polygon, multipoint, multiline
string, multi polygon) and the dimension (0D,
1D, 2D, 3D) of its embedding space. Each
geometry type has its own code, e.g. a 2D
polygon has sdo_gtype = 2003. The first digit is
the dimension and the last digit is the geometry
type.

- sdo_srid: This is a reference to the spatial
reference system used by the coordinates. In this
research local (Cartesian-) coordinates are used,
so no sdo_srid is specified (NULL). Non
projected reference systems have to be
converted to Cartesian coordinates first.

- sdo_point: This element is used when only
points are stored as single object or when a
point is stored in addition to the other geometry.
The SDO_POINT_TYPE has an x-, y- and
zelement.

- sdo_elem_info: This specifies the elements of
the geometry with references to the coordinates
(starting_offset), information about the element
itself (e_type) and an interpretation code (e.g.
straight line, rectangle, circle) on how to
interpret the coordinates. This is stored in a
variable array of numbers. A rectangular
polygon specified by two coordinates is e.g.
stored as sdo_elem_info_array = (1,1003,3).

- sdo_ordinates: This is a variable array of
numbers and contains the coordinates.

To extend Oracle Spatial 9i with
polyhedron geometry, a new set of codes is
necessary. The proposal for these codes as
described in [4] is the starting point for this
research. The data model is a geometric model,
defined with internal topology; the vertices are
stored only once per polyhedron. each face of
the polyhedron is described with a reference to
the point number of the vertices.

Journal of Theoretical and Applied Information Technology

©2005 - 2008 JATIT. All rights reserved.

www.jatit.org

215

 Fig 3 Cube with its Coordinates

 The SQL to insert this geometry in
Oracle Spatial 9i, as a polyhedron primitive by
means of the proposed codes, is:

INSERT INTO table (id, geometry) VALUES
(2, mdsys.sdo_geometry(3008, NULL, NULL,

mdsys.sdo_elem_info_array(

25,1006,1, 29,1006,1, 33,1006,1, 37,1006,1,
41,1006,1, 45,1006,1),-- 25 is the first face, the
first 24 are used by the coordinates

mdsys.sdo_ordinate_array(

1,1,0, 1,3,0, 3,3,0, 3,1,0, 1,1,2, 1,3,2, 3,1,2,
3,3,2, –- the coordinates

1,2,3,4, -- bottom face starts at index 25

8,7,6,5, -- top face starts at index 29

1,4,8,5, -- front face starts at index 33

2,6,7,3, -- back face starts at index 37

1,5,6,2, -- left face starts at index 41

4,3,7,8 -- right face starts at index 45

)));

This means that elements of sdo_geometry are:

- sdo_gtype = 3008 (3D polyhedron)

- sdo_srid = NULL (no spatial reference
system)

- sdo_point = NULL (no point type)

- sdo_elem_info = 6 times x,1006,1 (exterior
polyhedron boundary, x is where the face starts)

- sdo_ordinates = 8 coordinate triplets and 6
face descriptions

3 IMPLEMENTATION

Oracle Spatial ignores all elements
with sdo_gtype or e_type = 0. If the sdo_gtype
= 0, the object is ignored by the spatial index.
On the other hand, sdo_gtype = 3008 is not
recognized and therefore it is also not possible
to create a spatial index on that sdo_gtype.
Therefore, an existing sdo_gtype = 3002 is
chosen. This is a 3- dimensional polyline going
through all the coordinates of the defined
polyhedron. When creating a 3D spatial index
(which is possible in Oracle), a bounding box is
created around this line. This bounding box is
equal to the bounding volume around the
polyhedron. The drawback of using an existing
sdo_gtype is that application will be confused,
because there is no difference between a 3D
polyline and a polyhedron.

In order to store the line, an entry in the
sdo_elem_info is necessary. If the cube from
§2.3 is taken (Fig 10), it will look like this:

INSERT INTO table (id, geometry) VALUES
(2,

mdsys.sdo_geometry(3002, NULL, NULL, --
3002 = 3D line

mdsys.sdo_elem_info_array(1,2,1, 25,0,1006,
29,0,1006, 33,0,1006, 37,0,1006,41,0,1006,
45,0,1006), -- first triplet is line, then the faces

mdsys.sdo_ordinate_array(1,1,0, etc., 1,2,3,4,
etc.)));

This means that elements of sdo_geometry are:

- sdo_gtype = 3002 (3D line)

- sdo_srid = NULL (no spatial reference
system)

- sdo_point = NULL (no point data)

- sdo_elem_info = 1,2,1 (straight line) –
x,0,1006 (6 times a exterior polyhedron
boundary, x is where the face starts)

- sdo_ordinates = (8 coordinate triplets and 6
face descriptions)

E_type = 0 is necessary in this implementation
for Oracle Spatial to ignore this element. The
interpretation code is free to choose and thus
takes the role that the e_type had. This is why

Journal of Theoretical and Applied Information Technology

©2005 - 2008 JATIT. All rights reserved.

www.jatit.org

216

the information about the element is moved to
this position. The rest of the implementation is
the same as described in the Table 1 shows an
overview of the storage options.

Sdo_gtype 3002: 3D line
tocreate index on

Sdo_elem_i
nfo

Starting
offset

Points to the
starting offset of a
face in sdo_
cordinates

 E_type Is always 0,to
ensure proper
working

 Interpretat
ion code

1006 Outer ring of
exterior polyhedron
boundary(face)

1106 Inner ring of
exterior polyhedron
boundary(face)

2006 Outer ring of
interior polyhedron
boundary(face)

2106 Inner ring of
interior polyhedron
boundary(face)

Sdo_ordina
tes

 The ordinate
triplets that store
vertices

 The face
description that
point to the ordinate
triplets

Table 1 Overview of storage options in the
implementation of 3D primitive.

4 3D FUNCTIONS

4.1 Functions used in the conversion

These functions are used when
converting spatial data to the polyhedron type
and back. There are a number of conversion
functions implemented. These are the present
possibilities to convert spatial data in other
formats to the polyhedron type and vice versa: -

It is possible to manually insert a polyhedron
into a record of a spatial table in the database.

- The function used to convert multi-
polygons (standard type in Geo-DBMS) that
together form a polyhedron to the polyhedron
type itself. This means that if spatial data is
available in this format or if spatial data can be
stored in this format; these data can be
converted to a real 3D primitive. The vice versa
function works exactly opposite and is
especially useful to visualise the polyhedron.
An advantage is that data can be inserted by
GIS/CAD front-ends. Then there is a function
that converts a body, face and node table
(topology) to the polyhedron type.

Once the conversion to the polyhedron
type has taken place, the user can decide to
validate the polyhedron to see if they are
correctly modeled. This is recommended,
because all other DBMS 5 3D functions expect
the polyhedron to be valid. The validation
function related to the validation function is the
function to correct the orientation of the faces of
a polyhedron (fix orientation).

4.2 Functions that return a Boolean

These functions return a Boolean, i.e.
true or false. A well-known Boolean function is
the point in polyhedron function. This function
determines whether a point is inside a
polyhedron or not. - Generate a random unit
vector. The point to test plus the direction of
this vector form a random ray away from the
point. The choice for a random vector is made,
because if a fixed vector is chosen, there is a
chance that the vector will intersect with the
boundary of the polyhedron. This results in
undesirable results in the function.

- Test for each plane if the ray intersects with it.

- If the number of intersections is even, then the
point is outside the polyhedron, if this number is
odd, then the point is inside the polyhedron.

A problem arises with this algorithm. If the ray
hits the boundary of one or more of the faces, it
is undetermined if the point is inside or outside
the polyhedron. The solution is that if the ray
hits a boundary of a face, then the algorithm is
started over with a different random ray. If the
ray intersects with the boundary again, then

Journal of Theoretical and Applied Information Technology

©2005 - 2008 JATIT. All rights reserved.

www.jatit.org

217

another random ray is generated and so on until
a good ray is found.

 4.3 Unary functions that return a scalar

These are functions that work on a
single polyhedron (unary) that return a number
(scalar). Three of these kinds of functions are
implemented:

4.3.1 Area

This function returns the true 3D
surface area for a 3D polygon or the summation
of the area of all faces that span a polyhedron.
The area of a face is computed by projecting the
face on 2D coordinate space. This projection
takes place on the largest component of the
normal vector n of the face. This evades
numerical problems.

4.3.2 Volume

This function returns the volume of a
polyhedron. The general idea of the algorithm
that is used here to compute the volume is to
multiply the area of each face by a depth, just
like one would compute the volume of a box.
With a polyhedron this results in computing
overlapping boxes for each face, but by using
the right orientation of vertices, these volumes
are either positive or negative. By summing
these volumes, the overlapping volumes
disappear and the result is the right volume of
the polyhedron as a whole.

4.4 Functions that return simple geometry

There are many unary functions
possible that return simple geometry. With
simple geometry is meant, geometry that
represents single simple objects (like single
points or a cube). There are many functions like
this possible; these are implemented:

 Bounding box: This is the smallest possible
orthogonal box around a polyhedron. This
function is implemented by searching for the
smallest x-, y- and z-coordinate and the largest
x-, y- and z-coordinate. The first triplet forms
the lower left front vertex and the second triplet
forms the upper right back vertex of the box,
looking to positive y and the x,z-plane. The
other 6 vertices can simply be constructed from
these two. The bounding box can be used as a
simplified model of the polyhedron.

Transformation: This function should return
geometry as a result of scaling, translating or
rotating. If the object is valid, just the vertices
need to be changed; the face descriptions stay
the same. The transformation is implemented as
three functions:

 Scaling: This function multiplies each vertex
with a scalar. It is possible to scale x, y and z
separately. The polyhedron (average coordinate)
is first translated to the origin (0,0,0), so that the
scaling takes place in all directions. After the
scaling it is translated back to its original
position.

 Translation: This function translates each
vertex with a translation vector.

 Rotation: This function has two parameters,
the rotation angle (è) and the rotation axis. First
the object (average coordinate) is moved to the
origin (0,0,0), then it is rotated and then it is
moved back to its original position. The rotation
multiplies every vertex with a rotation matrix.
The rotation axis defines the elements of the
rotation matrix.

 Circumscribed sphere: The sphere around the
polyhedron through its vertices.

 Convex hull: This function removes
concavities in the polyhedron, e.g. through
holes. This will result in a convex polyhedron.

Inscribed sphere: The largest possible sphere
inside the polyhedron.

- Point that is inside the polyhedron: Returns a
point that is certainly inside the polyhedron.
This can be used as label point in applications.

4.5 Binary functions that return simple
geometry

A relatively simple function is the one
that returns the line segment representing the
distance between two objects. This function has
been implemented. It is simply the line between
the average coordinates of two polyhedrons.

5 CONCLUSIONS

This paper concentrates on polyhedron
as 3D primitive to represent 3D spatial object.
The polyhedron is stored as a hierarchical
boundary representation, which means that the
edges are not stored explicitly and vertices only

Journal of Theoretical and Applied Information Technology

©2005 - 2008 JATIT. All rights reserved.

www.jatit.org

218

need to be stored once. For each polyhedron is
stored the set of faces, which consist of a set of
ordered nodes. Using functions that are for 3D
objects, because these functions work with the
2D projection of the 3D objects. Instead, some
of the most commonly used functions are
implemented in 3D. Most of these work on the
polyhedron primitive.

 This paper recommends instead of the
polyhedron primitive, an even more realistic
primitive can be implemented, e.g. the
polyhedron with spherical and cylindrical
patches.

6 REFERENCES

[1] B.de Cambray. “Three –Dimensional (3D)
Modeling in a Geographical database”,
11th int .Symp. on Computer-Assisted
Cartography, pp.338- 347, 1993.

[2] Markus Schneider , B.E. Wenrich, “Use of
rational numbers in the design of robust
geometric primitives of 3D Spatial database
systems”, GIS’05,Nov 4-5,2005.

 [3] P. van Oosterom, W. Vertegaak, M.van
Hekken, and T. Vijlbrief. “ Integrated 3D
Modeling within a GIS.” Int . Workshop on
Advanced Geographic Data Modeling, pp.
80-95,1994.

[4] S. Zlatanova and K. Tempfli. “Data
Structuring and Visualization of 3D Urban
Data”. Int. Conf.of the Association of
Geographic Laboratories in Europe,
1998.

[5] M. Schneider.” Spatial Data Types for
Database Systems-Finite Resolution”
,Springer,1288,1997

[6] Philip J. Schneider David H.Eberly
“Geometric Tools for Computer graphics”,
Morgan Kaufmann Publishers.

[7] Philippe Riqaux,Michel Scholl,Agnes
Voisard ,”Spatial Databases With
Applications To GIS” : Morgan Kaufmann
Publishers.

[8] N.Subhash Chandra, A.Govardhan,” Three
dimensional data types for spatial abstract
data model”, Journal of Computer science,
sep-oct,2006, volume 2,number 2, pages
171-175.

