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ABSTRACT 
 

This paper, considers various Graph Theory terms and definitions. The Chromatic Join of two partitions P 
and Q of Sn and the matrix M (n) associated with such a Chromatic Joins.  The order of auxiliary matrix A 
(n, P) and also recursion formula for det{A(n, P)}.  Further it discussed the formula for evaluation of the 
determinants of det{A(n, P)}. 
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1. INTRODUCTION:  
 
A The well known four color problems has formed 
the very basis for the development of planarity in 
Graph Theory and Combinatorial Topology.  
Planarity has also its applications in psychology.  
Problems of linear programming and operational 
research, such as maritime traffic problem can be 
tackled by the theory of flows in networks, office 
management problems.   Such as the personal 
assignment problems can be dealt with by 
matching in graphs.   
 
The study of simplified complex can be associated 
with the study of graph theory.  Many more such 
problems can be added to the above list.  An 
elaborate review of the contents in the paper [12] 
has been made. 
 
2. DEFINITION: 
2.1. Chromatic Polynomial: A given graph G of 
n vertices can be properly colored in many 
different ways using a sufficiently large number of 
colors.  This property of a graph is expressed 
elegantly by means of polynomial.  This 
polynomial is calls the chromatic polynomials of 
G. 
 
2.2. Chromatic Numbers: A Graph G that 
requires k different colour for its proper colorings 
and the number k is called the chromatic number 
of G. 
 
2.3. Beraha Numbers: The Beraha 

number ( )nBn
π2cos22 += , where n=1,2,3…  

The Beraha numbers turn up in odd corners of the 

theory of chromials.  In particular expressing 
constrained chromials in terms of free ones at least 
when n is 4, 5, 6 or 7. 
 
2.4. Refines:  Let P and Q be partitions of Sn.  We 
say that P refines Q if each part of Q must be a 
union of parts of P.  We note that each partition 
refines itself. 
 
2.5. Isthmus or Bridge: The graph G(P,Q) is on 
whose deletion increases the number of 
components of its graph is called on Isthmus or 
Bridge. 
 
3. PLANAR AND NON – PLANAR 
PARTITION:  
 
A partition P is said to be non-planar, if two 
vertices of one part separates two vertices of 
another in the cyclic sequence.  If there is no such 
separation then P is called a planner. 
 
Example 1: Consider S4= (V1,V2,V3,V4,V1), The 
partition of S4 are [1234], [123,4], [134,2], [142,3], 
[234,1], [12,34], [13,24], [14,23], [12,3,4], 
[13,2,4], [14,2,3], [23,1,4], [24,1,3], [34,1,2] and 
[1,2,3,4].  In this fifteen partition of S4, the 
fourteen partitions are planar except [13, 24].  
Because [13, 24], the vertices 2 and 3 separate two 
vertices of another in the cyclic sequence.  So the 
partitions [13, 24] are called non – planar. 
 
3.1. Chromatic Join:  A partition J(P,Q) of Sn, 
whose parts correspond to the components of       
G(P, Q).  Each part is the set of edges of the 
corresponding component.  We call the partition 
J(P,Q) is the chromatic Joins of P and Q.  We 
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write the number of parts of J(P, Q), which is the 
number of components of G(P, Q).  Simply as 
h(P,Q).  We know G(P, Q) is isomorphic with 
G(Q, P). 
 
Example 2: Consider S4= (V1,V2,V3,V4,V1), Take 
P: [13,2,4], Q: [1,23,4]  
     [13]                               [2]           [4] 
                  
     V1                    V3       V2                   V4      
     
 

      [1]                           [23]             [4]                     
Fig. 1. The chromatic join of J (P, Q) = 2. 

 
3.2. Matrix M (n): A Square matrix M(n) whose 
rows correspond to the planar partitions of Sn in 
some order and whose column correspond to the 
same partitions in the same order.  In M (n) we 
write row (P) for the row correspond to the 
partition P and col(Q) for the column of partition 
Q.  The element at the intersection of this row and 
column is ),( QPξ . 

That is ),(),( QPhQP λξ =                                  (1) 
For each P and Q where λ is an indeterminate. 

Example 3: Consider S3 = (V1,V2, V3, V1), the 
Partitions P1=[V1,V2,V3], P2=[V1V2,V3],  
P3=[V1V3,V2],  P4=[V2V3,V1], P5=[V1V2V3].  
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3.3. Beraha Polynomial:  For each non negative 
integer k we define a polynomial q(k, z) in an 
indeterminate z.  We define q(0,z) and q(1,z) as 
follows. 
q(0,z) = 0                                                             (2) 
q(1,z) = 1                                                             (3) 

we extend the definition to larger suffixes by 
imposing the recursion formula. 
q(k, z) = q(k-1,z) – z q(k-2,z), where k>1           (4)  
q(2,z) = 1                                                             (5) 
q(3,z) = 1 – z                                                       (6) 
q(4,z) = 1 – 2z                                                     (7) 
q(5,z)=1– 3z + z2                                                                  (8) 
q(6,z)=1–4z + 3z2                                                (9) 
q(7,z)=1–5z + 6z2 – z3                                       (10) 
 and so on. 
 
3.4. Reversed Beraha polynomial: The 
polynomial [ ] )/1,(),( 2/)1( λλλ kqkC k−=      (11) 
in the variable as the Beraha polynomial,  
C(1,λ) = 1                                                          (12) 
C(2,λ) = 1                                                (13) 
C(3,λ) = λ -1                                                      (14) 
C(4,λ) = λ - 2                                          (15) 
C(5,λ) = λ2 - 3λ + 1                                           (16) 
C(6,λ) = λ2 - 4λ + 3                               (17) 
C(7,λ) = λ3 - 5λ2 + 6λ - 1                         (18) 
The equation (12) to (18) we call q(k, z) as 
Reversed Beraha Polynomial using mathematical 
induction method:    
q(k, z) = 1 –  the ascending powers of z.           (19) 
 
Theorem 1: Let P be a member of W(n, P).  Then 
no two of the first s+1 vertices belong to the same 
part of P. 
 
Proof:  We know W(n, P) is the set of all those 
planar partitions of Sn that satisfy the following 
conditions.  If P = 2S and P = 2S+1 no one of the 
first S vertices is a singleton of P and no one of the 
first S+1 vertices is a consecutive pairs is 
contractive in P.  Hence the theorem. 
 
Theorem 2: The set W(n,n-1) has just one 
member E.  The parts of E are the pairs        {Vk, 
Wk}, when k ranges from 1 to r together with the 
singleton {Vr+1} = {Wr+1}, if n=2r+1. 
 
Proof: Let Q be any member of W(n,n-1).  Then 
first r vertices are non singletons in Q.  By the 
previous theorem these must be paired r vertices 
W1 to Wr to make r parts of Q.  There is only one 
way to make this pairing while preserving 
planarity.  Hence Q = E.  The completes the proof 
of the theorem. 
 
4. CATALAN NUMBER:   
 
Let us write t(n) for the numbers of planar 
partitions of Sn.  This is the cardinality of W(n,0) 
and the order of A(n,0) = M(n).   
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From Number theory 
n
C
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Replacing n by n+1, we get   
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We make the definition  
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=
nhn
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We know a(n,0) = a(n,-1) = t(n)                  (23) 
 
Theorem 3: The order of A(n, P) is a(n, P). 
 
Proof: To prove the theorem using contradiction  
a(1,0) = 1 and  a(N-1,P-1)+a(N,P+1)=a(N, P)  (24) 
But this is the value required by the proposed 
formula to the choice of N and P.  This 
contradiction establish the theorem. 

Theorem 4: If P is any partition in W(n,P) and Q 
any partition in W(n, P+1) then   

),(),2(),()1( QPezPqQPFP +=−
).,(),3( QPuzPq +−                                    (25) 

 
Proof: Case (i): Let us write σ = 1 if P = 2S and  
σ = 0 if P = 2S+1, we can calculate 

),12({),( 1),( zizqQPF isQPh −= ++−+ λλ σ  
)},12(),2( ziqziq ++− , and                    

e(P,Q)    =   u(P,Q) = 0.     
Hence the theorem. 
 
Case(ii): When i = S+1 and P = 2S + 1, then we 
get 

)},12({),( ),( ziqQPF QPh +−= λ  

).,(),2()1( QPezPqP +−=   
Hence the theorem. 
 
Case (iii):  Let us consider the case in which 
H(P,Q) has structure [i].  Then 

),22({),( 2),( zizqQPF isQPh −−= +−−+ λλ σ

)},2(),12( ziqziq −−+ for i =1, we should 
omit the term for q(i-1,Q).   
But q(2i-2,z) =     q(0,z) = 0.   
So omission makes no difference to the result. 
 
Case (iv): In this case Vi  is an isthmus of G(P,Q).  
Hence e(P,Q) = u(P,Q) = 0.  Then theorem is hold 
contrary to the definition of 1.  The theorem is 
hold when H(P,Q) has structure [i]. 
 

Case (v): Finally H (P, Q) has structure [0].          
If P  = 2S, we have  

),(),12(),()1( QPhp zszqQPF λ+=− ,  
If P = 2S+1, we have  

1),(),22(),()1( −+=− QPhp zsqQPF λ  
In either case 

)},3(
),2({),()1( ),(

zPq
zPqQPF QPhP

+−
+=− λ

  

),(),3(),(),2( QPuzPqQPezPq +−+=   
The theorem is also true in this case. 
In the other cases of u(P,Q), e(P,Q), e(P,f(i,Q)), 
e(P,q(i,Q)) can be non zero.  In all other cases the 
theorem is trivially true. 

 
5. EVALUATION OF DETERMI- NANTS: 
 
Using the known theorems we can replace B(n, P) 
in F(P,Q) by one of the matrix A(k, m), we get  

=)},(det{ PnA
)}1,(det{)].1,1(det[ +−− PnAPnA αβ . 

Where ( )),2(),3( zPqzPq ++=α .       (26) 
 
5.1. Definition of  θ function: The function θ 
establish some auxiliary result concerning them. 

)!12(!
)!122)(1()2,(

−−
−−+

=
tnn

tnttnθ ,                (27) 

for any integer such that 2t+1<n.   

We get θ(n,0)= θ(n,-1).                                    (28) 
 
5.2. Definition of  ϕ function: The function ϕ 
establish some auxiliary result concerning them. 

)!(!
)!1()2(),(
imi

mimim
−
−

−=ϕ ,             (29) 

with conversion that ϕ(m,i) = 0, if i, is negative. 
ϕ(m,0) = 1 ϕ(m,1) = m-2.                                 (30) 

 
Theorem 5: The Function θ satisfies the identities 

)22,()2,1()12,( ++−=+ tntntn θθθ     (31) 
and )12,1()12,1()2,( −−+−−= tntnatn θθ

)12,( ++ tnθ                                                   (32) 
 
Proof: The sum S on the right of  (31) is 
S= )22,()2,1( ++− tntn θθ =

)}.2)(1(2)32(.{
)!32(!
)!322(

++−+
−−
−− tttn

tnn
tn

  

 Hence S = θ(n, 2t+1). 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2008 JATIT. All rights reserved.                                                                                 
 

www.jatit.org 

 
109 

 

The Sum T on the right of 
T = 

)12,()12,1()12,1( ++−−+−− tntntna θθ  
= uv 
where  

)222)(122)(1(
)!12()!1(

)!322(

−−−−+=
−−−

−−
=

tntntv
tnn

tnu
 

Hence T = θ(n, 2t).   Hence the theorem. 
Theorem 6: The function ϕ satisfies the identify 
ϕ(m, i) = ϕ(m-1, i-1) + ϕ(m-1, i-1). (33) 
 
Proof: Suppose i>0, the sum S of right of (33) is  
S = ϕ(m-1, i-1)+ϕ(m-1, i-1) 

),()1)(2(
)!(!
)!2( immim
imi

mS ϕ=−−
−
−

= . 

Hence the theorem. 
 
Theorem 7: The function  ϕ satisfies the identity  
ϕ(m,i) - ϕ(m,i-2) - ϕ(m-1,i) + ϕ(m-1, i-3) -      
ϕ(m-2,i-1) - ϕ(m-2, i-3) = 0.                             (34) 
 
Proof: Using above theorem (6),  we get the result 
(34). Hence the theorem. 
 
Theorem 8: The determinants det{A(n,P)} are 
evaluated by the formula 

),(
2
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),(

),1(
),1(

)},(det{
ikn

k

i

pn

zikq
zinq

PnA
+

−
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⎬
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⎧
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ϕ
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Proof: Assume that the theorem is false.   Let N be 
the least value of n for which it fails and P be the 
greatest value of p for which it fails at this value of 
n and K be the corresponding value of k.  Thus 
P=N-K. 
 
Case (i): Let n=1 and k=1, we have P=0 and S=0.  
Then det{A(1,0)} = λ and θ(1,0) = 1.  So the 
theorem holds in this case.  It follows N ≥ 2.   
 
Case (ii): Take integral k=1 and n=p+1, we have 
n=2S+1 and p=2S and n=2S+2 and p=2S+1.  So, 
the theorem is true in this case thus we have K ≥ 2. 
If we split the expression on the right of (35) in 
two factors.  The first is A(n,P) that is λ to the 
power θ(n, P).  We denote the second 
complementary factor by Q(n, k).  It is a product 
of powers, positive or negative or reversed Beraha 
polynomials. 

  The matrix M(n) is A(n,0), by the above 
theorems and results its determinant is given as 

),2(
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)0,(
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),1()(det

in
n
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⎬
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∏=
−

=
. 

That is the number θ(n, P) is the degree of the 
polynomial det{A(n, P)}.  
 
6. CONCLUSION:  
 
In this paper we have given the definitions of 
various terms in graph theory and the Chromatic 
Joins of two partitions P and Q of Sn and the 
matrix M(n) associated with such a Chromatic 
Joins has been discussed elaborately.  Then we 
study the order of auxiliary matrix A(n,P) and also 
recursion formula for det{A(n,P)}.  Finally we 
have discussed the formula for evaluation of the 
determinants of det{A(n, P)}.  
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