
Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

1224

1Reza Meimandi Parizi, 2Abdul Azim Abdul Ghani

1Department of Information System, UPM, Serdang, Malaysia-43400
2Assoc. Prof., Department of Information System, UPM, Serdang, Malaysia-43400

E-mail: parizi@fsktm.upm.edu.my , azim@fsktm.upm.edu.my

ABSTRACT

Research on software architecture from different perspectives has been done for several years. However,
Architectural Knowledge (AK), a relatively new field, has gained its increasing interest among the
community. On this regard, various topics devoted to architectural knowledge, such as reusing, sharing,
managing, and communicating are being studied. Among them, AK sharing brings new effective
challenges and issues not present when studying other topics in architectural knowledge. Therefore, this
paper surveys the current researches on AK sharing (pertaining to software architecture), the approaches,
models that are being proposed, and issues that arise when sharing different AKs by different parties. By
making survey on AK sharing approaches, a better understanding of these approaches and issues related in
this area is provided so that it can be a penetrative resource for a fast training and educating in this area of
SE. In addition, conclusion about current state of research in this area and future trends for AK sharing is
identified.

Keywords: Architectural Knowledge Sharing (AKS), Software Architecture, Knowledge Sharing,
Architectural Knowledge (AK)

1. INTRODUCTION

Architectural knowledge captures precious
knowledge that is worth sharing. The models, tools
designed for this purpose, sometimes, fail to
facilitate such knowledge exchange. Moreover,
sharing knowledge, pertaining to software
architecture, is not easy to achieve, in particular in
distributed and global projects. Some companies
that participate in virtual communities like inner or
open-source communities are starting to realize the
challenges of sharing the architectural knowledge
between the communities [2]. The reason for this
matter can be viewed (1) the people involved in the
architecting process (who own the knowledge)
often do not document it. For the most part, existing
notational and documentation approaches to
software architecture typically focus on the
components and connectors and fail to document
the design decisions that resulted in the architecture
as well as the organizational, process and business
rationale underlying the design decisions. This
results in high maintenance cost, high degrees of
design erosion and lack of information and
documentation of relevant architectural knowledge
[4]. (2) Or even when that architectural knowledge

is documented, it is often not sufficiently shared
within the organization: the knowledge is not
disseminated to the appropriate stakeholders; the
recipients of knowledge do not use it in their own
tasks either intentionally or because there is no
provision in the processes [3].

Due to the aforementioned issues, AK sharing
brings interesting questions such as, what is the
relevant architectural knowledge we want (and can)
share? [2] Which can be further refined into: Is it
possible to define a shared body of knowledge
about software architecture? Is it possible to
standardize the meta-models for architecture
knowledge through a generic core meta-model?
How to bridge the gaps between the different
architecture knowledge meta-models of various
organizations? And etc, or how can we share
architectural knowledge? [2] This can be detailed
as: How can we deliver or make accessible the right
knowledge to the right person at any given point in
time? How can we realize the necessary knowledge
management strategies? Can we build a common
knowledge base for a web community? Etc. In our
opinion, the questions and issues regarding AK
sharing are very important to be addressed when

ARCHITECTURAL KNOWLEDGE SHARING (AKS)
APPROACHES: A SURVEY RESEARCH

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

1225

dealing with knowledge exchange. Thus, by
surveying, writing summaries, and analyzing
current research on AK sharing, we can get a better
idea of these approaches, models and issues related
in AK sharing. This paper is aimed to explore the
current research being done on AK sharing, survey
suggested approaches, models, and consider the
issues that arise in sharing of such AK.

The rest of the paper is organized as follows:
Section 2 presents the background on Architectural
Knowledge (AK) and AKS requirements and
prerequisites; Section 3 describes the surveyed
works on AKS as well as their associated strengths
and issues; finally, section 4 reports the conclusion
and future work on this area of research.

2. BACKGROUND

This section provides the reader with information
on architectural knowledge and its definitions as
well as, elaborating on AK sharing and its aspects,
which help a better understanding of the rest of the
paper.

2.1. Architectural Knowledge (AK)

The subject of architectural knowledge is

complex and covers many issues, both general and
domain specific. It is truly a multi-disciplinary
domain within software engineering and knowledge
engineering [5].
 In general, there are two ways to share
knowledge: person-to-person and person-to-artifact
[7]. And two main kinds of knowledge: factual
knowledge and expertise. Factual knowledge relates
to the things that you know, and pieces of
knowledge that you can use. Architectural
knowledge is factual knowledge, consisting of facts
that can be recorded and disseminated. Explicit
representation of architectural knowledge is
essential in software development because it
facilitates building and evolving quality systems
[10, 11, 8, 9].

2.1.1. AK definition

There appears to be no commonly accepted
definition of what architectural knowledge entails
[1] so that different works and/ or authors define
dissimilar definition of the same term. This may
cause misunderstanding and it is hard to find out if
these, indeed, denote the same concept, which
consequently influences the sharing architectural
knowledge among the parities. Therefore, in this
work in order to avoid this and give the reader a

better understanding of the all aspects of AK
definition the result of a recent systematic review of
AK definition [1] is presented, where they
synthesize all the definitions of the AK from
different literature in order to give a clear definition
of what architectural knowledge entails. These
definitions are listed in Table 1, ordered
chronologically by publication date.

From the Table 1, it becomes clear that a prefect
definition of architectural knowledge that everyone
being in agreement on is still not found. Therefore,
it is recommended, researchers to be specific and
concrete in defining the semantic of their AK to get
over this lack, which consequently helps
community to work on a common realization of the
term, where the confusion and ambiguity is
avoided.

2.2. AK Sharing

 Sharing knowledge of software architectures
becomes more and more important. However, in
order to define suitable sharing mechanisms for
architectural knowledge, insight into the software
organization and its architecting process in
particular, is required. If this is not investigated
properly, chances are that methods and tools used
to guide stakeholders in the architecting process do
not match with people’s everyday work. A
consequence of this might be a low acceptance rate
for these methods and tools, and a poor return on
investment, which highlight the need of AK
sharing. Therefore, a successful architectural
knowledge sharing is only possible when the
sharing mechanisms are tailored to the architecting
process [6].

2.2.1. Issues related to AK sharing

The issues presented are based on the results of a
recent case study in [12], which are briefly
explained as follows:
• No consistency between architecture and design

documents: There is no alignment between the
architecture descriptions and the functional
design and technical design documents used by
developers and maintainers. Because of the lack
of alignment, valuable architectural knowledge
might be dispersed in the organization without
the architects knowing it. Consequently, it is hard
to judge whether the architectural description
conflicts with the design that is preferred by the
developers.

• Communication overhead between stakeholders:
Developers occasionally have to explain the
architect’s technical decisions more than once.

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

1226

The reason for this is that decisions made in
earlier meetings, including the rationale for these
decisions, are not adequately stored in the
architecture description. This knowledge
sometimes dissipates quickly. Consequently,
architects need to meet again with the developers
to get this knowledge explicit at a later point in
time.

• No explicit collaboration with maintenance
teams: Although maintainers are targeted in the
architectural documentation, they are not
involved as a stakeholder in the architecting
process. No active discussions between architects
and maintainers take place and the requirements
of the maintenance teams are not taken into
account during architecture development.

• No feedback from developers to architects:
Developers sometimes wear the hat of the
architect and also make design decisions.
However, architects are not informed on the
decisions made by the developers unless explicit
meetings take place. There is no mechanism in
place that allows developers to share what they
are doing. Therefore, it is very difficult for the
architect to find out what kind of technical issues
are encountered or what detailed decisions are
taken.

• No up-to-date knowledge from development
teams in repository: The architectural knowledge
repository contains little to no information on the
‘best practices’, technology preferences and
standards, and expertise currently available at the
development teams. Therefore, the repository is
unable to advise architectural directions that
match with the development processes.

• No up-to-date knowledge from main customer in
repository: The architectural knowledge
repository also lacks up-to-date knowledge on the
customer organization’s reference architecture.
Therefore, the repository cannot give
architectural directions that automatically comply
with the constraints posed by this reference
architecture.

2.2.2. Prerequisites for successful AK sharing

Implementing means for architectural knowledge
sharing is definitely not only about choosing the
right tool [12]. Successful knowledge sharing can
only be achieved if the necessary incentives are
created. These incentives induce stakeholders to
share valuable architectural knowledge, such as the
major design decisions made, the underlying
rationale for these decisions, and alternatives that
were considered. Refer to [12] for the explanation

of these incentives and the way that they were
identified

In order to address the aforementioned issues,
section 2.2.1, we present a set of prerequisites for
architectural knowledge sharing based on the work
in [24]. They argue that successful architectural
knowledge sharing is only possible if these
prerequisites are met. The four prerequisites are
listed below:
• Alignment between design artifacts: Architectural

descriptions need to be aligned with other design
documents. This can be done by enriching the
architectural description with links to relevant
(lower level) design documents, allowing
developers or more technical stakeholders to
more easily find their way in the set of
documentation. This prerequisite deals with
issue: ‘No consistency between architecture and
design documents’.

• Traceability between architectural decisions and
Descriptions: If all architectural design decisions
are documented using specific templates,
including considered alternatives and the
rationale for the decisions; architectural
descriptions provide a good summary of the
decision-making process that leads to certain
architecture. As a result, communication between
architects and other stakeholders, such as
developers, will improve since the current state
of the architecting process is known at all times.
This prerequisite therefore addresses issue:
‘Communication overhead between
stakeholders’.

• Architects fulfill a central role: The architects
need to fulfill a central role in the architecting
process. This guarantees better communication
with all involved stakeholders through frequent
formal and informal meetings, direct involvement
of developers in decision-making and better
collaboration with the maintenance teams. This
prerequisite addresses issues: ‘No explicit
collaboration with maintenance teams’ and ‘No
feedback from developers to architects’.

• Central architectural knowledge repository: A
central architectural knowledge repository allows
for storing valuable input on the decision-making
process from all stakeholders involved. This
prerequisite therefore directly addresses issues:
‘No up-to-date knowledge from development
teams in repository’ and ‘No up-to-date
knowledge from main customer in repository’.

2.2.3. Requirements for AK sharing

There are five main requirements identified in
[15] for an architectural knowledge sharing

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

1227

environment, which are briefly explained in the
following:
• Integration: This requirement is considered most

important by the architects is that a tool
environment should offer a central point of
access to the various types of functionality
available. This central point of access should be
both attractive and intuitive.

• Project view: This requirement gives support for
a project view that enables management of
project-specific architectural knowledge. The
main advantage of such a project view is that it
offers a central point of access to easily search all
architectural knowledge related to a particular
project. For stakeholders that join a project at a
later point in time, such a central point of access
is helpful to quickly become acquainted with the
ins and outs of the project. In addition, it contains
information about the project stakeholders. This
information may include standard personal
contact information, but also more architectural
knowledge related content such as expertise areas
of people

• Manage documentation: Related to the previous
requirement is support for managing
documentation. The difference with the project
view is that the scope may be (much) broader,
including all sorts of company documents.

• Community building: In contrast with the need
for document management is the architects’ wish
to support building a community within their
department. Consequently, requirements in this
category include support for discussions and
sharing expertise, but also overviews of ‘who
knows what’ and ‘who is doing what’ in the
organization. Finally, the ability to share news
and events with colleagues would further add to
the community feeling.

• Constructing architecture descriptions: The last
main requirement relates to one of the primary
deliverables of the architects: architecture
descriptions. These documents usually contain a
variety of architectural knowledge, and usually
take multiple days or weeks to construct. All sort
of automated support during the process of
making well founded decisions, followed by
reflecting these decisions in the architecture
description is highly appreciated [15].
The aforementioned requirements are must for a

desired approach to architectural knowledge
sharing. However, the reason for presenting the
given requirements and prerequisites is to give the
reader the first impression of AKS problems as well
as being used as comparison criteria in our future
work to survey the effectiveness of the proposed
approaches in section 3.

3. APPROACHES ON ARCHITECTURAL
KNOWLEDGE SHARING

Since AK is a relatively new attention; only a few
works/ approaches for sharing the architectural
knowledge have been proposed. Furthermore, we
thoroughly looked at the current literatures, domain
analysis, regarding AKS. We identified four
general categories of AK sharing mechanisms,
which are (1) AK sharing through model, (2) AK
sharing using pattern structure, (3) AK sharing via
workspace, and (4) AK sharing through portal. On
this regard, all the related works about AKS were
further classified to these main categories in which
each category may encompass more than one
proposed approach.
However, to survey the current state of the art and

practice in this field, this section summarizes the
surveyed works on AKS and its variants, where the
mechanism as well as strengths and drawbacks/
issues associated with each approach is identified as
well.

3.1. AK Sharing Through Model

 In this category we found a variety of

approaches/ works comparing to the other
categories. In the following, these approaches are
presented.

3.1.1. Approach I

Preliminary work on AK sharing in a knowledge
gird through models has been carried out by de
Boer et al. [21]. They propose a model of
architectural knowledge that acts as a common
frame of reference and enables architectural
knowledge sharing, which is known as Griffin core
model. The core model of architectural knowledge
is depicted in Figure 1. The core model leaves room
for the use of different architecture description
methods, including IEEE-1471. On the other hand,
two perspectives can be viewed on the core model,
namely data integration and service integration. For
data integration the core model becomes a reference
model for sharing architectural knowledge. For
service integration, it provides the means to
integrate the services that a grid infrastructure may
provide. Refer to [21] for a more detailed
information about core model.
In order to use the given model in architectural

knowledge sharing, of course in grid-setting, the
model is deemed as an instantiation of the
knowledge grid discussed in [22]. The basic idea is
sketched in Figure 2. The model depicted in the
center is the core model of what concerns

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

1228

architectural knowledge. Organization-specific
models provide a specialization hereof. Refer to
[21] for information on envision of architectural
knowledge sharing in a grid-setting.

Figure 1. Core Model of Architectural Knowledge [21]

Figure 2. Sharing Architectural Knowledge in a grid-

setting [21]

 3.1.2. Strengths and issues (Approach I)

Having a core model of architectural knowledge
has a number of advantages, (1) it defines, from a

data integration perspective, a vocabulary for
architectural knowledge: the minimal set of
common notions that is needed when architectural
knowledge has to be made explicit. Terminology,
processes, and concerns particular to a specific
organization or domain can be expressed in terms
of core model concepts. Roughly speaking, the
organization-specific terminology lies like a shell
around the core model, which helps organization to
define their own methodologies. (2) With a shared
core model it becomes easier to agree on a common
terminology, which makes terminological
misunderstanding to be avoided.

The issues with this approach are, the detailed
and complete mapping relationship between Griffin
Core Model and shell model is not presented, and
some relationships between the elements in core
model are not well defined. This can hamper the
effective implementation of AK grid, and further
development in AK sharing and management.
Besides, this model does not allow multiple
stakeholders sharing the same concern. These
issues later were addressed in [23].

3.1.3. Approach II

This approach [23] is a refinement of the Griffin
core model in the sense that it overcomes the
problems, as described in section 3.1.2, associated
with the original model as well as, argues a UML
class diagram as a better means for representation
of core model of AK sharing.

The motivational arguments deal with the
question of why UML is better for the
representation of AK core model. On this regard,
the advantages of doing so are presented in [23] as
well. However, the refined Griffin core model in
UML as shown in Figure 3 can be regarded as a
model mapping based on Griffin core model in [21]
from UML perspective. In this model, all the 12
entity concepts in the Griffin core model are
inherited, and some of the actions as the
relationship between concepts are used but some
action are renamed in order to make it as simple as
possible for easy understanding. For example, the
“perform” action between Role and Activity entity
is mapped as a “perform” relationship between
Role and Activity concept in the refined Griffin
core model in UML. Refer to [23] for more
information on transformation from UML model to
OWL mode and case of concept mapping.

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

1229

Figure 3. Refined Griffin Core Model represented in UML [23]

3.1.4. Strengths and issues (Approach II)

This approach gives a clearer understanding
about how concept mapping on AK works and
which can be a base for the evaluation of instance
mapping quality on AK. Besides, it enables smooth
AK sharing and management since the UML is the
best language, could be, for the common
understanding, especially among the stakeholders.

Some issues regarding this approach are still
open to be addressed, such as: how to minimize the
change impact of core model modification, and the
model mapping between core model and the other
domain model. How to define the mapping quality
evaluation process in instance level, and what is
implicated relationship between the quality
prediction in the model level and practical mapping
result in instance level. The issues regarding quality
evaluation have recently been addressed in [24, 25].

3.1.5. Approach III

This approach is built on strategy that it looks at
the AK sharing through a knowledge grid, where
AK is captured in domain-specific models [24].
The use of such models allows different
organizations, departments, or even persons to
express their AK using their own concepts in the
AK grid. Using the mappings between these
models, all AK is transparently shared among the
interested stakeholders, as the AK is expressed for
each person in terms of his or her own domain
model(s). To implement this strategy, two different
sub-approaches are proposed in [24]. The first
approach is a direct mapping approach, in which all
models are directly mapped onto each other. The
second approach is an indirect mapping approach,
in which all the models map onto one central

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

1230

model. This central model acts a mediator between
the different domain models. On this regard, AK
sharing is generalized in two levels: the conceptual
level and the instance level. At the conceptual level,
an AK model defines the concepts and
relationships that a particular organization,
department, project, or person uses. At the instance
level, the instances of the aforementioned concepts
and relationships exist. Therefore, with the direct
mapping approach, one defines mapping
relationships from a source AK model to a target
AK model directly. The source AK model is the
model in which the instances to be translated are
defined. The target AK model is the language in
which one would like to use the AK. An indirect
mapping approach defines mapping relationships
from a source AK model to a target AK model
through a central model, which acts as a mediator.

3.1.6. Strengths and issues (Approach III)

One of the strengths associated with this
approach is that it solves the problem of local
domain model, in which different stakeholders can
share AK through their own domain models.
However, the tradeoff between the cost and the
quality of the AK sharing when using these two
sub-approaches is still an interesting challenge and
ongoing research. Recently, these issues have been,
to some extent, addressed in [24, 25].

3.2. AK Sharing Using Pattern Structure

Patterns have proven to be a good way to codify
knowledge in the field of software design, where
the knowledge can be shared through them.
Functional design patterns (FDP) are patterns that
describe recurring functionality of applications
[18].

This approach is hypothesized that extending
Functional Design Patterns with the explicit
representation of the problem space in terms of
conflicting conditions (forces and tensions) has the
potential to improve sharing of architectural
knowledge. To this end, this approach utilize a
novel sort of patterns called casual patterns [17] as
units to share knowledge, which are a combination
of problem-description in terms of forces, tensions
and tradeoffs with solution, as depicted in Figure 4.

Figure 4. Putting together functional design patterns and

forces and tensions [17]

Causal patterns are novel because no previous
research presented the idea of including forces and
tensions into patterns explicitly. Moreover,
template of such casual pattern can be viewed in
[17].

This mechanism asserts that putting together a
functional design pattern and the explicit
representation of forces and tensions, the author of
the pattern communicates critical conditions that
architects using the pattern should be aware of. In
this way, the architect is able to better reason about
the outcome and tradeoffs of applying the pattern.
More specifically, causal patterns improve sharing
of architectural knowledge because they make
explicit the rationale behind a design decision.
Therefore, according to the experts, causal patterns
can be used to communicate the “why” of a
decision, which in turn support architects in a more
efficient sharing of AK.

The word ‘efficient’ may raise this question that
why these casual patterns are called efficient? To
answer this question, the authors in [17] use the
ontology and their reasoning proposed in [19] to
discuss the effectiveness of causal patterns, where it
showed that causal patterns cover the relevant
issues supported by the ontology, viz., kinds of
architectural design decisions, attributes of
architectural design decisions, and relationships
between architectural design decisions.

3.2.1. Strengths and issues

This approach, casual patterns, brings some
advantages, (1) providing the rationale behind
repetitive architectural decisions: When architects
miss the reason why an important decision was
made, architects spend much time in rediscovering
the reason behind the old architectural decision.
Unaware of this decision, architects are afraid to
implement changes. Causal patterns seem to solve
this disadvantage of patterns. (2) Causal patterns
are crystallized pieces of understanding: It does not
mean that architects copy solutions when they use

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

1231

causal patterns. It means that causal patterns are a
tool to sanitize dynamics of the environment and
share them in time.

A main issue with this approach is how to
disseminate such patterns in which they can be
transferred and used. Therefore, research needs to
be done to find a method, in a maintainable way, to
address this issue.

3.3. AK Sharing Via Workspace

Workspaces are virtual spaces, which are
conceived as a logical counterpart of physical
spaces and are based on physical metaphors [13,
14]. Like physical spaces, these workspaces are
expected to make all the required objects, tools,
people, and guidelines available along with all the
necessary communication channels and
coordination mechanisms. A workspace is expected
to create opportunities for the users to turn them
into a place of collaboration as in a virtual world it
is not the spatial features of a space that matters the
most, rather what the users of such a space can do
within it and that is what turns such a space into a
place. That is why it is vital that a virtual space
provides its users with an opportunity to turn it into
a place for collaboration.

Figure 5 shows the structure of the mechanism of
knowledge-sharing workspace along with its major
components, which was designed in [16] to support
the different activities (such as design, evaluation,
and documentation) of the software architecture
process in the context of global software
development. All the objects of the workspace are
related with one another according to a meta-model
of collaboration presented in [14]. Actors assuming
organizational roles collaborate with other roles
within same workspace or in another workspace to
perform designated actions on artifacts to achieve
desired organizational goals [13]. Artifacts are
either inputs for or outputs from different actions.
Roles are attached to a particular workspace and are
unique within that workspace; more than one
workspace may have the same roles attached to
them. For example, a manager role may be attached
to the workspaces designed to support the plan
architecture evaluation, and prepare and manage
results activities of the proposed process. Refer to
[16] for the detailed explanation of the components.

3.3.1. Strengths and issues

 This approach enables the scalability of the
needs of distributed and virtual teams in the context
of global software development, which are not
addressed in the most the tools, for capturing and

sharing AK, designed based on the traditional
workflow paradigm. Instead, it uses an electronic
workspace paradigm for sharing AK. Besides, these
workspaces allow participants to share knowledge
in manners increasingly being used by different
communities. Participants of such workspaces can
produce or consume AK using codification strategy
and/or easily consult known experts and/or peers
wherever needed using personalization strategy.
Moreover, teams can easily change the workspace
objects and participants as the work progresses and
teams evolve.

 Figure 5. The structure of a knowledge-sharing

workspace and its major components [16]

One issue with this approach is the immaturity of
that to be applied in practical architecture
evaluation process. Therefore, research needs to be
conducted to experiment the given approach before
it can be employed in the practice.

3.4. AK Sharing Through Portal

The design and implementation of this approach
stems from questions what architects’ specific
architectural knowledge sharing needs are, and how
best to fulfill these needs. In response to this
questions work in [15] has discovered that
architects are especially in need for ‘Just-In-Time
(JIT) architectural knowledge’, which is defined as
access to and delivery of the right architectural
knowledge, to the right person, at any given point
in time. Such architectural knowledge may include
updates on major decisions made or discussions
held, but also contact information or expertise of
important stakeholders.

Therefore, to fulfill the above needs, this
approach utilizes a web-based architectural
knowledge sharing portal [15]. This portal harbors
various types of architectural knowledge, which can

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

1232

be easily retrieved using a number of integrated
codification and personalization techniques.

The portal is in essence a client server system; a
web browser communicates with an Apache web
server. Asynchronous communication between the
client and server is applied whenever possible, to
foster the speed and usability of the application. All
architectural knowledge is stored in a relational
database. Additional meta-data is stored with this
architectural knowledge to make retrieval easier.
For the client side of the portal, a suitable open
source framework: Portaneo is selected, a Rich
Internet Application. Portaneo is highly modifiable,
has a flexible plugin system –making the portal
highly extensible – and, above all, is free. These
characteristics make it a better choice compared to
existing commercial software such as Microsoft
Sharepoint, because with Portaneo experiment
more easily can be done with the portal, while
using little resources. For a more detailed
discussion about the portal’s architecture and its
features refer to [20].

Furthermore, the portal has three main features,
as follows:
• Integrated functionality: The portal offers a

central access point to various types of
functionality by means of a start page.

• Stakeholder-specific content: The portal offers an
intuitive and attractive user interface. Since
architects are already familiar with web pages,
navigating the portal is easy.

• Notifications and subscriptions: The portal has a
built-in subscription and notification system.
Architects can subscribe to specific architectural
knowledge topics (e.g. a topic of a discussion
forum) or artifacts (e.g. a document).
The above three features together ensure that [15]

portal offers support for what is defined as JIT
architectural knowledge. The integrated
functionality provides access to ‘the right
architectural knowledge’. The support for
stakeholder-specific content ensures that ‘the right
person’ finds what he wants. Finally, the
subscription and notification mechanisms allow
architects to stay up-to-date by delivering the
relevant architectural knowledge to them when
needed.

3.4.1. Strengths and issues

The portal’s integrated functionality is one the
strengths that supports architects in their decision-
making process, by providing easy access to the
right architectural knowledge at any given point in
time (support for JIT). Furthermore, the given
approach also supports personalization(besides

codification) techniques such as collaboration using
portal’s discussion board for sharing architectural
knowledge because it helps stakeholders to find
each other through the portal, which in turn can be
considered as a good first step to create a real
‘community of architects’.

One issue with respect to this approach is the low
satisfaction of its best practices repository, where
architectural knowledge is codified in predefined
formats, and could be retrieved for various
purposes. Because, adding or modifying the best
practices is time-consuming and error-prone, the
costs for keeping the content up-to-date outweigh
the benefits as well. Therefore, research needs to be
carried to make the repository more intelligent,
better maintainable, and better-looking.

4. CONCLUSION AND FUTURE WORK

In this paper an overall introduction to the

problems of AK sharing is given. Background and
basic terminology on architectural knowledge and
architectural knowledge sharing is presented. A
summary of surveyed works on sharing approaches,
including mechanism, strengths, and issues, for AK
is provided as well. Finally, conclusion and future
work are included, which addresses the interesting
research trends in connection with this field.

Based on the information that was presented in
the overall paper, the following conclusions can be
drawn:
• Although AK is relatively new, there is plenty

of research on AKS, which shows the
increasing interest on architectural knowledge
and sharing within the software engineering
and architecture community. However, much
of this research is being conducted towards
problem analysis, software architecture, and
implementation techniques.

• Based on the survey shown among AKS
approaches and the fact that these sharing
approaches are improved from the issues
brought up on previously AK approaches, at
the moment and to the best of our knowledge
and understanding of the surveyed AKS
approaches, it is not easy to select the best
approach for AKS, as with AK sharing itself.
But the AK sharing approach via workspace
proposed by [16] shows to be one of the most
effective sharing approach of AK at the present
time.

Future works for this study include surveying
more AK sharing approaches and incorporate new
AKS approaches that are in the process of research.
Besides, (as immediate future works) the

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

1233

effectiveness of proposed AKS approaches will be
compared and analyzed in terms of their ability to
fulfill different kind of requirements and
prerequisites of AKS ,as were described in sections
2.2.2 and 2.2.3. More specifically, those
requirements will be used as comparison criteria
towards determining an effective mechanism of
AKS in global software development. Furthermore,
the investigation of Aspect-Oriented paradigm as
mediator connector in indirected sharing AK model
approach, where AK is viewed as a process, will be
considered.

5. ACKNOWLEDGMENT

The authors would like to thank Assistant
Professor Dr.Paris Avgeriou, University of
Groningen, and The Netherlands, who provided
them the opportunity to come up with this study.

6. REFERENCES

[1] R.C. de Boer, R. Farenhorst , “In Search of

Architectural Knowledge”, In Proceedings of
the 3rd international workshop on Sharing and
reusing architectural knowledge (SHARK08),
ACM, Leipzig, Germany, pp. 71-78, 2008.

[2] P. Lago, P. Avgeriou, R. Capilla, and P.
Kruchten, “Wishes and Boundaries for a
Software Architecture Knowledge
Community”, In Seventh Working IEEE/IFIP
Conference on Software Architecture, IEEE
computer society, pp.271-274, 2008.

[3] N. B. Harrison, P. Avgeriou, and U. Zdun.
“Using patterns to capture architectural
decisions”, IEEE Software, pp.38-45, 2007.

[4] P. Lago, P. Avgeriou, “First Wrokshop on
Sharing and Reusing Architectural
knowledge”, SIGSOFT Software Engineering
Notes 31(5), ACM, pp.32-36, 2006.

[5] P.Avgeriou, P.Kruchten, P.Lago, P. Grisham,
and D. Perry, “Sharing and Reusing
Architectural Knowledge - Architecture,
Rationale, and Design Intent”, In 29th
International Conference on Software
Engineering (ICSE'07 Companion), IEEE
computer society, 2007.

[6] R. Farenhorst, “Tailoring Knowledge Sharing
to the Architecting Process”, SHARK’06 ,
ACM, Torino, Italy, 2006.

[7] M. T. Hansen, N. Nohria, and T. Tierney,
“Whats your strategy for managing
knowledge?”, Harvard Business Review, pp.
106–116, 1999.

[8] A. Jansen, J. van der Ven, P. Avgeriou, and D.
Hammer, “Tool support for architectural
decisions”, In 6th Working IEEE/IFIP
Conference on Software Architecture (WICSA),
2007.

[9] P. Kruchten, P. Lago, and H. van Vliet,
“Building up and reasoning about architectural
knowledge”, In 2nd International Conference
on the Quality of Software Architectures, 2006.

[10] M. A. Babar, R. C. de Boer, T. Dingsøyr, and
R. Farenhorst, “Architectural knowledge
management strategies: Approaches in
research and industry”, In Second Workshop
on SHAring and Reusing architectural
Knowledge Architecture, Rationale, and
Design Intent-TOC (ICSEW’07), IEEE
Computer Society, Minneapolis, USA, 2007.

[11] R. de Boer, R. Farenhorst, J. van der Ven, V.
Clerc, R. Deckers, P. Lago, and H. van Vliet,
“Structuring software architecture project
memories”, In 8th International Workshop on
Learning Software Organizations (LSO),
2006

[12] R. Farenhorst, P.Lago, H. van Vliet,
“Prerequisites for Successful Architectural
Knowledge Sharing”, In proceedings of the
2007 Australian Software Engineering
Conference (ASWEC'07), IEEE computer
society, 2007.

[13] I. Hawryszkiewycz, “Designing the Networked
Enterprise”, Artech House, Boston, USA,
1997.

[14] R.P. Biuk-Aghai, I.T. Hawryszkiewyez,
“Analysis of Virtual Workspaces”,
Proceedings of the Database Applications in
Non-Traditional Environments, 1999.

[15] R.Farenhorst, R. Izaks, P. Lago, H. van Vliet,
“A Just-In-Time Architectural Knowledge
Sharing Portal”, Seventh Working IEEE/IFIP
Conference on Software Architecture, IEEE
computer society, 2008.

[16] M. A. Babar, “The Application of Knowledge-
Sharing Workspace Paradigm for Software
Architecture Processes”, SHARK’08, ACM,
Leipzig, Germany, 2008.

[17] M. L. Ponisio, K.Sikkel, E. Vermeulen,
“Structures to Effectively Share Architectural
Knowledge”, Proceedings of the IASTED
International Conference on Software
Engineering as part of the 26th IASTED
International Multi-Conference on Applied
Informatics, ACTA PRESS, Innsbruck,
Austria, pp.192-199, 2008.

[18] J. Snijders, Functional design patterns, Master
Thesis, Utrecht University, 2004.

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

1234

[19] P. Kruchten, “An ontology of architectural
design decisions in software intensive
systems”, In 2nd Groningen Workshop on
Software Variability, pp. 54–61, 2004.

[20] R. Farenhorst, P. Lago, and H. van Vliet,
“EAGLE: Effective Tool Support for Sharing
Architectural Knowledge”, Under submission.

[21] R.C de Boer, R. Farenhorst, P. Lago, H. van
Vliet, V.Clerc, and A .Jansen, “Architectural
knowledge: getting to the core”, In
Proceedings of 3rd International Conference
on the Quality of Software-Architectures
(QoSA), Boston, USA. pp. 197-214, 2007.

[22] H. Zhuge, “The Knowledge Grid”, World
Scientific Publishing Co., Singapore, 2004.

[23] P. Liang, A.Jansen, and P. Avgeriou,
“Refinement to Griffin Core Model and Model
Mapping for Architectural Knowledge
Sharing”, RUG-SEARCH-07-L01, 2007.

[24] P. Liang, A. Jansen, and P. Avgeriou,” Sharing
architecture knowledge through models: quality
and Cost”, The Knowledge Engineering
Review, Cambridge University Press, 2008.

[25] P.Liang, A. Jansen, and P. Avgeriou,“
Selecting a High-Quality Central Model for
Sharing Architectural Knowledge”, The Eighth
International Conference on Quality Software,
IEEE computer society, pp.357-365, 2008.

[26] A. Ran and J. Kuusela,” Design Decision
Trees”, In 8th International Workshop on
Software Specification and Design, pp. 172–
175, 1996.

[27] E. Carayannis and J. Coleman, “ Creative
System Design Methodologies: the Case of
Complex Technical Systems”, Technovation,
pp.831–840, 2005

[28] S. Chen, “Task Partitioning in New Product
Development Teams: A Knowledge and
Learning Perspective”, Journal of Engineering
and Technology Management, pp.291–314,
2005.

[29] P. Kruchten, P. Lago, H. van Vliet, and T.
Wolf, “ Building up and Exploiting
Architectural Knowledge”, In 5th Working
IEEE/IFIP Conference on Software
Architecture (WICSA), Pittsburgh,
Pennsylvania, USA, pp. 291–292, 2005.

[30] P. Kruchten, H. Obbink, and J. Stafford, “The
Past, Present, and Future for Software
Architecture”, IEEE Software, pp.22–30, 2006.

[31] M. A. Babar, I. Gorton, and B. Kitchenham,”
A Framework for Supporting Architecture
Knowledge and Rationale Management”, In
Rationale Management in Software
Engineering, pp. 237–254. 2006.

[32] L. Lee and P. Kruchten, “Capturing Software
Architectural Design Decisions”, In P.
Kruchten, editor,Canadian Conference on
Electrical and Computer Engineering
(CCECE), pp. 686–689, 2007.

[33] R. C. de Boer , H. van Vliet, “Constructing a
Reading Guide for Software Product Audits”,
In 6th Working IEEE/IFIP Conference on
Software Architecture (WICSA), Mumbai,
India, pp. 11–20 2007.

[34] R. Farenhorst, P. Lago, and H. van Vliet, “
Effective Tool Support for Architectural
Knowledge Sharing”, In 1st European
Conference on Software Architecture (ECSA),
Aranjuez (Madrid), Spain, pp. 123–138, 2007.

[35] I. Habli and T. Kelly, “Capturing and
Replaying Architectural Knowledge through
Derivational Analogy” , In Second Workshop
on Sharing and Reusing Architectural
Knowledge - Architecture, Rationale, and
Design Intent, (SHARK/ADI), Minneapolis,
USA, 2007.

[36] M. A. Babar and I. Gorton, “ A Tool for
Managing Software Architecture Knowledge”,
In Second Workshop on Sharing and Reusing
Architectural Knowledge - Architecture,
Rationale, and Design Intent, (SHARK/ADI),
2007.

[37] R. Bahsoon, “ Defining Dependable Dynamic
Data-Driven Software Architectures”, In IEEE
International Conference on Information Reuse
and Integration, (IRI), pp. 691–694, 2007.

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

1235

Table 1. Definitions of ‘architectural knowledge’

Ran and Kuusela
(1996) [26]

To avoid replication when representing variations and alternatives DDT structures
architectural knowledge hierarchically into fine-grain elements we call design
decisions.

Carayannis and
Coleman (2005)
[27]

The architectural innovation is dependent on the system designers’ knowledge of the
components in the system and their knowledge of the configuration of the components.
Henderson and Clark (as cited in Afuah, 1998) show the knowledge as Component
Knowledge (CK) and the latter Architectural knowledge (AK).

Chen (2005)
[28]

A distinction that is particularly significant in the product innovation context is the
distinction between component-specific knowledge and “architectural” knowledge
(Henderson and Clark, 1990). Component knowledge is knowledge that concerns a
particular aspect of an organization’s product, process or operation. Architectural
knowledge, on the other hand, relates to the various ways in which the components are
integrated and linked together into a complete system.

Kruchten et al.
(2005) [29]

Architectural knowledge consists of architecture design as well as the design decisions,
assumptions, context, and other factors that together determine why a particular
solution is the way it is.

Kruchten et al.
(2006) [9]

Architectural Knowledge = Design Decisions + Design, derived from ‘Architectural
knowledge consists of architecture design as well as the design decisions, assumptions,
context, and other factors that together determine why a particular solution is the way it
is.’

Kruchten et al.
(2006) [30]

Some researchers are looking into architectural knowledge – that is, architectural
design decisions and their rationale.

Babar et al.
(2006) [31]

We propose a framework for managing design rationale to improve the quality of
architecture process and artifacts. This framework consists of techniques for capturing
design rationale, and approach to distill and document architectural information from
patterns, and a data model to characterize architectural constructs, their attributes and
relationships. These collectively comprise Architectural Design Knowledge (ADK) to
support the architecting process.

SHARK
workshop
(2006,2007) [4,
5]

Architectural Knowledge (AK) is defined as the integrated representation of the
software architecture of a
software-intensive system or family of systems along with architectural decisions and
their rationale external influence and the development environment.

Lee and
Kruchten
(2007) [32]

Software architectural knowledge is composed of the design and the set of decisions
made to arrive at the design.

De Boer and
Van Vliet (2007)
[33]

Following a recent trend in software architecture research we refer to the collection of
architectural design decisions and the resulting architectural design as ‘architectural
knowledge’.

Farenhorst et al.
(2007) [34]

[..] not only the architecture design itself is important to capture, but also the
knowledge pertaining to it. Often,
this so-called architectural knowledge is defined as the set of design decisions,
including the rationale for these decisions, together with the resulting architectural
design.

Habli and Kelly
(2007) [35]

Architectural Knowledge = {drivers, decisions, analysis}

Babar and
Gorton
(2007) [36]

[The knowledge management component] provides services to store, retrieve, and
update artifacts that make up architectural knowledge

Bahsoon (2007)
[37]

We anticipate the architectural knowledge to constitute architectural artifacts such as
deployable components
and associated specification of what the components provide and require, quality
requirements, scenarios corresponding to specific dependability requirements, and
possibly dependable styles and patterns.

