
Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

1182

MODELING AND AUTOMATED BLACKBOX REGRESSION
TESTING OF WEB APPLICATIONS

Hamzeh Al Shaar and Ramzi Haraty
Department of Computer Science and Mathematics

Lebanese American University
Beirut, Lebanon

Email: h_alshaar@yahoo.com, rharaty@lau.edu.lb

 ABSTRACT

 Web applications are nowadays at the heart of the business world. All corporate companies and big
institutions have very busy e-commerce web sites that host a major part of their businesses. With this great
emergence of web applications, techniques for maintaining their high quality attributes should be developed
and exercised. Moreover, the quick evolution of web technology and the high user demands made web
applications subject to rapid maintenance and change, which require the development of efficient regression
testing techniques. The current testing efforts documented in research deal with a specific part of a web
application. While some papers model and test the server side programs of the application, others model and
analyze the navigation between pages as seen by the user, and yet others deal with analyzing the architectural
environment of the web application. Motivated by the fact that there is no single model to represent the entire
web application, and to model it from different perspectives at the same time, we propose a single analysis
model with it testing techniques which models and tests the three poles of the web application: the client side
pages navigated by the user, the server side programs executed at runtime, and the architectural environment
hosting the application. Having discovered, as well, that there is no automated black box regression testing
technique, we also propose a methodology and algorithm to create a tool capable of applying black box
regression testing automatically.

Keywords: Modeling, Testing And Regression Testing, And Web Applications.

1. INTRODUCTION

 As the web is growing and invading our world,
and as using the Internet became a normal habit to
the new generation, web applications started to take a
major part in the software industry and began to
invade the business market playing an important role
in facilitating the business flow of most companies.

 With this emerging importance of web
applications in the commercial sector, and with the
new and challenging quality requirements of web
software, techniques to test and to control their
quality attributes became a must. However,
developing such testing techniques for web
applications is much more complicated than that of
classical software and this is mainly due to the nature
of the web applications.

 Unfortunately, there is no well-developed and
mature model to analyze and test web applications
yet. All the previous work dealt with certain aspects

of the web applications while neglecting the rest.
Even worse, very few testing and regression testing

techniques have been exploited to be used by web
applications.

 Motivated by the fact that there is no single model
to represent the entire web application, and to model
it from different perspectives at the same time, we
propose a single analysis model which models the
three poles of the web application: the client side
pages navigated by the user, the server side programs
executed at runtime, and the architectural
environment hosting the application. Based on this
model, we also propose testing and regression testing
techniques for each of the three parts of our model.
The rest of the paper is organized as follows: section
2 presents related work. Section 3 presents our three
poled model and the testing techniques of each pole.
Section 4 presents our automated black box
regression testing technique. Section 5 presents a
case study. And Section 6 concludes the paper.

2. RELATED WORK

 In this section, we present some of the previous
work done in the field of web application modeling
and testing and in the field of regression testing.

1183

 Wu and Offutt [14] presented an analysis model
for modeling the server side components and the
client server interactions. Wu et al furthered their
work by extending their model to cover inter-
component connections between different server side
components [15]. The new model also covers the
current state representation of a web application and
the current state of variables. Ricca and Tonnela [1]
modeled a web application as a sequence of web
pages and they modeled the interaction between
them in a UML diagram. Ricca and Tonnela also
tackled web application slicing [2]. In their work,
Ricc and Tonnela extended the concept of
application slicing and applied it to web applications.

 Sebatien, Karre, and Rotherm [12] presented a
technique for automatically testing a web application
based on the user session data collected from the
user’s navigation of the website. Similar work was
proposed by Wen [11]. In his paper, he proposes a
technique for generating test cases that are based on
URLs to be automatically exercised. Sneed [4] wrote
a paper that focuses on the web application
architecture and recommends that this architectural
environment be tested independently of the web
application itself.

 There are numerous papers that discussed
regression testing of classical software
[5][6][10][13]. These papers include work done by
Xu, Yan, and Li [7], and the work done by Granja
and Jino [8] and the work by Xu, Chen, and Yang
[9], which also discusses regression testing of web
applications using slicing.

3. THE MODEL

 Our work models a web application from three
different perspectives: The architectural
environment, the client side navigation and flow of
execution, and the server side programs and their
dynamic output. Each of those parts has its own sub
model and its own testing techniques.

3.1 The Architectural Environment Model
 In this section, we propose a graphical analytical
model to describe the architectural environment and
also propose a set of testing and analysis techniques
based on this model. Testing of this model is more
oriented towards analysis and evaluation of the
environment rather than checking for correctness,
since it is possible to have different architectures for
one application but each with certain advantages and
disadvantages.

 Modeling the architectural environment of the
web application includes representing:

- All physical servers,
- All software installed on physical servers

(e.g., IIS, Apache, SQL Server, etc.),
- The communication protocols between

connected nodes of servers,
- The type of messages exchanged, and
- The clustering and redundancy of servers.

 The model represents the architectural layer in a
diagram similar to a UML diagram. The diagram
represents nodes of physical servers as rectangles
named with the computer name of the server. We
represent the servers by a set of triplets S, where
each triplet contains the server name, the operating
system installed on it, and the processor type of the
machine (e.g., Intelx86, SPARC, etc.). The
rectangular box includes one or multiple squares,
with each square representing the software server
installed on the machine such as IIS, Oracle
Database Server or IBM Websphere.

 The set of software servers are represented by a
set SV of triplet where each triplet contains the
software server name (named for ease of reference),
the software server installed, and the physical server
name.

 If two software servers are clustered for
redundancy then we represent this as two parallel
dashed lines connecting the two boxes (not arrows).
If the two software servers are load balanced, then
the two boxes are connected with two parallel non-
dashed lines (not arrows). Normally, if two servers
are load balanced then they are automatically
clustered for redundancy, so they are presented as
load balanced servers only and not as both.

 Clusters are represented as a set C of pairs where
each pair contains the names of the software servers
being clustered. In case we have more than two
servers in the cluster, then we have the first and the
second in the first pair, the second and the third in
the second pair and so on. In other words those pairs
are transitive. Similarly, we have a set LB of pairs
containing the load balanced servers.

 The communication between servers is
represented in the diagram by arrows between
software servers (squares). If a server sends data to
another server then we have an arrow from the first
server to the second. If the second server returns data
then we will have another arrow in the opposite
direction.

1184

 The communication links between the software
servers are presented as a set of quadruples Cmi
where each quadruple contains the source software
server name (member of set SV), the destination
software server (as defined by set SV), the
underlying protocol being used (such as FTP, HTTP,
or SSL), and the type of messages sent from the
source server to the destination servers. If the source
or destination servers are members of a grid or a
cluster, we name any of the cluster members instead.

 The type of exchanged messages is predefined
and can be one of the following:

- http_rq (http request),
- http_rs (http response),
- db_q (database query),
- db_rs (database result set),
- f (file transfer),
- xml (XML file or XML messages), and
- SL (packets sent over a direct socket layer

opened from the application).

 Finally, the software libraries and application
extensions are represented as set LR of pairs where
each pair has the server name (as represented in S)
and the name of the communication library, driver,
or extension installed.

3.1.1 The Architectural Model Testing
Techniques
 The tests for the operational environment are
specified as a list of the quality attribute tests that
should be done:

1- Compatibility of the operating system (OS)
with the hardware,

2- Compatibility of the OS with installed
software servers,

3- Compatibility of the communication
protocols,

4- Compatibility of the application
communication libraries,

5- Analysis of the messages exchanged,
6- Level of redundancy,
7- Level of load balancing, and
8- Level of scalability.

 Tests 1, 2, 3, and 4 are critical and all tests should
succeed in order to have a running application. Tests
5 through 8 are not critical, although important.

OS/HW Compatibility Test
 The OS and hardware compatibility test (OS/HW)
is a mandatory test, which our architectural
environment must pass. The test is represented by

the set T1 of pairs. Each pair has the server name (as
in the set S) and the values 0 or 1 paired with it. The
value indicates whether the operating system
mentioned in the triplet of the server in question
from S is compatible with the processor type
mentioned in the same triplet. In case the resulting
set has all server names paired with the value 1, then
our test has succeeded.

OS/SW Compatibility Test
 The OS and software servers compatibility test
(OS/SW) is also a mandatory test, which our
architectural environment must pass. The second test
is represented by the set T2 of pairs. Each pair has
the software server name (as mentioned in the set
SV) and the result of the test for this triplet which is
either zero or one, indicating if the installed
application server (second part of the triplet from the
set SV) is compatible with the operating system of
the server installed on it. All resulting pairs should
have the value of 1 paired with the software servers.

Communication Protocols Test
 The communication protocol test is mandatory to
succeed as the previous two.
The test is represented as a set T3 of pairs. The pair
contains the name of the connection Cmi and the
value of the feasibility of this connection on the
protocol level mentioned as the fourth part in the
quadruple representing Ci. If this connection is
possible between the two pairs, then the connection
name will be paired with the value “one” else it will
be paired with the value “zero”.

Communication Libraries Test
 The communication libraries compatibility test
tests the communication feasibility on the application
layer level and not on the protocol levels. This test
checks for all the needed additional extensions and
libraries that do not exist by default and that are
required for the communication between servers.
Obviously, the success of this test is mandatory as
well. This test is represented as a set T4 of the
required extensions/libraries and their existence.
Thus, T4 is a set of triplets where each triplet
contains the server name (as in set S), the required
library/extension, and the existence value which is
one (for exists) or zero (for does not exist). This test
succeeds if all triplets have value 1 as their third part.

Analysis of the Exchanged Messages
 Analysis of the exchanged messages is a non-
mandatory test, which evaluates the efficiency of the
communication and the message exchange between
the servers. In this test, we take each communication
channel and we evaluate its efficiency taking into

1185

consideration the kind of messaging, the underlying
protocol, and the frequency of use. The value of this
evaluation is subjective and it is scaled between 1
and 10 (where 10 is the most optimal). This test can
be represented as a set T5 of pairs where each pair
has the connection name (Ci) and the value of the
evaluation.

Level of Redundancy
 The level of redundancy test provides us with
values about the level of redundancy provided by the
current architecture. Full redundancy is not necessary
for the application to run but it is highly
recommended to have all servers clustered to ensure
high availability of the application. It is important to
keep in mind that all servers that are load-balanced
are redundant by default, so we should take those
into consideration. An easy and straight forward way
to calculate redundancy is as follows: we first
prepare the set SV’ which is the set of all non-
clustered and non-load-balanced servers. This set is
derived from SV by removing from SV all servers
that are part of a pair in the set C or the set LB. Then,
we calculate the redundancy as the one minus the
ratio of the cardinality of SV’ over the cardinality of
SV. Generally speaking, an ideal result equals one.

Level of Load Balancing
 The level of load balancing test checks the load
balancing between the servers. This test is very
similar to the previous one. We create the set SV” in
a very similar way but it is derived from SV in a
slightly different way. It eliminates from SV only
those servers that exist in any pair in the set LB. We
calculate the level of load-balancing as 1 minus the
cardinality of SV” over the cardinality of SV. The
optimal value is one.

Level of Scalability
 The level of scalability test measures the level of
scalability in our architecture. This test is not
mandatory to succeed for the application to run, but
it is preferred to have good scalability on the
architectural level to ensure the possibility to handle
additional number of users in the future. Normally, a
typical scalable architecture is where all servers are
capable of being scaled and expanded to additional
servers. We do not take into consideration the ability
to upgrade existing servers in terms of increasing
storage or memory since this is out of our scope. We
rather consider the underlying technology on each
server and the possibility to expand it on more
additional servers. The easiest way to perform this
test is to measure the ratio of the servers capable of
being scaled to the total number of servers. So we
define a set S’ which is a subset of the set S and

which contains the names of all servers that can be
scaled. We define scalability as the cardinality of the
set S’ over the cardinality of the set S; so scalability
scl=|S’|/|S|. scl = 1 is optimal.

3.2 The Client Side Navigational Model
 Client side modeling models the web application
from the client perspective or as the application is
viewed from the client browser. For a normal web
surfer browsing the web application at a client
browser, the web applications consists of a set of
web pages residing at the web server and are
navigated by loading them into the browser one after
the other by a certain sequence. This sequence is
decided by the logic of the web application and is
done via HTML hyperlinks.

 To model the application from a client side, we
have to model what this web user sees in the client
browser. Even when considering dynamic pages and
server side scripts, we only deal with their HTML
output as seen by the client regardless of the other
logic running at the server. From a user’s point of
view, s/he is reading HTML pages, and interacting
with HTML controls, mainly links and forms.

 As with all three parts of our model, we use
graphs in order to build our analysis model. The
model presents the web application in a graph similar
to UML.

 For the sake of simplicity and in order to make
our web application similar to standard graphs, we
will assume that the web application starts at one
start page and ends in one end page. If there is more
than one start page, we can create one start page with
branches to each of them. Similarly, if we have
different exit pages, we can link them all to one exit
page.

 Web pages have different types and behaviors,
and since we cannot model each and every case, it is
important to differentiate between different types,
which cover most cases of HTML pages:

Static HTML pages: we chose to model those pages
as squares where each square is tagged by a pair of
the page name and the server name where this page
resides.

Dynamic HTML pages are those pages that are
generated by a server side script such as CGI, JSP, or
ASP. Dynamic pages are modeled as rhombuses
tagged by a pair containing the page name and the
server name they reside on.

1186

Pages with frames: our aim is to model the
application as seen by the web user, and we model
frames as they appear in the client browser, so we
model the page with frames as a box that is divided
into sub boxes where each internal box refers to a
frame of that page. The holding box should be
tagged by the name of the main page holding the
frameset. Inside each sub box we write the page
name that is originally loaded into that frame. Frame
behavior is modeled by replicating the main page as
long as navigation is done within one of its frames
until the main page (containing the frames) is
changed.

Page transitions and links: Roughly speaking, pages
are called and loaded into the browser using three
ways: Hyperlinks, Form Submitting, and Server
Redirects.

• A page with a server redirection is
represented as a normal dynamic page with
an arrow arriving to it from the main page
and another dotted arrow leaving it to the
final output page, regardless if it involves
other intermediate redirects.

• Links: Web pages are connected to each

other by hyperlinks or simply links. A link
is modeled by drawing a single headed
arrow from the page containing the
clickable link to the page, which the link
refers to. The arrow is tagged by the list of
parameters passed by the link.

• Forms: Forms are the most important

components that provide the web user with
an interface to submit data into the web
page. We model a form on a page by a
small circle tagged with the form name.
The form submission is modeled by a
double headed arrow, which is tagged by a
list of the parameters that are passed.

3.2.1 Client Side Model Testing Techniques
 In this section we suggest a set of testing
techniques based on the suggested model and which
enables the testing of the correctness of the web
application as viewed from the user side or from the
client side.

 Testing the correctness of the application from the
client side does not deal with the logic running at the
server and it assumes that the server side programs
are correct and based on this, the tests should focus
on the correctness of the HTML components

displayed in the client browser and a proper flow of
navigation between pages.

 Thus, in order to perform client side testing, we
have to test all pages visible to the user, their main
components, and the transitions among them. So we
test the following:

1- Orphan pages
2- Broken Links
3- Dead End pages
4- Parent Child sequences - parent pages are

pages that should precede other child pages

 The sequence of performing the tests is important
especially between the first and the second test since
the second test uses the all-node coverage criterion
and assumes that no orphaned pages exist in the
application.

Orphan Pages
 Orphaned pages are regular web pages in a web
application that cannot be reached from any other
page. Having an orphaned page is not desirable
because it causes problems with graph coverage
criterion. Orphan pages should be either:

1. removed from the application, or
2. analyzed and proper edges are adjusted

accordingly.

 To determine the orphaned pages we do the
following analysis on the graph and nodes: if N is the
set of all nodes, N’ is the set of orphaned nodes
(initially empty), and E is the set of all edges.
Elements of E are designated by the triplet (e1, n1,
n2) where n1 and n2 are the two nodes connected by
the edge e1 in the direction from n1 to n2. We start
the analysis in determining the orphaned nodes by
taking each element n of N (except the start node)
and searching the set E for a triplet that has n as its
third member. If we cannot find such an edge, then n
is added to N’. N’ will contain all orphan nodes that
should be dealt with accordingly.

Broken Links
 Sometimes we may have some links referring to a
non-existent page. When we generate test cases
based on our graph model and we try to exercise
them on the application, we can detect those broken
links and fix them.

 To generate test cases based on the all-node
coverage criterion, we create a set N of all the
available nodes. We start the first node and we pick a
path from the start page to the end page. Each time

1187

we visit a new node, we add this node to the set N’
(set of visited nodes). We add the path that we just
traversed to the set T of paths and we start traversing
a different path until N = N’. Now the set T contains
the set of paths that traverses all the nodes in the
graph (all-nodes coverage criteria). We apply all test
cases in T to the application to detect (and later fix)
any broken links.

Dead End Pages
 Dead end pages are pages that do not have any
links to other pages and thus they force the user to be
locked in them or be forced to use the browser’s
back button. Since this test follows the orphaned
pages test in order, then we are sure that all pages in
N are not orphan pages. The testing technique goes
as follows: Let be N is the set of all available nodes,
and E is the set of all edges as defined in the previous
section and D is the set of dead end pages. D is
initially empty. We start investigating each node n of
N (except the end page). The node n should have a
corresponding edge in E where n is the second item
in the triplet. Any page not satisfying this condition
is added to the set D. After we finish investigating all
nodes, we start analyzing the nodes obtained in D.
Each node in D can be dealt with based on one of
two scenarios:

1- N navigational hyperlinks are added from
this page to the end if no additional
navigation is required from this page.

2- Corresponding edges to the graph are added
in case navigation is needed from this page
to some other page in the application.

Parent-Child Sequences
 Parent pages are those pages that must be
traversed before other pages. We should differentiate
between direct parents where a parent page and a
child should have an edge between them and
between grand parents where a parent page and a
child should have a path connecting them.

 To start the testing technique, we designate the set
of direct parent pages by P1 where all elements of P1
are pairs where the first item of the pair is the parent
page and the second item is the direct child page. We
define the set P2 of indirect parents where each
element is a pair of the parent page and the other
child page that should follow the parent page later in
the execution sequence. E as defined earlier is the set
of edges. T is the set of paths that satisfies the all-
node coverage criterion. For the sake of
completeness, we define F1 as the set of non-
satisfied direct parent child requirement. We define

F2 to hold the indirect parent child pairs that failed
the test. F1 and F2 are initially empty.

 We start by testing the direct parents. For each
pair in P1, search for a corresponding pair in E where
the first and second items from P1 match the second
and third items in E, correspondingly. Similarly, we
make sure that the child page is not reached from
pages other than the parent so we check the set E for
edges ending in the child and originating from any
node other than the parent (specified in the pair from
P1).

 What is verified for indirect parent-child
sequences is: for each parent child requirement, all
paths traversing the child should have traversed the
parent earlier. If the paths satisfying the all-node
criterion are not enough, select the test paths
satisfying the level-k coverage criterion. The level-k
coverage criterion on a set of nodes L, is the set of
paths covering each node in L at least k times. The
previous all-nodes coverage criterion is simply level-
1 criterion on set N. To simplify things, we limit set
L to child nodes:

• having more than one arrow arriving
directly to them in the graph, and

• whose path from the start node has a loop.

 After identifying the set L, we can start adding to
T, the paths satisfying level-k on L, where k can
range between 1 and 100 depending on how deep we
intend the testing effect to be.

3.3 The Server Side Programs Model
 In modeling the client side components, we
considered the web application as a set of static and
dynamic HTML pages connected by hyperlinks. We
did not analyze the different HTML sections and the
way they were generated, but rather considered the
page as a whole and analyzed the flow of execution
between pages, assuming that the server side code is
correct and supports the generation of pages and the
flow of execution as per the requirements of the
application. In this section we look into the server
side code that is simply the engine that generates the
HTML output. We decided to adopt Wu and Offut’s
model which models web applications with emphasis
on the server side programs [15]. While Wu and
Offut modeled the entire web application in one
graph, we adopted his technique to represent the
internal structure of an individual web component.
We follow the steps below to create our server side
model:

1188

1- Atomic sections (AS): identify the atomic
sections,

2- Composite sections (CS): derive the
composite sections from the AS,

3- Transitions: identify transitions and
interactions between different CS and AS,

4- Transition rules: identify transitions rules,
and

5- Model the web component from ATS, CS,
and transitions.

3.3.1 The Server Side Programs Model Testing
Techniques
 Testing techniques for this model are the same as
those proposed by Wu and Offut [15]. Basically the
component is tested by applying test cases which are
paths in the web component graph (WCG). The
prime criterion (touring paths with sidetrips) is used
to cover the graph and select test cases. Detailed
analysis of this coverage criterion and examples can
be found in [14], [15], and [3].

4. AN AUTOMATED BLACK BOX
REGRESSION TESTING TECHNIQUE

 White box testing in software engineering deals
with testing and validating the internal structure of a
software component, is not enough to validate the
correctness of any application and here comes the
importance of black box testing techniques that take
the whole application as one entity and generates test
cases validating output versus input.

The Proposed Technique
 The proposed regression testing technique is
automated, which means that we run the test cases
manually one time and later in regression testing, the
test cases are automatically executed and validated.
We highlight the algorithm for this technique and the
basic structure of a custom tool to be used in this
technique.
 The basic steps of the technique are as follows:

1- Create test cases for the application and
specify input data.

2- Use the developed tool with the embedded
browser to run the test cases recording the
visited URLs and the submitted arguments
and form values.

3- While running the test, the developed tool
saves HTML output for later comparison
and validation in the regression testing
stage.

4- In the regression testing step, the tool
executes the sequence of saved URLs
automatically and collects the output values
specified in step 3. After executing the test

cases, the tool compares the output values
collected in this step with those collected in
step 2 and it provides the user with the
sections that produced different output. The
tester will have to analyze those differences
manually.

 As noticed, the technique is divided into two
parts: the first part consists of selecting the test cases
and this is done manually by the tester (step 1). The
second part is using the developed tool to execute the
cases, collect information and re-execute the cases
later on (steps 2, 3, and 4). Since our technique can
be summarized in those two parts, we will be
discussing each one of them in depth in the
following sections. First, we propose an efficient
algorithm for test case selection, and then we explain
the architecture of the tool and the algorithm of its
functionality.

Test Case Selection
 The test cases created for black box testing should
traverse the application based on a set of input
values. The test cases should consist of all input
criteria at each transition. Since almost each page of
the web application requires different user input,
then combinations of all input on all pages may be
extremely large or even impossible. In order to make
test case generation efficient and manageable, we
define input domains and input patterns instead of
choosing specific input.

 For numeric input we define the domain of input
values that are allowed to be entered in those fields.
This domain can simply be a range of values or a set
of values. Moreover, we identify the type of numeric
values allowed in this field; for example, integer,
decimal, even numbers, odd numbers, etc.

 After defining the range, we construct test cases
that have numeric input values with the following
patterns:

a. Valid values from a valid numeric type and
within the domain that is a number within the
domain.

b. Non-numeric values such as text,
alphanumeric, an input that contains
arithmetic operations, or HTML characters.

c. Values of a valid type but outside the domain;
that is values that are out side the valid range
or outside the set of allowed values.

d. Values of invalid type but of a valid domain.
e. Values of both an invalid type and invalid

domains.
f. Empty value, zero value, negative Value.

1189

g. Boundary values for domains that are defined
by a range.

 For text input, we manually analyze the available
possible input and create an input pattern for each set
of input values yielding similar output. For selection
input (dropdown menus, checkboxes, and radio
buttons) we identify the different selection patterns
that would result in similar output and group those in
a single pattern. Now that we have a set of input
patterns, we create a set of test cases satisfying all
our input patterns.

The Tool
 The proposed tool is used by the tester in the
testing phase to exercise test cases. While navigating
specific URL, HTML values (indicators) are saved.
In the regression testing phase, the saved URLs are
re-executed automatically and the tool saves and
compares the same HTML indicators.

 The key idea behind our approach for performing
automatic regression testing is that the execution of
any web application consists of calling a sequence of
web pages from the server to the client and
specifying an input for each one. What determines
the behavior of the web application is the sequence
in which the pages are called and the input values
passed to each page. Based on this analysis, we
conclude that each time we call the same pages in the
same sequence and passing the same parameters, we
should receive the same output.

 The reason why we decided to save and compare
specific sections of HTML indicators and not the
entire output is because most of the times certain
small HTML values on the page are enough to give
us information about the output of the page and thus,
we can deduce if the page functions correctly or not.
Moreover, saving the entire page is too bulky and
non-efficient for later analysis. However, the tool
makes it feasible for the tester to save specific entire
pages prior to re-running the test cases.

The Tool’s Architecture
 The tool is divided into three parts: the browser,
the capturing tool and the analyzer. The browser and
the capture tool have to co-exist within the same
screen of the application because we need to capture
data as we navigate the test cases manually the first
time. The analyzer, which re-executes tests and
compares the collected output and validates is in a
separate screen since its functionality is not used at
navigation time.

The Embedded Browser
 The embedded browser is used to perform the
black box testing manually and to collect the needed
information automatically for later use. The browser
collects a list of all visited URLs, in addition to all
HTTP parameters passed to this URL via HTTP
POST and HTTP GET methods. The captured data is
saved in flat files that will be read by the analyzer in
the regression testing phase.

The Collector Tool
 The collector tool is used while browsing to
collect specific HTML sections or indicators to be
used later for comparison and analysis in the
regression testing phase. For each new page
displayed in the browser, all possible HTML
indicators whose values can be captured are
displayed in a side screen. Each HTML component
(tag) that can be named in HTML is a candidate for
being an indicator and those are:

1- Form elements (text input, radio buttons
group, checkboxes, drop down lists),

2- HTML tables, table Rows, table cells, and
3- <div> and <layer> tags that can enclose

text or other HTML sections.

 If a certain HTML or text output which is needed
to be used as an indicator, and which is not from any
one of the above types, then the web page should be
edited prior to testing and this HTML section should
be enclosed within a div or layer tag and given a
name. It is important to mention that adding a <div>
tag will not change the visible output for the end
user, and thus, this change is transparent to the
application and can be applied safely.

The Analyzer Tool
 The analyzer tool uses the set of files generated
by the embedded browser and by the collector tool in
order to re-execute the test cases automatically,
generate output files, and compare the results
presenting the tester with the difference in indicator
values. Those values are analyzed by the tester. Of
course the tool does not re-execute all the test cases
but only the relevant ones and those are subjectively
selected by the tester.

 Once we have selected a set of test cases for
regression testing, the detailed steps of the analyzer
tool for each of those cases are as follows:

1- Read the first line in the URL file and
construct an HTTP request using the URL

1190

and the parameters associated with it as per
the HTTP protocol standards.

2- Submit this http request to the server and
receive the response.

3- Identify the list of indicators corresponding
to this page and capture them.

4- Read the next URL in the URLs file and
repeat the same process.

5- After all the URLs have been read and
executed, scan all the indicator files in the
folder, and compare for each indicator the
original file with its counterpart generated
by the regression testing. If any difference
exists between the content of the files then
they are copied to a sub folder for later
manual inspection.

 Sometimes, before starting the regression testing
we may need to capture additional indicators that
were not captured in the testing phase. Here, the
tester can edit the saved file and add new HTML
indicators (similarly for removing indicators).

 After running the analyzer tool, we obtain a set of
indicator files that are not matching. The role of the
tester is to inspect and analyze the modified files to
verify that the changes are as desired.

5. CASE STUDY

 In order to further elaborate and support our
presented ideas, we present a case study on an
example web application and we apply to it our
proposed model and the testing techniques.

Application Description

 The web application is a simplified version of an
application used in airline reservation systems. This
custom made application, which has only the basic
features, allows us to model and test all of the
features. We avoided choosing a huge and
complicated application since that would result in
complicated models and long test cases while our
aim is to materialize and apply our basic ideas in the
clearest way possible. This web application operates
as follows: the user starts by entering the username
and password in the logon page. If the combination
of the username and the password are wrong, then
the user gets an error message. If the login is
successful, the user is redirected to a page providing
information about the available flights (see Figure 1).

 By default, the page opens with all the available
flights listed (see Figure 2). This page has a search
feature to filter the output. The search criterion filters
the output by filtering on the source and the
destination of the flights. The resulting search
consists of a list of available flights each on a line.
Each line contains a brief of the flight information
such as source, destination, flight number, departure
time. In addition to the listed flight information, for
each flight the user is provided with two options: the
first is to view the booked reservations, and the other
to reserve a place on that flight. The second option is
only enabled when there are still available seats on
the flight. Moreover, a fully booked flight is
highlighted in red color, which makes it easier for
the user to identify. This page has a link to the logout
page, which is the last page to be visited in the
application and which causes the user to log out and
it deletes the session variable and redirects the user
to the login page.

Figure 1 - Snapshot of the Login Page

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

1191

Figure 2 - Snapshot of the Search Flights Page

 Clicking the booking link transfers the user to a
page to create a reservation (see Figure 3). On that
page, the user has to enter the passenger’s
information, in addition to the reserved seat number

and the reserved seat class. That page presents
information about the detailed available number of
seats per class. And it presents a list of the previously
booked passengers with the option to cancel the
reservations for any of those. Clicking the remove
link causes the page to call itself with special URL
arguments causing the respective record to be
deleted. The user can leave this page by clicking the
“Done” button; and thus, redirected to the main flight
search page.

 Clicking the reservations link transfers the user to
a page summarizing the current bookings for this
flight (see Figure 4). The user has the option to
remove any of those bookings by clicking the
remove link. Clicking the remove link causes the
page to call it self with special URL arguments
causing the respective record to be deleted. The user
can leave this page by clicking the back button,
which takes him/her back to the main flight search
page. Each page of the pages mentioned before uses
an include file that contains the database connection
initialization. This file initiates and opens the
connection to the database on each page.

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www.jatit.org

1192

Figure 3 - Snapshot of the Reserve Page

 Now that we know how the application behaves,
we will briefly describe its architecture and technical
information. To start with the programming
language, the application is written is ASP 3.0. We
decided to run our application on a cluster of
redundant Intel servers running Microsoft

Windows 2000 with Microsoft IIS as a Web
Application Server. The windows cluster is used for
redundancy and not for load balancing. The database
used is an SQL Server running on a separate
Windows machine.

Figure 4 - Snapshot of the View Reservations Page

The Architectural Environment Model

 As we mentioned earlier, the application runs on a
cluster of redundant cluster of two servers, and the
database resides on a separate server. We will call
the two servers running IIS S1, and S2, respectively.
We will call the IIS Application Server (software

1193

sever) running on both machines sv1 and sv2,
respectively. We will call the machine running the
SQL database S3, and we will denote the Microsoft
SQL Server Installation (software server) by SV2.
The IIS servers send database requests to the
database and receive responses from it over the
TCP/IP protocol. We will denote those
communication channels by Cm1 and Cm2,
respectively. The software libraries that are required
to be installed on the servers are limited to the SQL
ODBC driver that should be installed on both
application servers to allow communication with the
database.

 Based on the above information, we will formally
define the following sets to represent our
architecture:

• Set S contains all the hardware servers. S=
{(S1; Windows 2003, Intel_x86), (S2;
Windows 2003, intel_x86), (S3; Windows
2003, Intel_x86)}

• Set SV contains all the software servers.
SV= {(sv1; IIS; S1), (sv2; IIS; S2), (sv3;
Microsoft SQL Server; S3)}

• Sets Cm1 and Cm2 represent the

communication channels from and to the
database.

o Cm1= {Sv1, Sv3, TCP/IP, db_q}

o Cm2= {Sv3, Sv1, TCP/IP, db_rs}

• Set C represents the clusters. C= {(Sv1;
Sv2)}

• Set LI to represent the required software
libraries. L1={(S1;SQL_ODBC_DRIVER),
(S2;SQL_ODBC_DRIVER)}

 Figure 5 defines the architecture of the approach.

Figure 5 - Case Study – Architectural Model

Testing Techniques
 In order to test the quality of our architecture, we
have to apply the eight test techniques defined earlier
for this model. The architecture should pass the four
tests for it to work. The remaining four tests are used
to evaluate other quality attributes of the architecture.
We apply each of the tests alone.

• For the first test, the set of OS/HW

compatibility is denoted by T1. Since Windows
is compatible with Intel processors, then T1=
{(S1; 1), (S2; 1), (S3; 1)}. Since all servers in
T1 are paired with the value 1, then we can
conclude that the architecture passed the first
test.

• The second test analyzes the operating systems

with the installed software and represents them
in the set T2. Since all application servers sv1,
sv2, and sv3 are compatible with the Windows
servers, then T2={(sv1;1), (sv2;1), (sv3;1)}.
Again since all set elements are paired with the
value 1, then we can safely say that the
architecture passed the second test.

• The third test verifies the feasibility of the

communication channels cm1 and cm2. Since
both channels are based on TCP/IP and since all
servers are running Windows, which supports
TCP/IP by default, then both connections are
feasible and this test can be represented by
T3={(cm1,1);(cm2,1)}. Similarly, the
architecture passed the third test.

• The fourth test verifies the existence of the

required software extensions on the servers and
this is represented by a set of Triplets T4. Again,
for our architecture to pass this test, all triplets

S1

S2

S3

Sv2

Sv1

SV3

Cm1

Cm2

1194

should be paired with the value one. Since both
IIS servers have the SQL ODBC drivers
installed on them then the set is: T4= {(S1;
SQL_ODBC_DRIVER, 1), (S2,
SQL_ODBC_DRIVER,1)}, which implies that
our architecture passed the fourth test.

• The fifth test evaluates the efficiency of the

messages exchanged per each communication
channels. Since both communication channels
are based on TCP/IP and they are on the LAN,
then both communication channels have optimal
efficiency and we can safely give them a high
score of 9/10. So the fifth test can be represented
by T5 = {(C1; 9), (C2; 9)}. Obviously the test
indicates high efficiency for our architecture.

• The sixth test checks for the redundancy of the

servers. The redundancy value uses the
following formula as stated earlier: So rd= 1 –
(|SV’|/|SV|) where SV’ is the set of software
servers non-clustered and non-load-balanced,
where SV is the set of all software servers. So
for our architecture, rd= 1- 1/3=2/3 =0.66 which
is a sign of good redundancy since it is above
0.5.

• The seventh test checks the quality of the load

balancing attribute of our architecture. It uses
the following formula: ldb= 1 – (|SV”|/|SV|)
where SV’ is the set of non load balanced
servers and SV is the set of all servers. In our
architecture ldb=1-1=0. Obviously, the value
indicates that we have no load balancing in the
architecture.

• The eighth test checks the level of scalability of

the architecture. We test salability based on the
following formula, scl=|S’|/|S| where S’ is the set
of servers that can be scaled and s is the set of
all servers. In our example, IIS servers can be
scaled as much as we want. On the other hand,
SQL Server can not be expanded on different
machines. So scl=2/3=0.66, which is a good
value since it is above 0.5, but we should be
aware that the database cannot be scaled which
might create a bottle neck in the future.

The Client Side Model
 This model considers all the pages included in the
application as seen for the end user. We start by
listing all the web pages in the application:

1. Login.asp: This page has a form allowing
the user to enter the login information. The

page submits the arguments to itself and it
redirects to the page “searchflights.asp”, if
the login is successful. The page displays an
error message if the username and
password are wrong and it does not redirect
to any other page.

2. Searchflights.asp: The page displays the

available flights, and it has a form to filter
on those flights. This form submits the page
to itself to display the filtered values. On
this page, each flight has two links
corresponding with it. One link points to the
page “reserve.asp” which allows the user to
make a new reservation. The second link
points to the page “viewreservations.asp”
that displays all the available reservations
for a certain flight. Each of those two links
have the identification of the corresponding
flight passed as an argument to the other
two pages. This page has a link to the page
“logout.asp”, which allows the user to exit
the application.

3. Reserve.asp: This page allows the user to

make a new reservation. It has a form
which allows the user to enter the
reservation information. This form submits
to the same page and saves the entered
information. This page lists all the available
reservations as well. The user has the option
to delete a reservation by clicking on a
corresponding link for the desired
reservation. This link calls the same page
with special arguments, to instruct the page
to delete the desired booking. The user can
leave this page by clicking the “Done”
button which takes him to the page
“Searchflights.asp”.

4. Viewreservation.asp: This page lists all the

reservations for the selected flight. The user
has the option to cancel any reservation by
clicking on a link that calls the page itself
with specific arguments attached to the
URL. The user can leave this page by
pressing the back button which takes him to
the page “searchflights.asp”

5. Logoutpage: This page is the exit page of

our application and it can only be called
from the page “searchflights.asp”. When
called, this page deletes the session
variables of the logged in user and it
redirects to the login page.

1195

 The graph of the client side model is defined in
Figure 6: We have named the pages by p1, p2, p3,

p4, and p5 for easier reference in the test cases.

Figure 6 - Case Study – Client Side Model

Testing Techniques
 After constructing our web application graph, we
have to follow the test techniques discussed earlier in
order to validate the correctness of the application
and to ensure that it maintains high quality attributes.
The tests to be conducted are as follows:

1- Tests for orphaned pages

2- Tests for broken links
3- Tests for dead end pages
4- Tests for parent child sequencing

 Before starting the tests, we will define the sets N
of nodes and E of edges (as discussed earlier):
N= {p1, p2, p3, p4, p5} and
E={(e1,p1,p1), (e2,p1,p2), (e3,p2,p2), (e4,p2,p3),
(e5,p3,p3), (e6 ,p3,p3), (e7,p3,p2), (e8,p2,p4),
(e9,p4,p4), (e10,p4,p2), (e11,p2,p5), (e12,p5,p1)}

 The test for orphaned pages is conducted by
searching and checking all nodes in N (except for the
start page p1) and verifying that each node has at
least one corresponding edge in E where n is the
third item in the triplet. The pages p2, p3, p4, and p5
has the edges e2, e4, e8, and e11 satisfying this

condition correspondingly. Thus, the set N’ of
orphaned pages is empty and we do not have any
orphaned pages

 The second test checks for broken links. This is
done by trying to create a set of test cases that
traverses all odes such that each node is visited at
least once by a certain test case. Once we obtain this
set of test paths, then we have no broken links. In our
example we can have the following two paths that
satisfy the all node coverage criterion which verify
that our application has no broken links:

• p1, p2, p3, p2, p5, p1
• p1, p2, p4, p2, p5, p1

 Hence, our application passed the second test.

 The third test checks for dead end pages or in
other words pages that do not give the user an option
to leave them. This test is conducted by inspecting
all nodes in N (except the exit page p5) and verifying
that each node n has a corresponding edge (triplet) in
E, such that n is the second item in the triplet. The
nodes p1, p2, p3, and p4 has the edges e2, e3, e7, and
e10 satisfying this condition. Thus, the set D of dead
end pages is empty and our application does not have
any page that leads the user to a navigational dead

1196

end where he finds him self forced to use the
browser’s back button.

 The fourth test checks for the parent child
sequence requirements in our application. As per the
testing analysis, we need to identify two sets of
parent child requirements one direct corresponding
to direct sequence of two pages and one indirect
corresponding to the order in which two pages are
visited but not necessarily directly after each other.

 The direct set of requirements is that p3 and p4
should follow p2, since p2 passes arguments
containing the reservation identification number to
those two pages, and this value is mandatory for the
operation of the two pages. So the set of direct
requirements P1= {(p2, p3), (p2, p4)}

 To verify this, we should inspect E to ensure that
there is an edge from p2 to p3 and from p2 to p4.
This is true since we have the edges e4 and e8.
Moreover, we ensure that p3 and p4 are not reached
from any page other than p2. This is true as well
since we cannot find any edge in E arriving to p3 and
p4 except from p2 and from the pages themselves.
So the application satisfies all the direct parent child
relationships.

 The indirect set of requirements can be limited in
our example to requiring the login page p1 to
precede any other page in our application for the user
is required to log in before using the application. So
the set of indirect requirements P2= {(p1, p2), (p1,
p3), (p1, p4), (p1, p5)}.

 The way to conduct this test is to validate that for
every requirement in P2, each path traversing the
child should have traversed its parent at some point
earlier. Since checking all available paths is
impossible we have chosen to derive a set of test
cases that satisfies the level-2 coverage criterion as
defined earlier. This coverage criterion guarantees
that all nodes have been visited at least once and that
all cycles have been traversed at least once. The set
of derived test cases from our example that satisfies
the level-2 coverage are as follows:
p1, p2, p2, p3, p3, p2, p5
p1, p2, p4, p4, p2, p5

 Analyzing the above test cases verifies that our
indirect parent child sequences are all satisfied and
we can safely say that our application passed this
test. Sure, if we still have doubts we can keep on
generating additional paths and analyzing them until
we find a path violating our requirements or until we
are satisfied with the test results.

The Server Side Model
 In the server programs model, we considers all
dynamic pages and server components that generate
HTML dynamically. Thus, we will be considering
the pages: “login.asp”, “searchflights.asp”,
“viewreservations.asp” and “reserve.asp”. The pages
“logout.asp” and “connection.inc.asp” will not be
analyzed because they do not generate any HTML
output and thus do not have any atomic sections. We
present the composition rules, the graph, and the test
paths of each of those components based on the
algorithms proposed by Wu and Offut [14] [15]. The
details of deriving the atomic and composite
sections, drawing the graphs, and selecting test paths
based on the prime coverage criterion are found in
[3].

 The page “Login.asp” has the following
composition rule C1=P1.P2.P3 |=> S1 | e, and its
WCG looks like the picture in Figure 7:

Figure 7 - Case Study – Graph for server component

login.asp

 The page “Searchflights.asp” has the following
composition rule:
C2= S1|-> p1.(p2.(p3|p4).cs1.(cs2)|p25).p26)*.p27
Here we combined the sequential atomic sections
(Pi.Pi+1…) in composite sections CSj. The graph is
shown in Figure 8.

Figure 8 - Case Study – Reduced Graph of

searchflights.asp

 The page “viewreservations.asp” has the
following composition rule (after combining
sequential atomic sections into composite sections)
C3=S2|->cs1.(cs2)*.p20

1197

The graph is shown in Figure 9.

Figure 9 - Case Study – Reduced Graph of

viewreservations.asp

 The page “reserve.asp” has the composition rule
(after combining sequential atomic sections into
composite sections) as follows:
C4= S2|->cs1.
(p13|e).(p14|e).(p15|e).p16.(p17|p18).cs2.(cs3)*.p37
The graph is shown in Figure 10.

Figure 10 - Case Study – Reduced Graph of reserve.asp

Testing Techniques
 After identifying the atomic sections, deriving the
composition rules, and drawing the graphs for each
of the dynamic pages in our application, we test the
web components by creating test cases or test paths
based on the prime criterion.

• The Page Login.asp has the prime paths:

[P1, P2, P3, S]
[P1, P2, P3, e]
No need to find paths satisfying the prime
coverage criterion (touring prime paths with side
trips) because the graph does not have any
cycles.

• The page Searchflights.asp has the prime paths:

[p1, p2, p3, cs1, cs2, p26, p27]
[p1, p2, p3, cs1, p25, p26, p27]
[p1, p2, p4, cs1, cs2, p26, p27]
[p1, p2, p4, cs1, p25, p26, p27]

The paths (test cases) satisfying the prime
coverage criterion for this page (touring prime
paths with side trips):
[p1, p2, p3, cs1, cs2, p26, p2, p3, cs1, cs2, p26,
p27]
[p1, p2, p3, cs1, p25, p26, p2, p4, cs1, cs2, p26,
p27]
[p1, p2, p4, cs1, cs2, p26, p2, p3, cs1, cs2, p26,
p27]

[p1, p2, p4, cs1, p25, p26, p2, p3, cs1, p25, p26,
p27]

• The page Viewreservations.asp has only prime

path is:
[cs1, cs2, p2]
The path (test cases) satisfying the prime
coverage criterion for this page (touring prime
paths with side trips) is: [cs1, cs2, cs2, p2].

• The page Reserve.asp has a huge number of

prime paths but we choose the following to that
visits all nodes:
[cs1, p13, p14, p15, p16, p17, cs2, cs3, p37]
[cs1, p13, p14, p16, p18, cs2, cs3, p37]

The paths (test cases) satisfying the prime
coverage criterion for this page (touring prime
paths with side trips):
[cs1, p13, p14, p15, p16, p17, cs2, cs3, cs3, p37]
[cs1, p13, p14, p15, p16, p17, cs2, cs3, cs3, p37]

6. CONCLUSION AND FUTURE WORK
 In this paper, we presented a complete theoretical
analysis model for modeling and testing web
applications, which is divided into three sub models;
the architectural environment model representing
operational environment hosting the web application,
the client side model representing the web pages as
seen by the user and the navigation between them,
and the server side programs models that presents the
server programs, which execute at run time and that
produce dynamic HTML to the user. Moreover, we
presented a technique for automated black box
regression testing. The theoretical analysis in this
work was supported by a case study on a real web
application.

 Future work includes covering new architectures
like .Net. Future work will focus on adding a model
for representing and testing server side logic and
external content sources.

REFERENCES

[1] Filippo Ricca and Paolo Tonella (2001). Analysis

and Testing of Web Applications. In Proc. of the
23rd International Conference on Software
Engineering (ICSE’01).

[2] Filippo Ricca and Paolo Tonella (2001). Web

Application Slicing. In Proc. of International
Conference on Software Maintenance
(ICSM'2001).

1198

[3] Hamzeh K. Al Shaar. Modeling, Testing, and
Regression Testing of Web Applications (2006).
Thesis submitted for MS Computer Science,
Lebanese American University.

[4] Harry M. Sneed. Testing a Web Application

(2004). In Proc. of the Sixth IEEE International
Workshop on Web Site Evolution (WSE’04).

[5] Hiroshi Suganuma, Kinya Nakamura, and

Tsutomu Syomura (2001). Test operation-driven
approach on building regression testing
environment. In Proc. of the 25th Annual
International Computer Software and
Applications Conference (COMPSAC’01).

[6] Hong Zhu. Software Unit Test Coverage and

Adequacy (1997). ACM Computing Surveys,
Vol. 29, No. 4.

[7] Hui Xu, Jianhua Yan, Bo Huang, Liqun Li, and

Zhen Tan (2003). Regression Testing
Techniques and Applications. Technical Paper
from Concordia University, Canada,
Department of Computer Science.

[8] Ivan Granja and Mario Jino (1999). Techniques

for Regression Testing: Selecting Test Case Sets
Taylored to Possibly Modified Functionalities.
The 3rd European Conference on Software
Maintenance and Reengineering CSMR’99.

[9] Lei Xu, Baowen Xu, Zhenqiang Chen, Jixiang

Jiang,, and Huowang Chen (2003). Regression

Testing for Web Applications Based on Slicing.
In Proc. of the 27th Annual International
Computer Software and Applications
Conference (COMPSAC’03).

[10] Martina Marre´ and Antonia Bertolino (2003).

Using Spanning Sets for Coverage Testing.
IEEE Transactions on Software Engineering,
VOL. 29, NO. 11.

[11] Robert B. Wen. URL-Driven Automated

Testing (2001). In Proc. of the Second Asia-
Pacific Conference on Quality Software
(APAQS’01).

[12] Sebastian Elbaum, Srikanth Karre, and Gregg

Rotherme (2003). Improving Web Application
Testing with User Session Data. In Proc. of the
25th International Conference on Software
Engineering (ICSE'03).

[13] Simeon C. Ntafos (1988). A Comparison of

Some Structural Testing Strategies. IEEE
Transactions on Software Engineering, VOL 14,
NO 6.

[14] Ye Wu and Jeff Offutt (2002). Modeling and

Testing Web-based Applications. GMU ISE
Technical ISE-TR-02-08.

[15] Ye Wu, Jeff Offutt, and Xiaochen Duz (2004).

Modeling and Testing of Dynamic Aspects of
Web Applications. GMU ISE Technical ISE-
TR-04-01.

