Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved. damr

www jatit.org

BUSINESS PROCESS DISTRIBUTION
AN INTELLIGENT APPROACH

Y2Faramarz Safi EsfahariMasrah Azrifah Azmi MuradMd.Nasir SulaimarNur Izura Udzir
'PhD Candidate., Department of Computer Scienceyedsity of Putra Malaysia, Malaysia.

2 Department of Computer Science, Islamic Azad Usitg Najaf Abad Branch, Esfahan, Iran.
3Asstt Prof., Department of Computer Science, Usitgiof Putra Malaysia, Malaysia.

“Assoc. Prof., Department of Computer Science, Usitieof Putra Malaysia, Malaysia.
® Asstt Prof., Department of Computer Science, Usitg of Putra Malaysia, Malaysia.
Email: fsafi@iaun.ac.ir, {masrah, nasir,izura}@fsktm.updugny

ABSTRACT

Business Processes in Service Oriented Archite¢®&@\) are run using an orchestrate engine. Thetpoi
here is that running a huge number of businesseps&s under a centralized orchestrate engine fasult
degrading of run-time environment abilities. Apfidm this, running clustered orchestrate enginearas
alternative way to obviate centralized orchestexigine problems is not a final solution. On thieeot
hand, there exist many researches focusing on dexsing or segmentation of business processes i run
time some of which attempts to decompose a buspresess to its building activities, while othersdk
business process parts to sub flows or segmentanDEosing of a business process to its buildinyities

will lead to a large number of activity agents imrtime and it subsequently leads to more resource
consumption and run-time system degradation. Segtien, though, is useful however there are nedat

for business process segmentation commensuratewmittime environment requirements. In this paper,
introduce an intelligent process distribution mettho first) increase business process adaptakility run-

time environment, second) choose the best grahufar segments as well as encapsulating them émtag
and third) decrease resource consumption due teceednumber of agents and messages. We also prove
the correctness of our method mathematically.

Keywords. Adaptive systems, Business Process Mining, BPELyiGe Oriented Architecture, Mobile
Agents, Workflow, Distributed Orchestrate Engine.

process among some autonomous agents or sub
1. Introduction processes interacting through a middleware. On
In service oriented architecture. business the other hand, a number of researches have been

processes are executed by an orchestrate engine focusing on the idea of process mining to extract
that is responsible for running the activities of a Useful information from process log files. The
process. Normally, a single engine is applied to mined information will be used to detect most
manage a business process and scalability is relevant parts of a business process, drawing run-
satisfied by replicating orchestration engines time Petri net model of a business process and

which do not obviate the problems of centralized discovering social networks which are extremely
engines. important to provide more adaptable business

. processes with run-time environment.
On one hand, many researchers are working

on BPEL business process distribution. The main In this paper we are going to reduce resource
idea is distribution of activities of a BPEL usage and improve the adaptability of business

e ——
1236

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

Ny

damm

www jatit.org

processes considering the execution history of
previous executed processes. Accordingly, the
contributions of this paper are: 1) Designing an
intelligent method based on process mining to
ameliorate the granularity of agents at compile
time. 2) Improving the adaptability of the BPEL
processes considering execution history of
previous executed agents using process mining.
3) Reducing the number of agents and exchanged
messages compared to the traditional methods of
BPEL distribution.

2. Background and Related Work

BPEL: The Business Process Execution
Language or BPEL briefly supports web services
relationships and interactions in business
transactions, message exchange correlation for
long running message exchanges, parallel
processing of activities, the mapping of data
between partner interactions, consistent
exception and recovery handling [1, 2].

Table 1: BPEL defines two types of activities

Basic Activities Structured Activities
o invoke
* receive o flow
o reply o forEach
® assign o ff
o compensate o pick
¢ compensateScope o repeatUntil
o empty ® scope
o exit ® sequence
o throw o while
o rethrow
¢ validate
o wait

According to tablel, BPEL activities [1, 2]
can be classified as basic activities that perform
some primitive operations and structured
activities that define control flow. The key BPEL
basic activities are Invoke, Receive, Reply,
Assign, Compensate, Compensate-Scope, Empty,
Exit, Throw, Rethrow, Validate and Wait
whereas structured BPEL activities are Flow,

For-Each, If, Pick, Repeat-Until, Scope,
Sequence and While, respectively.
Process Mining: Service Oriented

Architecture contains a variety of events that can
be logged. In addition, log data can be used for
process mining purposes, its goal is to build
models without apriori knowledge, based on

1237

sequences of events, one can look for the
presence or absence of certain patterns and
deduce some process models from it[3]. In [4] a
framework for an agile mining of business
processes introduced. In this framework,
analyzing and mining of business processes
change log information, the framework let
process engineer to adapt business processes
models based on the outcome of these analyses
and to migrate related process instances to the
new model. In this system, change log mining is
being used to improve the adaptability of
workflows while our IPD approach uses log
mining to improve the granularity of agents in
distributed workflows which will finally
increases business process adaptability.

Web Service Interaction Mining (WSIM) [5]
tries to mine log information provided by web
service interactions. It also categorizes different
levels of service mining based on log
information. IPD is focused on the mining of
business processes activities not interaction of
web services only.

Using process mining to learn from process
changes in evolutionary systems [6] based on the
assumption that process changes are being
recorded by system, two mining techniques have
been offered to improve the adaptability of the
process management system (PMS). The found
changes during process mining provide an
overview of the changes happened until now. In
[7] a process mining for change logs proposed to
apply. They not only analyze the operational
processes but also the adaptations made at the
process type or process instance level. They
provide a Petri net model of the changes using
process mining to find the most changed parts of
a process. Our work also mines process log
information (not change log information) to
detect most relevant activities of a process using
a process mining method and based on the
achieved results we will distribute business
processes to improve quality factors.

BPEL Decomposition and Interaction
Middleware: In Publish/Subscribe [2, 8, 9]
communication, the interaction between the
information producer (publisher) and consumer
(subscriber) is mediated by a set of brokers.
Publishers publish events to the broker network,
and subscribers subscribe to interesting events by
submitting subscriptions to the broker network. It
is the responsibility of the brokers to route each

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www jatit.org

BPEL
Designer

Learning
Data Set

Process Mining
Patterns

Process

Agent
Process Process
Agent Agent J

Log File

Process Mining
Result

Figurel: System Architecture

event to interested subscribers. NINOS|[2] uses a
Publish/Subscribe messaging service to handle
interaction of agents. In addition, another well
known method of agent communication is using
the concept of Tuple Space implemented in

LINDA language. ReSpecT [10] uses an
extension of Tuple Space idea in LINDA
platform called ReSpecT to realize the

cooperation of agents. Furthermore SOA stack
supports messaging and [11] uses SOA
messaging protocols and WSDL to wire
decomposed components.

In NINOS|[2], a distributed agent-based
orchestration engine presented in which several
agents execute a portion of a business process
and collaborate in order to execute the whole
process. Similarly, ReSpecT [10] uses the same
idea to distribute a workflow. In addition, [11]
presents a mechanism to partition a business
process so that each partition can be enacted by a
different participant. In fact [11] disconnects the
partitioning itself from the design of the business
process. All these methods [2, 10, 11] do not
have any control on the number of produced
agents, granularity as well as adaptation of agents
with the run-time environment. While IPD uses a
mining process method to discover the useful
patterns to provide suitable agents.

These methods [2, 10, 11] are most relevant
works to our approach from BPEL distribution

e ——
1238

and decomposition point of view. IPD is not
depended to the method of communication and
wiring of partitions or agents. It is worth
mentioning that our model is independent of
messaging middleware therefore, agents in our
model can use any other types of middleware to
interaction

3. Intelligent Process Distribution (1PD)

In this part, we discuss about the architecture
of IPD system. The main purpose is the
intelligent distribution of BPEL processes using
a mining process approach. As mentioned before,
in traditional methods a process is decomposed
to its ingredients (or activities) and each adfivit
is encapsulated in an agent. The huge number of
produced agents, their resource usage, high
number of agent interactions and exchanged
messages are the result of decomposing a process
to its activities in the lowest granularity. In the
proposed method we will use mining patterns to
detect most relevant, closely related as well as
juxtaposed activities from a spatial view. Then
we encapsulate closely related activities in agents
and their interactions are as [2, 10]. IPD will
produce agents which are in their most suitable
granularity. It results in more adaptable agents, i
run-time environment, through a reduced number
of produced agents and less message passing.

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved. damr

www jatit.org

Activityl

Casel

Case2

I—
e

——Fully Distributed
—=[IFD

sl
Acli\'ind_l I |

|
!

Activity3

(4)

Agentl

Whilel

Wl ‘Whilel

v g, i
ST |
& L] T " mm

0 10% 20% 30% 40% 50% 60% T70% B80% 90% 100%
Probability P

©

—e— Fully Distributed
—=—IPD

-

£ 20000 ¢
w

= 10000 1

o

L 0

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Probability P

Figure 3: Using While Activity in two Methods

3.1 TheIPD System Architecture

The recommended system architecture is
depicted in figurel. According to IPD
architecture, @rocess agent is an agent contains
most relevant activities encapsulated in one
agent. Thedistributed process log files are
based on the number of nodes involved in
executing agents. As the number of nodes
containing process agents increases, the
distribution of log files will be increase®PEL
Compiler is supposed to be a traditional BPEL
compiler but it has to be equipped to convert a
BPEL process to some agents according to agent
detection patterns which will be discussed in the
following sections. Middleware is a broker

through which agents can exchange messages.

Learning dataset is used for starting up a
process, when mining result set is empty.

e ——
1239

Developers can initialize a process using learning
data set to ameliorate system initialization. Being
warmed up the system, the process compiler will
use fresh mining data from process mining result
set. Process mining result set is actually a
repository to maintain mining patterns extracted
from log files.

3.2 The Structure of Log Files

To do a comprehensive mining the following
log file structure is considered. Each process
agent is responsible for producing the log file of
its activities. We consider six fields as entriés o
process log files as follows:

ProcessTypleld shows the identification
number of a specific BPEL process. The next
field is ProcessVersionld that shows the version
of a compiled process. This field is due to the

Journal of Theoretical and Applied Information Technology

]
© 2005 - 2008 JATIT. All rights reserved. ’.ﬂ
www jatit.org
L
Auiiy] | Ayl | P
‘ I | | —— Full Distributed
\ ' —=ID
Pickl Pickl | o 3500
OnMessage OuAlarm l OnMessage Ondlm é 3000 M
| ' | | R e
I | | | r - g 2000 —
: mimidimn g
Activity? Autivityd Adivi? ' Aty 4 100 =
} | 4 "‘*——L_,___t__
. 1 M ———
’ * | | i ‘s - & im0 T — T T T T o1
Activity3 ' O b b b b b b g g b b
: Adiiy3 : Vs ddesaddy
-

¢ I._...l..._..

(4) ®)

Probailty P
©

Figure4: Using Pick Activity in Two methods

fact that there will be different compilations far
specific BPEL process. Furthermore, Instanceld
shows the exclusive number of a process
instance. In addition, Activityld demonstrates the
identification number of the running activity. The
NextActivityld field shows the next activity
selected to be run and has to be determined at
runtime as well. There might be more than one
activity to be run after finishing up one activity.
Finally, the ElapsedTime specifies the total
amount of time elapsed from an activity
execution start time and normally, it can be
further divided to start time and finish time
subfields. Agent Detection Patterns

Owing to the fact that a number of activities
in a process are juxtaposed and closely related,
there is a tendency in activities of a process to
call their spatial neighbors. Hereafter, we
examine the BPEL activities one by one to show
how process mining playing role is. We will
prove our method for more complex BPEL
activities from a mathematical point of view as
well. For more simplicity, we consider equal
execution timdt,) and communication time

(tc) for all activities. In addition, we believe that

the time cost of message passing is much more
than the execution time of one activiy))t,)
except those activities like invoke, receive or
reply sending or receiving message to external
web services. Indeed, we presume
tc =100a, Oty =1everywhere the numerical
value of (t,) and (tc)are needed, based on an

empirical experiment.

1240

3.2.1 If (Switch) Activity

The If (Switch) activity is a structured
activity and is built using an ifelseif-else format
According to [1] the If activity lets you choose
exactly one execution path from among many
such as If structure in common programming
languages.

According to [2, 10], the sample BPEL
process in figure2(a) should be converted to six
agents. The execution time of the above If
activity with probability of p for executing Casel
and probability of 1-p to execute Case2 is as
follows:

toverall =taL+tc *tif + plic +tazstc +tag)+

(l— p)(tC +tpg) tic +tag = 4tp +3tc + p(tA +tc)
Suppose that the recommended process

mining method detects the execution path

including Activityl, If1, Activity2 and Activity3

is more traversed than the alternative path

including Activity3. Therefore three agents

should be appeared according to figure2(b) The

total time for processing If activity is as follows

ttota|=PX(IA1+tif1+tA2+tA3)+(l— P)(tA1+tif1+tc +tA4)+tc +tag
=pxaa+(L-pfaa+ic) +ta+ic

Obviously, increasing the number of activities
increases the communication time in fully
distributed approach. Also, it is process mining
algorithm that detects the probability of p is high
which results in reducing of, . Figure2(c)

compares the behavior of two approaches.

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved. damr

www jatit.org

Activityl

Flowl

Agent2

Agent3

J
|

| Activityl

| Flowl

| Activit_v2| Activitys | Activity8 | Activity2

v v v

Activity9
| Activity3 | | Actn:t_‘ﬁ | | C l‘rl._‘ | Activity3
| Activity4 | Activity7 | | Activity10
| I Activity4
h 4

1 Activitys

Activity6

= Activity7

Activityll

)

Figure 5: Using Flow Activity in Two Methods

3.2.2 While Activity

In BPEL specification, we have three loop
structures among which we start with While loop.
The While repeats the enclosed statement block
until the conditional statement evaluates to
False[1].

A sample While activity is shown in

figure3(a). In [2, 10] the While activity is

converted to a While agent. Evaluating the
condition, the While agent triggers the
subsequent activity. We assume that the

possibility of repeating the loop for n times is p
and with possibility of 1-p the loop condition will
not be satisfied. The total execution time for
While is as follows:

tota~ta o+ PNt He o He Hg Ho)+

(1-Plty o) Hp =2 atte +prrx{, +3c) Hi-Plta +e)
Again using IDP the activities in the While

structure will be encapsulated in three agents

owing to the fact that they are closely relatedt as

is shown in figure3(b). So, the total execution

time wusing IPD wil be calculated as
follows:

tiotar= PXNX{tg +iyy +ap +tag) +H1- Pltag i)+ +iag
= prnx(dt,) +(1- 2) +ta+c

Based on the assumption that process mining
has already detected that the probability of p is
high therefore, we expect better result comparing
with the fully distribution model. For this While
activity we consider the number of loop
iterations is n=100. Obviously, the output result

e ——
1241

is highly depended on the value of n. Figure3(c)
shows the comparison charts of two methods.

3.2.3 Pick Activity

The Pick activity forces the process to wait
until one event is triggered. All of these events
are either onMessage or onAlarm elements. You
can have as many onMessage and onAlarm
activities as you want, but exactly one of them
will be executed. Once one event is executed, all
others are disabled[1].

Figured4(a) shows a sample Pick activity
including two onMessage and onAlarm elements.
In its normal distribution according to [2, 10] it
should be converted to four activities. We
assume that the probability of running
onMessage is p and in other cases OnAlarm
would be run. So, the total time for running this
activity is as follows:

tiotal = tag +1c +tp + plic +taz +ic +tag)+ (1 p)lic +taa)
=3ip+2c + plta+tc)

Suppose that mining process approach detects
Activityl, Pickl, Activity2 and Activity3 are
highly relevant through OnMessage element. The
BPEL compilation is in figure4(b). The total time
to execute this Pick activity is as follows:

total = Pltar+tp +ta2 +taz)+ (- pllta +p +icitag)
= pxdtp+(1-p)3ta+tc)
Obviously, increasing the number of activities

increases the communication time in fully
distributed approach. Considering the hypothesis

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved. damr

www jatit.org

FaultHandler

v v

Compensatel |

Compensation
Handler

i L

l Activity2 |

|
1
1
]
1
1
]
1
1
1
]
1
1
]
1
1
]
1
1
i
=l
g
m
[}
g
=3
W ot
3 1l
L=
[
- |
1
1
1
1
1
1
1
|
I
1

FaultHandler

| Compensatel |

Compensation
Handler

N

| Activity2 |

Figure 6: Scope, Compensate and Fault

that process mining has already detected the high
probability of p, therefore, decreasing total
execution time is expected. Also, Figure4(c)
shows the comparison of two mentioned methods
for Pick activity.

3.2.4 Flow Activity

A Flow activity defines one or more child
activities that execute concurrently, which is the
most basic use of this construct. The Flow
activity also allows us to synchronize activities,
such that one activity starts when another ends.
We've dealt with activities that implement
program-likestructures until now, but with Flow
we can dagraph-likestructures[1].

Figure5(a) shows a sample Flow activity in
its simplest use. Accordingly, there are three
branches in the Flow structure which are able to
run concurrently. Based on what is recommended
in [2, 10] this sample structure will be compiled
to twelve agents. The total time for processing
this Flow activity is as follows:

tiota=tag +ic +tF +ic +maxfap +ic +tag +ic +tag) O
(tas +tc +tas +ic +taz) Dltag +ic +tag +ic +targl +ic +tagn
tiota=BA+3c

In contrast, applying IPD method results in
three groups of closely relevant activities.
Indeed, the normal way of handling this situation
is creating one agent for each group and the total
number of produced agents will be as in

e ——
1242

figure5(b). The total time to execute this Flow
activity using IPD would be as follows:

tiotal =taL +tF +tc +max{tas +tag +tag) Dltas +tag +taz) O
(tas +tao +tao)l +1c +ta1=6a+2Ac

We come to the conclusion that our method
improves Flow activity total execution time

according A+ AclBta*Slc opyiously,
increasing the number of activities increases the
communication time in fully distributed
approach.

3.2.5 Scope, Compensate and Fault Activities

Scopes allow us to break up our business
processes into logical units of work. In fact,
Scopes provide a context for the execution
and/or documentation of enclosed activities, and
they can have variables that are visible and
usable within the Scope level. Scopes can have
both default and defined Fault and Event
handling logic, and they can be undone, if
necessary. Also, undoing the work of a Scope
involves the concept of compensation. When
designing your BPEL processes they should be
organized into logical units of work that can be
undone[1].

From Compensate point of view, previous
activities which had successfully completed may
need to be undone. In addition, due to the nature
of business process, it is usually long-running
and asynchronous. In BPEL, a Compensation

Journal of Theoretical and Applied Information Technology

-
@ 2005 - 2008 JATIT. All rights reserved. ’n’
www jatit.org
Activity 1 Activity] Agent
| i
v : v .
Acivitiy 2 Resource ; Activitiy? o Resource
*) ‘ \
ity e T | - .
Activity 3 . Activieyd {I—}-
¢ | v ;
Activity4 l Activityd
1 L
ActivatyS Activity§
(4) (B)

Figure 7: Closely Related Resources Detection

Handler is a local declaration, done at the Scope
level only, and is not normally available for the
Process itself.

However, designers add extensions to allow
process level compensation handling. In contrast,
Fault Handlers enable the process to recover
from abnormally terminated actions, whereas
Compensation Handlers undo successfully
completed actions. The other difference is the
context from which they are called. A BPEL
Fault Handler is invoked in response to a Fault in
the same context (i.e., the same Scope), whereas
Compensation Handlers are invoked in response
to a Fault in a higher context (i.e., the parent
Scope). Moreover, the order in which
compensation handlers are performed usually
makes a difference. By default, compensation is
performed in the reverse order of the completion
of Scopes involved[1].

According to [2, 10] a Scope activity will be
converted to an agent and the agent will be in
contact with its included activities and Fault and
Compensation handlers through a Pub/Sub or a
tuple space middleware. From IPD point of view,
Scope activity might be considered as a separate

activity or might be encapsulated with its
Compensate and Fault handlers.
According to NINOS[2], a simple

Compensate as shown in figure 6(a), will be
converted to two Scope agents A and B. Scope
A’s Fault handler involves the compensation
handler in Scope B. The Scope agent for Scope

1243

B subscribes in compensation events for the
Scope and triggers the first activity in its
compensation handler using a publication
method. So, Scopes as well as Compensates have
been converted to agents while using
Publish/Subscribe messages to interaction. The
same behavior has been done using tuplespace in
[10].

If we presume that the output of the mining
algorithm shows Compensation Handler in Scope
B is frequently being used then it will be possible
to encapsulate Activity 1 along with Activity 2
and Scope agent B all together to reduce the
number of agents. The produced agents using our
method have been drawn in figure 6(b) for more
illustration.

In this case putting together those Fault or
Compensate handlers which are closely related in
one agent will omit communication costs of an
agent interaction which results in decreasing total
execution time of Scope activities and its
included Compensate and Fault handlers.

3.2.6 Sequence Activity

A Sequence is a structured activity which can
contain other activities. The purpose of a
Sequence is to define the execution order for a
group of activities. Sequences, though can
contain other Sequences and can be nested as
deeply as you want. Sequences have all the
standard attributes and elements and they must
contain at least one or more activities[1].

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

Ny

damm

www jatit.org

According to NINOS [2] all of the activities
in sequence should be considered as a separate
activity. Sequence activity from our point of
view will be relatively straightforward due to its
simple structure. The total time to execute a
sequence of n activities is expected to be
asnxty +(n-1)xtc.

When there is a sequence of activities running
sequentially, according to an Apriori mining they
will be detected as closely related activities and
will be encapsulated in one agent, therefore, the
total time using our method will brext , which is

much less than n><tA+(n—1)><tC in fully
distributed method.

3.2.7 Closely Related Resour ce Pattern and
Other BPEL Activities

It is worth mentioning that the high
interaction of one or more activities with one
resource makes them closely related. So,
encapsulating of these activities would be
possible. It results in less communication cost
and we will be able to put the produced agent to
a suitable location where the cost of interaction
with resource is lessened. Figure 7.a shows an
interaction between activities and a resource.

If the mining algorithm comes up with the
surmise that Activityl, Activity2 and Activity 3
are closely related not only with each other but
also with the resource, as depicted in figurel6,
and encapsulating these activities together as an
agent and locating the agent in a right place
would mitigate the communication costs with the
resource, therefore it would be obvious that
mining algorithm will do encapsulation as shown
in figure7.b.

3.2.8 Other BPEL Activities and Nested Cases

Other BPEL activities are into a large extent
straightforward and need less study comparing
with mentioned activities. Also, in addition to the
discussed basic cases, it is worth mentioning that
more complex business processes and nested
ones are composed of simple cases and demand
further attention as future work.

4. Conclusion

In this paper, we present the concept of
Intelligent Process Distribution or IPD using

1244

mining idea to increase business process
adaptability and decrease resource usage. Our
contributions in this paper are: firstly, we
propose the idea of process distribution using
process mining. Secondly, we illustrate several
mining patterns for some paramount BPEL
activities to show how agent producing is based
on the execution history of previous executed
business processes. We also prove the method
using a mathematical approach. By and large, our
idea will results in distributing a business praces
to some agents which are in their best
granularity, neither fully distributed nor fully

centralized, actually based on the run-time
behavior of previous executed business
processes. IPD on one hand increases the

adaptability of business processes with run-time
environment and on the other hand decreases the
number produced agents as well as the number of
messages for agent interactions.

At present time we are developing a
methodology and implementing the idea of IPD
as well as comparing IPD with other mining
algorithms. For future work, we would like to
extend our work by designing a mining algorithm
based on temporal invocation of activities in a
process. In addition, designing a distributed
mining algorithm would be of our future plan.
Providing a plug-in for ProM IDE [12] tool of
process mining is another recommendation as
well.

5. References

[1]Active-Endpoints, "ActiveBPEL Engine -
Open Source BPEL Server," 2008.

[2]V. M. Guoli Li, and Hans-Arno Jacobsen,
"NiNos: A distributed service oriented
architecture for business process execution,"
Technical report, Middleware Systems Research
Group,July 2007.

[3]"Process Mining and Monitoring Processes
and Services: Workshop Report,"Tihhe Role of

Business Process in Service Oriented
Archtictures Eindhoven University of
Technology, P.O.Box 513, NL-5600 MB,

Eindhoven, The Netherlands., 2006.

[4]B. Weber, M. Reichert, S. Rinderle, and W.
Wild, Towards a Framework for the Agile
Mining of business Processe®l|. 3812/2006:
Springer Berlin / Heidelberg, 2006.

Journal of Theoretical and Applied Information Technology

© 2005 - 2008 JATIT. All rights reserved.

www jatit.org

[5]R. Gombotz and S. Dustdar, "On Web
Services Workflow Mining," irSpringer-Verlag

B. e. al, Ed. Berlin Heidelberg, 2006, pp. 216-
228.

[6]S. R.-M. Christian W. Gunther, Manfred
Reichert, Wil M.P. Van Der Aalst, Jan Recker,
"Using process mining to learn from process
changes in evolutionary systemsiternational
Journal of Business Process Integration and
Managementol. 3, pp. 61-78, 2008.

[7]W. M. a. G. van der Aalst, Christian and
Recker, Jan C. and Reichert, Manfred, "Using
Process Mining to Analyze and Improve Process
Flexibility - Position Paper,” inProceedings
18th International Conference on Advanced
Information Systems Engineering, Proceedings
of Workshops and Doctoral Consortiu006,

pp. 168-177.
[8]H.-A. J. F. Fabret, et al, "Filtering algorithms
and implementation for very fast

publish/subscribe systemsli ACM SIGMOD,
2001.

[9]D. S. R. A. Carzaniga, and A. L. Wolf.,
"Design and evaluation of a wide-area event
notification service,ACM ToCSyol. 19(3):, pp.
332-383, Aug. 2001.

[10]JE. D. Mirkov Viroli, Alessandro Ricci,
"Engineering a BPEL orchestration engine as a
multi-agent system Elsevier,January 2007.

[11]F. L. Rania Khalaf, "E Role-based
Decomposition of Businesses using BPEL," in
IEEE International Conference on Web
Services(ICWS'062006.

[12]"ProM IDE, The Process Mining Group,
TM.IS department, Eindhoven University of
Technology.," 2007.

1245

