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ABSTRACT 
 
This paper concentrates on the difficulty of the value of the set of revealed association rules. This problem 
is important since real-life databases capitulate most of the time several thousands of rules with high 
confidence and propose new algorithms based on closed sets to reduce the mining to bases for exact and 
estimated rules. Once frequent closed itemsets which constitute a generating set for both frequent itemsets 
and association rules have been discovered. Proposed algorithms for efficiently generating bases for 
association rules. A basis is a set of non-redundant rules from which all association rules can be derived, 
thus it captures all useful information. Moreover, its size is significantly reduced compared with the set of 
all possible rules because redundant and thus useless rules are discarded. New approach has a twofold 
advantage on one hand, the user is provided with a smaller set of resulting rules, easier to handle, and 
information of improved quality. On the other hand, execution times are reduced compared with the 
discovering of all association rules. Chess dataset used for experiments. 
 
Keywords: Apriori algorithm, closure operator, itemsets, Association rules, Chess Dataset.  
 
1 INTRODUCTION  
    
      The approach presented in this paper belongs 
to the second trend since it aims to extract not all 
possible rules but a sub-set called basis or cover 
for association rules. When computing such a 
basis, redundant rules are discarded since they do 
not relevant knowledge. Such a pruning 
operation is a key-step during rule extraction, 
and significantly reduces the resulting set. An 
association rule is to exhibit relationships 
between data items or attributes and compute the 
precision of each relationship in the database. 
Usual precision measures are support and 
confidence that point the proportion of database 
transactions or objects upholding each rule out. 
When an association rule has support and 
confidence exceeding some user-defined 
minimum thresholds, the rule is considered as 
relevant and the extracted knowledge would 
likely be used for supporting decision making. 
Various approaches have been proposed for an 
increased efficiency of rule discovery. Among 
approaches addressing the described issue, some 

main trends can be distinguished, filtering rules 
and Boolean operators for  
 
selecting rules given items. A similar approach 
expanded with a measure of usefulness of 
extracted rules, called improvement, is proposed 
an SQL-like operator called Mine Rule, allowing 
the specification of general extraction criteria, is 
proposed. The quoted approaches operate 
Apriori, i.e. once huge amount of rules are 
extracted, querying facilities make it possible to 
handle rule subsets selected according to the user 
preferences. In contrast, the second trend 
addresses the problem with Apriori vision, by 
attempting to minimize the number of exhibited 
rules. Information about taxonomies is used to 
define criterion of interest which apply for 
pruning redundant rules.  
       This paper states the foundations of new 
approach since it makes it possible to generate 
the bases from frequent closed itemsets by 
avoiding handling of large sets of rules. Previous 
achieves frequent closed itemsets from frequent 
itemsets without accessing the dataset, called 
Apriori-Close, extends the Apriori algorithm by 
discovering simultaneously frequent itemsets and 
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frequent closed itemsets without additional 
execution time. Then, using the frequent closed 
itemsets and the pseudo-closed itemsets defined 
in lattice theory, Here, define the exact 
association rules with a maximum confidence. 
Rules in this basis are non-redundant exact rules 
with minimal antecedent and maximal 
consequent. Besides, using the frequent closed 
itemsets, This paper define the proper basis and 
the structural basis for approximate association 
rules. The proper basis is a small set containing 
the most informative and useful approximate 
rules: the non-redundant informative rules. The 
structural basis can be viewed as an abstract of 
all approximate rules that hold and can be useful 
when the proper basis is large. We propose three 
algorithms intended for yielding these three 
bases. Using the set of frequent closed itemsets, 
generating the evoked bases is performed 
without any access to the dataset. 
    An algorithm discovering closed and pseudo-
closed. However, this algorithm does not 
consider the support of itemsets and, since it 
works only in main memory, it cannot be applied 
when the number of objects exceeds some 
hundreds and the number of items some tens. 
The association rule framework is defined. 
Fitting in this groundwork, efficient algorithms 
that discover frequent closed itemsets for 
association rules are defined: the Close algorithm 
[24] for correlated data and the A-Close 
algorithm [23] for weakly correlated data. The 
work presented in this paper shows that frequent 
closed itemsets constitute a generating set for 
frequent itemsets and association rules, extends 
the Apriori algorithm and algorithms for 
discovering maximal frequent Itemsets to 
generate frequent closed itemsets, adapts the 
results for exact and partial Implications to the 
context of association rules. This adaptation is 
based on the generating set, presents new 
algorithms for generating bases for exact and 
approximate association Rules using frequent 
closed itemset and the algorithms proposed are 
efficient for both improving the usefulness of 
extracted association rules and decreasing the 
execution time of the association rule extraction. 
As shown by experiments, the proposed process 
for extracting bases does not require any 
overhead compared with the traditional 
approaches for discovering association rules. 
     This paper addresses the concept of basis for 
both exact and approximate association rules. 
New algorithms for discovering frequent and 
frequent closed itemsets are described and the 
following section presents algorithms computing 

the bases for association rules from the frequent 
closed itemsets. Finally, as a conclusion, suggest 
more research. 
 
2 FREQUENT ITEM SETS AND 
ASSOCIATION RULE CONSTRUCTION   
 
  This paper present the association rule 
framework based on the closure operators and 
connection, primarily introduced. A data mining 
context1 is defined as D = (O, I,R), where O and 
I are finite sets of objects and items respectively. 
R subset of O × I is a binary relation between 
objects and items. Each couple (o, i) Є R denotes 
the fact that the object o Є O is related to the 
item i Є I. Depending on the target system, a 
data mining context can be a relation, a class, or 
the result of an SQL/OQL query. Datamining 
context D consisting of objects identified by 
their OID.  
A. Let I be a subset of items from D. The 

support count of the itemset I in D is: 
supp(I)= ||g(I)|| / ||O|| I is said to be frequent 
if the support of I in D is at least minsupp.  

     The set L of frequent itemsets in D is: 
      L = {(I  I) supp (I) ≥ minsupp} 
B. An Association rule is an implication 

between two itemsets, with the form I1→ I2 
where I1; I1  I, I1; I2 ≠θ and I1 ∩ I2 = θ. I1 
and I2 are called respectively the antecedent 
and the consequent of the rule. The support 
supp(r) and confidence conf(r) of an 
association rule r : I1→ I2 are defined as 
follows: 
supp(r) = ||g(I1  I2)||  ⁄  ||θ||,   
con f(r) =   supp(I1   I2) ⁄ supp(I2) 
 

    Association rules holding in the context are 
those that have support and confidence greater 
than or equal to the minsupp and minconf 
thresholds respectively. Definition of the set AR 
of association rules holding in D given minsupp 
and minconf thresholds as follows: 
        AR = {r: I1 →I2 →I1 | I1  I2  I ^ supp(I2) 
≥ minsupp ^ conf(r) ≥ minconf} 
If conf(r)=1 then r is called an exact association 
rule or implication rule, otherwise r is called 
approximate association rule. Exact and 
approximate association rules extracted from D 
for minsupp = 2/5 and minconf = 1/2 . 
         Frequent closed itemsets constitute a 
generating set for frequent itemsets and 
association rules. Then, we characterize the 
association rules and the proper and structural 
bases for approximate association rules as 
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defined and extended in this paper to the context 
of association rules.  
  A. The operators h = f o g in 2I and h1  = g o f 
in 2O are closure operators, here we use the 
notation f o g (I) = f(g(I)) and gof(o) = g(f(o)). 
Given the set (f, g), the following properties hold 
for all I, I1, I2  I and O, O1, O2  O. 

 
          Extension  
I   h(I)   O  h1 (O) 
 

 
 

 
C. An itemset I  I in D is a closed itemset if 

h(I) = I. A closed itemset I is said to be 
frequent if the support of I in D is at least 
min-sup. The smallest closed itemset 
containing an itemset I is h(I), the closure of 
I. The set FC of frequent closed itemsets in 
D is defined as follows: 

 
FC = {I   I’  | I = h(I) ^ supp(I) ≥  
minsupp} 
 

 

           A frequent closed itemset is a maximal set 
of items common to a set of objects, for which 
support is at least minsupp. The frequent closed 
itemsets in the context {5} for minsupp=2/5 are 
presented. The itemset {2,3,5} is a frequent 
closed itemset since it is the maximal set of items 
common to the objects {2, 3, 5}. The itemset 
{2,3} is not a frequent closed itemset since it is 
not a maximal set of items common to some 
objects: all objects in relation with the items {2} 
and {3} (objects) are also in relation with the 
item {5}. 
        Hereafter, we demonstrate that the set of 
frequent closed itemsets with their support is the 
smallest collection from which frequent itemsets 
with their support and association rules can be 

generated (it is a generating set). The support of 
an itemset I is equal to the support of the smallest 
closed itemset containing I: supp(I) = supp(h(I)). 
      The set of maximal frequent itemsets M = {I 
Є L |  I’ Є L where I  I’ } is identical to the set 
of maximal frequent closed itemsets 
 
MC = {I Є FC |  I’ Є FC where I  I’}. 
 
  

 
                        
 
   
 
 
 
 
 
 
 
 
                                     Table 1:  Frequent Closed Itemsets Extracted from D for minsupp 
       
C. The set FC of frequent closed itemsets with 
their support is a generating set for all frequent 
itemsets and their support, and for all association 
rules holding in the dataset, their support and 
their confidence. All frequent itemsets can be 
derived from the maximal frequent closed 
itemsets. The support of each frequent itemset 
can be derived from the support of frequent 
closed itemsets. Then, the set of frequent closed 
itemsets FC is a generating set for both the set of 

frequent itemsets L and the set of association 
rules.  
 
 
 
 
2.1 Exact Association Rules 
 
  Let FP be the set of frequent pseudo-closed 
itemsets in P.  

           Idempotency 
h(h(I))=h(I) h1 (h1 (O)) = h1 (O) 

Monotonicity 
            I1  I2 →h(I1)  h(I2)  
            O1  O2 → h1(O1)  h1(O2) 
 

       Frequent closed   itemset        Support 
{θ} 5/5 
{3} 4/5 

{1,3} 3/5 
{2,5} 4/5 

{2,3,5} 3/5 
{1,2,3,5} 2/5 
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      The set P = {r : I1 → h(I1) - I1 Є I1 Є FP ^ I1 
≠ θ is a basis for all exact association rules 
holding in the dataset. Minimal with respect to 
the number of rules since there can be no 
complete set with fewer rules than there are 
frequent pseudo-closed itemsets. A frequent 
pseudo-closed itemset I is a frequent non-closed 
itemset that includes the closures of all frequent 
pseudo-closed itemsets included in I. The set FP 

of frequent pseudo closed itemsets and the 
association rules extracted for minsupp=2/5 and 
minconf =1/2. The itemset {1,2} is not a frequent 
pseudo closed itemset since the closures of {1} 
and {2} respectively {1,3} and {2,5} are not 
included in {1,2}. 
   {1,2,3,5} is not a frequent pseudo-closed 
itemset since it is closed. 

 
 
 
 
                        
                                  

  Table 2:  Frequent Pseudo-Closed Itemsets                              Table 3:  extracted from minsupp  
                   
      Furthermore, FC is the smallest generating 
set for L and AR. Hence, even if frequent 
itemsets can be derived from the maximal 
frequent itemsets, passes over the dataset are still 
needed to compute the frequent itemset supports. 
 
 
 
2.2 Approximate Association Rules 
     

       Let FC be the set of frequent closed itemsets 
in {4}. The set 
    PB = {r : I1 →I2 →I1 | I1, I2 Є FC ^ I1 ≠  θ ^ I1 

 I2 ^ conf(r) ≥ mincon f} is a basis for all 
approximate association rules holding in the 
dataset. Association rules in PBA are proper 
approximate association rules.      The proper 
basis for approximate association rules extracted 
from {4} for minsupp=2/5 and minconf =1/2 are 
presented. 

  
Approximate rule Support Confidence 

{2,3,5}→{1} 2/5 2/3 
{1,3}→{2,5} 2/5 2/3 
{ 2,5}→{1,3} 2/5 2/4 
{ 2,5}→{3} 3/5 3/4 

{3}→{1,2,5} 2/5 2/4 
{3}→{2,5} 3/5 3/4 
{3}→{1} 3/5 3/4 

                    
                    Table 4:  Proper Basis Extracted from {4} for  minsupp = 2/5 and minconf = 1/2. 
 
2.3 Structural Basis for Approximate 
Association Rules 
     
      Let FC be the set of frequent closed itemsets 
in D. here, define GFC = (V,E) as the undirected 
graph associated with FC where the set of 
vertices V and the set of edges E. Maximal 
Confidence Spanning Forest FFC: Let FFC = (V,E) 
be the maximal confidence spanning forest 
associated with FC. FFC is obtained from the 
undirected graph GFC = (V,E) by suppressing 
transitive edges and cycles. Cycles are removed 
by deleting some edges that enter the last vertex I 
(maximal vertex with respect to the inclusion) of 
the cycle. Among all edges entering in I, those  

 
 
with confidence less than the maximal 
confidence value associated with an edge with 
the form (I1, I) Є E are deleted. If more than one 
edge have the maximal confidence value, the 
first one in lexicographic order is kept. 
     Let SB be the set of association rules 
represented by edges in FFC except rules from 
the vertex { }. The set  SB = {r : I1 →I2 − I1 | I1, 
I2  V ^ I1  I2 ^ I1 ≠  ^ (I1, I2)  E’} is a basis 
for all approximate association rules holding in 
the dataset (I is the consequent of at most one 
approximate association rule in SB).The 
structural basis for approximate association rules 

    Exact rule  Support 
{1}→ {3} 3/5 
{2}→ {5} 4/5 
{5}→ {2} 4/5 

Frequent pseudo-closed temset  Support 
{1} 3/5 
{2} 4/5 
{5} 4/5 
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extracted from {4} for minsupp=2/5 and minconf =1/2 is presented. 
 
 
               
 
 
 
 
     
           Table 5:   Structural Basis Extracted from {4} for  minsupp = 2/5 and minconf = 1/2. 
 
3 FREQUENT AND FREQUENT CLOSED 

ITEMSETS 
    
   We propose a new algorithm to achieve 
frequent closed itemsets from frequent itemsets 
without accessing the dataset. This algorithm 
discovers frequent closed itemsets while for 
instance an algorithm for discovering maximal 
frequent itemsets is used. also, we present an 
extension of the Apriori algorithm called 
Apriori-Close for discovering frequent and 
frequent closed itemsets without additional 
computation time. Like in the Apriori algorithm, 
we assume in the following that items are sorted 
in lexicographic order and that k is the size of the 
largest frequent itemsets. Based on theorem k is 
also the size of the largest frequent closed 
itemsets. 

    Many efficient algorithms for mining frequent 
itemsets and their support have been proposed. 
Efficient algorithms for discovering the maximal 
frequent itemsets and then achieve all frequent 
itemsets .All these algorithms give as result the 
set L =   i=1Ui=k  where Li contains all frequent i-
itemsets (itemsets of size i). Based on 
Proposition 1 and theorem, the frequent closed 
itemsets and their support can be computed from 
the frequent itemsets and their support without 
any dataset access. 
   The pseudo-code to determine frequent closed 
itemsets among frequent itemsets. The input of 
the algorithm are sets Li, 1≤ I ≤ k, containing all 
frequent itemsets in the dataset. It recursively 
generates the sets FCi, 0≤ I ≤ k, of frequent 
closed i-itemsets from FCk to FC0. 

 
Algorithm1:DFCIA (Derived Frequent Closed Itemsets from Frequent Itemsets Algorithm) 
 
1.   FCk ←Lk; 
2.   for (i←k-1; i ≠ 0; i - -) do begin 
3.   FCi ← {}; //FCi Set of frequent closed i-itemsets and their support 
4.   forall itemsets l  Li do begin 
5.   isclosed ← true;  // Isclosed -Variable indicating if the considered itemset is closed or not 
6.   forall itemsets l’   Li+1 do begin // Li  Set of frequent i-itemsets and their support 
7.   if (l  l’) and (l.support=l’.support) 
8.   then isclosed← false; 
9.   end 
10. if (isclosed = true) then FCi← FCi U {l};  
11. end 
12. end 
13. FC0←{θ}; 
14. forall itemsets l ЄL1 do begin 
15. if (l.support = ||O||) then FC0 ←{}; 
16. end 
 
First, the set FCk is initialized with the set of 
largest frequent itemsets Lk. Then, the algorithm 
iteratively determines which i-itemsets in Li are 
closed from Lk-1 to L1., for each frequent itemset 
l in Li, we verify that l has the same support as a 
frequent (i+1)-itemset l’ in Li+1 in which it is 
included. If so, we have l’ subset of h(l) and then 

l ≠h(l): l is not closed. Otherwise, l is a frequent 
closed itemset and is inserted in FCi (step 9). 
During the last phase, the algorithm determines 
if the empty itemset is closed by first initializing 
FC0 with the empty itemset and then considering 
all frequent 1-itemsets in L1. If a 1-itemset l has 
a support equal to the number of objects in the 

Approximate rule Support Confidence 
 

 {1,3}→{2,5} 2/5 2/3 
    {2,5}→{3} 3/5 3/4 
     {3}→{1} 3/5 3/4 
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context, meaning that l is common to all objects, 
then the itemset cannot be closed (supp({θ}) = 
||O|| = supp(l)) and is removed from FC0. Thus, 
at the end of the algorithm, each set FCi contains 
all frequent closed i-itemsets. Since all maximal 
frequent itemsets are maximal frequent closed 
itemsets, the computation of the set FCk 
containing the largest frequent closed itemsets is 

correct. The correctness of the computation of 
sets FCi for I < k relies on Proposition 1. This 
proposition enables to determine if a frequent i-
itemset l is closed by comparing its support and 
the supports of the frequent (i+1)-itemsets in 
which l is included. If one of them has the same 
support as l, then l cannot be closed. 

 
3.1 Apriori-Close Algorithm 
 
      In this section, we present an extension of the 
Apriori algorithm computing simultaneously 
frequent and frequent closed itemsets. The 
pseudo-code is given in Algorithm 2. The 
algorithm iteratively generates the sets Li of 
frequent i-itemsets from L1 to Lk. Besides, during 
the ith iteration, all frequent closed (i-1)-itemsets 

in FCi-1 are determined. The set FCk is 
determined during the last step of the algorithm. 
      First, the variable k is initialized to 0. Then, 
the set L1 of frequent 1-itemsets is initialized 
with the list of items in the context and one pass 
is performed to compute their support. The set 
FC0 is initialized with the empty itemset and the 
supports of Li Set of frequent i-itemsets, their 
support and marker isclosed indicating if closed 
or not .FCi Set of frequent closed i-itemsets and 
their support. 

 Algorithm2: DFApriori-Close (Discovering Frequent and Frequent Closed Itemsets with Apriori-
Close) 
 
1.    k← 0; 
2.    itemsets in L1 ←{1-itemsets}; 
3.    L1 ←Support-Count(L1);      // Li- Set of frequent i-itemsets and their support 
4.    FC0← {θ}; 
5.    forall itemsets l  L1 do begin 
6.    if (l.support < minsupp)  then L1←L1 – {l}; 
7.    else if (l.support = ||O||)  then FC0←{}; 
8.    end 
9.    for (i ←1; Li ≠{}; i++) do begin  
10.  forall itemsets l   Li do l’.isclosed←true;   // Isclosed- indicating  if closed or not 
11.  Li+1 ←Apriori-Gen(Li); 
12.  forall itemsets l  Li+1  do begin 
13.      forall i-subsets l’ of l    do begin 
14.     if (l’   Li) then Li+1 Li+1 n {l}; 
15.   end 
16.  end 
17.  Li+1 Support-Count(Li+1); 
18.  forall itemsets l  Li+1 do begin 
19.    if (l.support < minsupp)  then Li+1 Li+1 n {l}; 
20.       else do begin 
21.         forall i-subsets l’  Li of l do begin 
22.           if (l.support = l’.support) then   l’.isclosed  ←false; 
23.       end 
24.     end 
25.   end 
26.   FCi  ←{l  Li | l.isclosed = true};    // FCi- Set of frequent closed i-itemsets and their support 
27.   k ←i; 
28.   end 
29.   FCk← Lk; 
 
   itemsets in L1 are considered (steps 5 to 8). All 
infrequent 1-itemsets are removed from L1 and if 
a frequent 1-itemset has a support equal to the 

number of objects in the context then the empty 
itemset is removed from FC0 (step 7). During 
each of the following iterations, frequent 
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itemsets of size i+1, k > i ≥1, and frequent closed 
itemsets of size i are computed as follows. For 
all frequent i-itemsets in Li, the marker isclosed 
is initialized to true. A set Li+1 of possible 
frequent (i+1)-itemsets is created by applying the 
Apriori-Gen function to the set Li .For each of 
these possible frequent (i+1)-itemsets, we check 
that all its subsets of size i exist in Li. One pass 
is performed to compute the supports of the 
remaining itemsets in Li+1. Then, for each (i+1)-
itemsets l  Li+1, if l is infrequent then it is 
discarded from L1+1. Otherwise for all i-subsets 
l0 of l, we verify that supports of l0 and l are 
equal; if so, then l0 cannot be a closed itemset 
and its marker isclosed is set to false (steps 20 to 
24). Then, all frequent i-itemsets in Li for which 
marker isclosed is true are inserted in the set FCi 
of frequent closed i-itemsets and the variable k is 
set to the value of i . Finally, the set FCk is 
initialized with the frequent k-itemsets in Lk. 
 

A. Apriori-Gen function:The Apriori-
Gen function [2] applies to a set Li of 
frequent i-itemsets. It returns a set Li+1 
of potential frequent (i+1)-itemsets. A 
new itemset in Li+1 is created by 
joining two itemsets in Li sharing 
common first i-1 items. 

B. Support-Count function:The Support-
Count function takes a set Li of i-
itemsets as 
argument. It efficiently computes the 
supports of all itemsets l  Li. Only one 
dataset pass is required: for each object 
o read, the supports of all itemsets l  
Li that are included in the set of items 
associated with o, i.e. l  f({o}), are 
incremented. The subsets of f({o}) are 
quickly found using the Subset 
function.  

      C. Correctness  
           Since the support of a frequent 
          closed itemset l is different from the 
          support of all its   
     Supersets the computation of sets FCi for i < 
k is correct. Hence, a frequent i-itemset l’  Li is 
determined closed or not by comparing its 
support with the supports of all frequent (i + 1)-
itemsets l  Li+1 for which l’  l. The 
correctness of the computation of the set FCk 
containing the largest frequent closed itemsets. 
 
4. Generating - Association Rules 
 

    The pseudo-code generating for exact 
association rules is given in Algorithm. The 
algorithm takes as input the sets Li, 1 ≤ I ≤ k, 
containing the frequent itemsets and their 
support, and the sets FCi, 0 ≤ i ≤ k, containing 
the frequent closed itemsets and their support. It 
first computes the frequent pseudo-closed 
itemsets iteratively and then uses them to 
generate the association rules. 
      First, the set EA is initialized to the empty 
set. If the empty itemset is not a closed itemset ,it 
is then necessarily a pseudo-closed itemset, it is 
inserted in FP0. Otherwise FP0 is empty. Then, 
the algorithm recursively determines which i-
itemsets in Li are pseudo closed from L1 to Lk. 
At each iteration, the set FPi is initialized with 
the list of frequent i-itemsets that are not closed 
(step 5) and each frequent i-itemsets l in FPi is 
considered as follows. The variable pseudo is set 
to true. We verify for each frequent pseudo-
closed itemset p previously discovered (i.e. in 
FPj with j < i) if p is contained in l. In that case 
and if the closure of p is not included in l, then l 
is not pseudo-closed and is removed from FPi. 
Otherwise, the closure of l ,the smallest frequent 
closed itemset containing l is determined. Once 
all frequent pseudo-closed itemsets p and their 
closure are computed, all rules with the form r : p 

 p.closure - p) are generated. The algorithm 
results in the set EA containing all rules in the 
basis for exact association rules. 
A.Correctness: 
    Since the itemset  has no subset, if it is not a 
closed itemset then it is by definition a pseudo-
closed itemset and the computation of the set FP0 
is correct. The correctness of the computation of 
frequent pseudo-closed i-itemsets in FPi for 1 ≤ i 
≤ k relies on Definition 7. All frequent i-itemsets 
l in Li that are not closed, i.e. not in FCi, are 
considered. Those l containing the closures of all 
frequent pseudo-closed itemsets that are subsets 
of l are inserted in FPi. According to Definition 
7, these i-itemsets are all frequent pseudo-closed 
i-itemsets and the sets FPi are correct. 
   The association rules generated in the last 
phase of the algorithm are all rules with a 
frequent pseudo-closed itemset in the antecedent. 
Then, the resulting set EA corresponds to exact 
association. 
 
4.1 Generating Proper Basis for Approximate 
Association Rules 
 
    The pseudo-code generating the proper basis 
for approximate association rules is presented 
and Notations are given. The algorithm takes as 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2008 JATIT. All rights reserved.                                                                         
 

www.jatit.org 

 
955 

 

input the sets FCi,1 ≤ I ≤ k, containing the 
frequent closed non-empty itemsets and their 
support. The output of the algorithm is the 

proper basis for approximate association rules 
PBA. 

 
Algorithm 3 : EARA (Exact Association Rule based Algorithm) 
 
1) EAR ← {}; // EAR → Exact Association rules. 
2) if (FC0 = {}) then FP0←  { }; 
3)   else FP0 ←{}; 
4) for (i← 1; i ≤ k; i++) do begin 
5) FPi ← Li \ FCi;  // Li-Set of frequent i-itemsets and their support. 
6) forall itemsets l  FPi do begin 
7)    pseudo true; 
8)    forall itemsets p  FPj with j < i do begin 
9)      if (p  l) and (p.closure  ) 
10)       then do begin 
11)     pseudo false; 
12)     FPi← FPi \ {l};  // FPi- Set of frequent pseudo-closed i-itemsets, their closure and their support 
13)     endif 
14) end 
15) if (pseudo = true) then l.closure Min  (fc Є FCj>i j | l   c}); 
16) end 
17) end 
18) forall sets FPi where FPi ≠{} do begin 
19)     forall pseudo-closed itemsets p Є FPi do begin 
20)    EAR ← EAR U {r : p (p.closure − p),p.support}; 
21) end 
22) end 
    
The set PB (Proper basis for approximate 
association rules) is first initialized to the empty 
set (step 1). Then, the algorithm iteratively 
considers all frequent closed itemsets l  FCi for 
i ≤ k. It determines which frequent closed 
itemsets l’  FCj<i are subsets of l and generates 
association rules with the form l’ → l → l’ that 
have sufficient confidence as follows. During the 
ith iteration, each itemset l in FCi is considered (. 
For each set FCj , 1 ≤  j < i, a set Sj containing all 
frequent closed j-itemsets in FCj that are subsets 
of l is created. Then, for each of these subsets l’ 

 Sj, compute the confidence of the proper 
approximate association rule r : l’→ l − l’. If the 
confidence of r is sufficient then r is inserted in 
PBA. At the end of the algorithm, the set PBA 
contains all rules of the proper basis for 
approximate association rules. 
   Subset function takes a set X of itemsets and 
an itemset y as arguments. It determines all 
itemsets x  X that is subsets of y. In algorithm 
implementation, frequent and frequent closed 
itemsets are stored in a prefix-tree structure in 
order to improve efficiency of the subset search. 
   Correctness The correctness of the algorithm 
relies on the fact that we examine all proper 

approximate association rules holding in the 
dataset. For each frequent closed itemset, the 
algorithm computes, among its subsets, all other 
frequent closed itemsets. Then, the generation of 
all rules between two frequent closed itemsets 
having succient confidence is ensured. These 
rules are all proper approximate association rules 
holding in the dataset, and the resulting set PB is 
the proper basis for approximate association 
rules.  
 
4.2 Generating Structural Basis for 
Approximate Association Rules 
 
     The pseudo-code generating the structural 
basis for approximate association rules is given 
in Algorithm. The algorithm takes as input the 
sets FCi(Set of frequent closed i-itemsets and 
their support), 1 ≤ i ≤ k, of frequent closed non-
empty itemsets and their support. It generates the 
structural basis for approximate association rules 
SB represented by the maximal confidence 
spanning forest FFC associated with 
 FC =i=1Ui=k FCi (without the empty itemset). 
      The set SB (Structural basis for approximate 
association rules) is first initialized to the empty 
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set. Then, the algorithm iteratively considers all 
frequent closed itemsets l  FCi fori ≤ k. It 
determines which frequent closed itemsets l’  
FCj<i are covered by l, i.e. are direct predecessors 
of l, and then generates the maximal confidence 
association rules with the form l → l’ → l. 
During the ith iteration, each itemset l in FCi is 

considered as follows. The set CR(Set of 
candidate approximate association rules.) of 
candidate association rules with l in the 
consequent is initialized to the empty set. For 1 ≤ 
j < i, sets Sj containing all frequent closed j-
itemsets in FCj that are subsets of l are created. 

 
Algorithm 4: PBAARA (Proper Basis Approximate Association Rules Algorithm) 
 
1) PBA ← {} //PBA-proper Basis for approximate Association rule 
2) for (i ← 2; i ≤ k; i++) do begin 
3) forall itemsets l  FCi do begin 
4) for (j←  I - 1; j > 0; j- -) do begin 
5) Sj Subsets(FCj , l);  // Sj Set of j-itemsets that are subsets of the considered itemset 
6) forall itemsets l’  Sj do begin 
7) conf(r) ←  l.support / l’.support; 
8) if (conf(r) ≥ mincon f) 
9) then PBA ← PBA U {r : l’ → l – l’, l.support, con f(r)}; 
10)        end 
11)      end 
12)    end 
13) end 
 
     
All these subsets are considered in decreasing 
order of their sizes. For each of these subsets, the 
confidence of the proper approximate association 
rule r : l’  l – l’ is computed. If the confidence 
of r is sufficient, r is inserted and all subsets are 
removed from Sn<j. This because rules with the 
form l’’→ l – l’’ with l’’  Sn<j are transitive 
proper approximate rules. Finally, the candidate 
proper approximate rules with l in the 
consequent are pruned. The maximum 
confidence value maxconf of rules determined 
and the first rule with such a confidence is 
inserted. At the end of the algorithm, the set 
contains all rules in the structural basis for 
approximate association rules. 

 
• Correctness:  The algorithm considers all 

association rules l’→l – l’ with confidence ≥ 
minconf between two frequent closed 
itemsets l and l’ where l covers l’. These 
rules are all proper non transitive 
approximate association rules that hold and 
can be represented by the edges of the graph 
GFC without transitive edges. Moreover, 
among all rules with the form X → l – X 
(generated from l), Here, keep only the first 
one with confidence equal to the maximal 
confidence of rules  
                     X→ l – X.  

 
Algorithm 5: SBAARA (Structural Basis for Approximate Association Rules Algorithm) 
 
1) SBAA ←{}; 
2) for (i ←2; i ≤ k; i++) do begin 
3) forall itemsets l  FCi do begin 
4) CR ←{}; 
5) for (j← i– 1; j > 0; j- -) do begin 
6) Sj Subsets(FCj ,l); 
7) end 
8) for (j ← i– 1; j > 0; j- -) do begin 
9) forall itemsets l’  Sj do begin 
10) conf(r) ← l.support / l’.support; 
11) if (conf(r) ≥ minconf) 
12) then CR←  CR U {r : l’ → l – l’, l.support, conf(r)}; 
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13) for (n← j–1; n > 0; n- -) do begin 
14) Sn←  Sn – Subsets(Sn, l’); 
15) end 
16) endif 
17) end 
18) end 
19) if (CR ≠{}) then 
20) maxconf ← MaxrЄCR(conf(r)); 
21) find first {r CR | conf(r) = maxconf}; 
22) SBAA ← SBAA U {r}; 
23) endif 
24) end 
25) end 
 
5 Experimental Results- Relative Performance of Apriori and Apriori-Close 
   
Experiments were performed on a Pentium IV 
PC with a 1 GHz clock rate, 700 MBytes of 
RAM, running the Linux operating system. 
Algorithms were implemented in JAVA. 
Characteristics of the datasets used are given 
below. These datasets are the market basket data 

and the Chess Dataset. In all experiments, we 
attempted to choose significant minimum 
support and confidence threshold values: we 
observed threshold values used in other papers 
for experiments on similar data types and 
examined rules extracted in the bases. 

 
Name Number of objects Average size of objects Number of items
Chess 100,000 10 1,000 
Mushrooms 8,416 23 127 
Market basket 10,000 20 386 

 
                                              Table 6:  Datasets. 
 
    
We conducted experiments to compare response 
times obtained with Apriori and Apriori-Close 
on the four datasets. Results for the chess and 
market basket datasets are. We can observe that 

execution times are identical for the two 
algorithms: adding the frequent closed itemset 
derivation to the frequent itemset discovery does 
not induce additional computation time. 

 
 
 
 
 
 

Table 7:   Chess dataset                                 Table 8:   Market basket data 
                           Execution Times of Apriori and Apriori-Close. 
 
     Total number of approximate association 
rules, their number in the proper basis and in the 
structural basis for approximate rules, and the 
number of non-transitive rules in the proper basis 
for approximate rules. For example in the 
context D, rules {3}→{1} and {1,3}→{2,5} are 
extracted, as well as the rule {3}→{1,2,5} which 
is clearly transitive. Since by construction, it’s 
confidence-retrieved by multiplying the 
confidence of the two former -is less than theirs, 
this rule is the less interesting.  

    Reducing the extraction to non-transitive rules 
in the proper basis for approximate rules can also 
be interesting. Such rules are generated by a 
variant of Algorithm with the pruning strategy 
and candidate rules in CR are inserted in SB. 
Datasets the average relative size of bases 
compared with the sets of all rules obtained. In 
the case of weakly correlated data, no exact rule 
is generated and the proper basis for approximate 
rules contains all approximate rules that hold. 
The reason is that, in such data, all frequent 

Minsupp Apriori Apriori-Close
2.0%         1.99s              1.97s 
 1.0%         3.47s    3.46s 
0.5%         9.62s    9.70s 
0.25%      15.02s           14.92s 

Minsupp Apriori Apriori-Close 
90% 0.28s 0.28s 
70% 0.73s 0.73s 
50% 2.40s 2.70s 
30% 18.22s 17.93s 
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itemsets are frequent closed itemsets. In the case 
of correlated data, the number of extracted rules 
in bases is much smaller than the total number of 
rules that hold. Dataset the execution times of the 
computation of all rules. Execution times of the 
derivation of the exact rules and the proper basis 
for non-transitive approximate rules are not 
presented since they are identical. 
 
6 Conclusions 

    In this paper, Five algorithms DFCI, 
DFApriori-Close, EARA, PBAARA, SBAARA for 
efficiently generating bases for association rules. 
A basis is a set of non-redundant rules from 
which all association rules can be derived, thus it 
captures all useful information. Moreover, its 
size is significantly reduced compared with the 
set of all possible rules because redundant, and 
thus useless, rules are discarded. Our approach 
has a twofold advantage: on one hand, the user is 
provided with a smaller set of resulting rules, 
easier to handle, and information of improved 
quality. On the other hand, execution times are 
reduced compared with the discovering of all 
association rules. Such results are proved (in the 
groundwork of lattice theory) and illustrated by 
experiments, achieved from real-life datasets. 
Integrating reduction methods Templates can 
directly be used for extracting from the bases all 
association rules matching some user specified 
patterns. Information in taxonomies associated 
with the dataset can also be integrated in the 
process as proposed for extracting bases for 
generalized multi-level association rules. 
Integrating item constraints and statistical 
measures in the generation of bases requires 
further work. Functional and approximate 
dependencies Algorithms presented in this paper 
can be adapted to generate bases for functional 
and approximate dependencies. The functional 
dependencies constituted of minimal non-trivial 
functional dependencies. Hence, the number of 
rules is minimal; moreover these rules have 
minimal antecedent and maximal consequent. 
Furthermore, the proper and structural bases for 
approximate rules are also smaller than the basis 
for approximate dependencies defined. Adapting 
our algorithms to the discovery of functional and 
approximate dependencies is an ongoing 
research. 
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