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ABSTRACT 
 

In this paper, selection of the state feedback gains by Particle Swarm Optimization (PSO) technique is 
presented contrary to the selection of the feedback gains reported in literature. The proposed design has 
been applied to the inverter fed induction motor drive system. The system performance has been simulated 
and compared with some previous methods such as Variable Structure Controller (VSC) method, and 
Genetic Algorithm (GA) approach. Simulation results show that the dynamic system performance has been 
improved much with PSO compared to other two methods such as VSC and GA . The results show the 
effectiveness of the proposed technique.  
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1. INTRODUCTION  
 

Optimal control deals with the problem of 
finding a control law for a given system such that a 
certain optimality criterion is achieved. A control 
problem includes a cost functional that is a function 
of state and control variables. An optimal control is 
a set of differential equations describing the paths 
of the control variables that minimize the cost 
functional. Application of the variable structure 
controllers to different engineering problems 
including power systems [l-4], aerospace [5], 
robotics [6], and many others had been increasing 
in the last two decades. Very recently, the problem 
of VSC feedback gains selection has been 
considered by [3]. Their approach essentially was 
to try all allowable values of the feedback gains and 
evaluate a performance index for each set of 
feedback gains. The optimal feedback gains 
selected are those which minimize the performance 
index. This approach is numerically intensive 
especially for large numbers of feedback gains.  

Particle Swarm Optimization is a new 
evolutionary computation technique which has been 
applied recently to some practical problems [7]. In 
the present work, a new approach based on PSO is 
proposed for the selection of the state feedback 

gains. This is accomplished by formulating the state 
feedback gains selection as an optimization 
problem and PSO is used in the optimization 
process. The proposed method provides an optimal 
and systematic way of state feedback gains 
selection.  

In order to test the effectiveness of the proposed 
new method of selecting the state feedback gains, it 
has been applied to the inverter fed induction motor 
drive oscillations damping problem.  

2. OVERVIEW OF VSC THEORY 
 

The fundamental theory of variable structure 
systems may be found in [8].A block diagram of 
the VSC is shown in Figure 1, where the control 
law is a linear state feedback whose coefficients are 
piecewise constant functions. Consider the linear 
time-invariant controllable system given by  

 X& =Ax+Bu                                   (1) 

where X is n-dimensional state vector, u is m-
dimensional control force vector, A is a n x n 
system matrix, and B is n x m input matrix. The 
VSC control laws for the system of Equation (2) are 
given by  
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iu =- i
Tψ X=- jij

n

j
xψ

1=
∑ :i=1,2,………m            (2) 

Where the feedback gains are given as  

ijψ ={ ijα  , if 〉jix σ 0 ;i=1, 2,……,m; 

      {- ijα  , if 〈jix σ 0;j=1,2,…… ,n; 

and 

 iσ (x) = T
iC X=0,     i=1, 2,………., m;           (3) 

where iC  are the switching vectors which are 
determined usually via pole placement technique.            

 
Figure 2 Block diagram of VSC  

The design procedure for selecting the constant 
switching vector iC  is described below [2].  

Step l:  Define the coordinate transformation  

Y=MX                                                             (4) 

 such that  

MB= ⎥
⎦

⎤
⎢
⎣

⎡

2

0
B

                                                     (5) 

where M is a non-singular n x n matrix and 2B  is a 
non- singular m x m matrix.  

From (2), (4) and (5)  

MBUYMAMXMY +== −1&&                      (6) 

where Y is an n-dimensional vector. 

Equation (6) can be written in the form 
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     (7)    

where 22211211 ,,, AAAA are respectively (n-m) x 
(n-m), (n-m) x m, m x (n-m) and (m x m) 
submatrices. 21 YandY are respectively (n-m) and 
m-dimensional vectors  

The first equation of (7) together with equation (2) 
specifies the motion of the system in the sliding 
mode that is  

1Y& = 212111 YAYA +                (8) 

212111)( YCYCY +=∑                      (9) 

where 11C  and 12C  are m x (n-m) and (m x m) 
matrices, respectively satisfying the relation 

[ ]1211 CC = 1−MC T                               (10) 

Equations (9) and (10) uniquely determine the 
dynamics in the sliding mode over the intersection 
of the switching hyper planes  

iσ (x) = T
iC X=0,                   i=1, 2,……….,m;                  

The subsystem described by equations (9) may be 
regarded as an open loop control system with state 
vector 1Y and 2Y  control vector being determined 
by equation (10), that is  

  2Y =- 111
1

12 YCC −                                           (11) 

Consequently, the problem of designing a system 
with desirable properties in the sliding mode can be 
regarded as linear feedback design problem. 
Therefore, it can be assumed, without loss of 
generality, that 12C = identity matrix of proper 
dimension.  

Step 2: Equations (8) and (11) can be combined 
to obtain  

 1Y& =[ 111211 CAA − ] 1Y  

Utkin and Yang [9] have shown that if the pair 
(A, B) is controllable, then the pair ( 1211, AA ) is 

also controllable. If the pair ( 1211, AA ) is 
controllable, then the eigenvalues of the matrix    
[ 111211 CAA − ] in the sliding mode can be placed 

arbitrarily by suitable choice of 11C .  
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The switching vector 11C  can be determined by 
pole placement or optimal placement of the 
eigenvalues to achieve a specific response [2].The 
feedback gains ijα are usually determined by 
simulating the control system and trying different 
values until satisfactory performance is obtained.  

 

3. OVERVIEW OF GENETIC ALGORITHM 

Genetic algorithms are directed random search 
techniques which can find the global optimal 
solution in complex multidimensional search 
spaces. GA was first proposed by Holland [10] and 
has been applied successfully to many engineering 
and optimization problems [11-19]. GA employs 
different genetic operators to manipulate 
individuals in a population of solutions over several 
generations to improve their fitness gradually. 
Normally, the parameters to be optimized are 
represented in a binary string .To start the 
optimization, GA use randomly produced initial 
solutions created by random number generator. 
This method is preferred when a priori knowledge 
about the problem is not available.  

There are basically three genetic operators used 
to generate and explore the neighborhood of a 
population and select a new generation. These 
operators are selection, crossover, and mutation. 
After randomly generating the initial population of 
say N solutions, the GAs use the three genetic 
operators to yield N new solutions at each iteration. 
In the selection operation, each solution of the 
current population is evaluated by its fitness 
normally represented by the value of some 
objective function, and individuals with higher 
fitness value are selected. Different selection 
methods such as stochastic selection or ranking-
based selection can be used.  

The crossover operator works on pairs of 
selected solutions with certain crossover rate. The 
crossover rate is defined as the probability of 
applying crossover to a pair of selected solutions. 
There are many ways of defining this operator. The 
most common way is called the one-point crossover 
which can be described as follows. Given two 
binary coded solutions of certain bit length, a point 
is determined randomly in the two strings and 
corresponding bits are swapped to generate two 
new solutions.  

Mutation is a random alteration with small 
probability of the binary value of a string position. 
This operation will prevent GA from being trapped 
in a local minimum. The fitness evaluation unit in 

the flow chart acts as an interface between the GA 
and the optimization problem. Information 
generated by this unit about the quality of different 
solutions is used by the selection operation in the 
GA. The algorithm is repeated until a predefined 
number of generations have been produced. More 
details about GAs can be found in [12, 10, 20].  

 

3.1     SELECTION OF STATE FEEDBACK 
GAINS USING GA 
 

The feedback gains of the variable structure 
controller are usually determined by trial and error. 
In this section, the proposed GA approach for the 
selection of the state feedback gains is explained. 
To start the proposed GA method, a performance 
index must be defined. The selection of the 
performance index depends on the objective of the 
control problem. The following step by step 
procedure describes the use of GA in determining 
the state feedback gains optimally for the system 
described in section 6:  

• Generate randomly a set of possible feedback 
gains.  

• Evaluate the following performance index to 
keep the change in ( 1xΔ  ) as close to zero as 
possible regardless of the control effort (u) 
for all possible state feedback gains generated 
in step 1.  

dttxj )(2
1

0
∫
∞

Δ=    (12) 

• Use genetic operators (selection, crossover, 
mutation) to produce new generation of 
feedback gains. 

• Evaluate the performance index in step 2 for 
the new generation of state feedback gains. 
Stop if there is no more improvement in the 
value of the performance index or if certain 
predetermined number of generations has 
been used, otherwise go to step 3.  

 

4. OVERVIEW OF SWARM INTELLIGENCE  
 
 Particle Swarm Optimization (PSO) is an 

evolutionary computation technique developed by 
Eberhart and Kennedy [21] inspired by social 
behavior and bird flocking or fish schooling[22]. 
The PSO algorithm applied in this study can be 
described briefly as follows. 
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• Initialize a population (array) of particles with 
random positions and velocities v on d 
dimension in the problem space. The particles 
are generated by randomly selecting a value 
with uniform probability over the optimized 
search space [ maxmin , dd xx  ]. Set the time 
counter t = 0. 

• For each particle x, evaluate the desired 
optimization fitness function, J, in d variables. 

• Compare particles fitness evaluation 
with pbestx , which is the particle with best local 
fitness value. If the current value is better than 
that of pbestx  , then set pbestx equal to the 

current value and pbestx  locations equal to the 
that is current locations in d-dimensional space.  

• Compare fitness evaluation with population 
overall previous best. If current value is better 
than gbest, the global best fitness value, then 
reset gbestx to the current particle's array index 
and value. 

• Update the time counter t, Inertia weight w , 
velocity v , and position of x  according to the 
following equations 

t = t+1 

)
1

()( minmaxmin ⎟
⎠
⎞

⎜
⎝
⎛

−
−

−+=
m

tmwwwtw        (13)      

))1()1((2))1(

)1((2)1()()(

−−−+−−

−+−=

txtxtx

txtvtwtv

ididgbestid

idpbestidid

α

α

)1()()( −+= txtvtx ididid                        (14) 

where minw and maxw  are the maximum and 
minimum values of the inertia weight w ,m is the 
maximum number of iterations, i is the number of 
the particles that goes from 1 to n, d is the 
dimension of the variables, and α  is a uniformly 
distributed random number in (0,l).  

The particle velocity in the thd  dimension is 
limited by some maximum value max

dv .This limit 
improves the exploration of the problem space. In 
this study, max

dv  is proposed as  

            max
dv = max

dkx                                     (15) 

Where k is a small constant value chosen by the 
user, usually between  0.1-0.2 of max

dx  [11].  

• Loop to 2, until a criterion is met, usually a 
good fitness value or a maximum number of 
Iterations (generations) m is reached.  

4.1     SELECTION OF  STATE  FEEDBACK 
GAINS USING SWARM INTELLIGENCE 

 

The following step by step procedure describes 
the use of PSO in determining the feedback gains 
optimally for the system described in section 1.  

• Generate randomly a set of possible feedback 
gains (particles). 

• Evaluate some performance index for all 
feedback gains generated in step 1. In the 
present work, the following performance 
function was used. The function minimizes the 
system variable variation ( 1xΔ ), i.e.  

            dttxj )(2
1

0
∫
∞

Δ=       (16) 

• Use PSO (number of particles, dimension and 
maximum number of iterations), as described 
in section 4, to generate new state feedback 
gains.  

• Evaluate the performance index in step 2 for 
the new state feedback gains. Stop if there is no 
more improvement in the value of the 
performance index or if the maximum number 
of iterations has been used, otherwise go to 
step 3.  

5. OBJECTIVE FUNCTION 

The minimization problem will be more easily 
solved if we can express performance index in 
terms of transform domain quantities. For quadratic 
performance index   this can be done by using the 
parseval’s theorem which allows us to write 

∫∫
∞−

∞

−
π

=
j0

2 ds)s(X)s(X
j2

1dt)t(x      (17) 

In which X(s)=Laplace transform of x(t),where x(t) 
is defined for t 0≥  and x(t) is zero for t <0. 

The value of right hand integral  in eqn.(1) can 
easily be found from tables, provides that X(s) can 
be written in the form B(s)/A(s); 
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2
1−=                                                        (20) 

Where 1−nP  is the solution of the n equations 

for iP , i=0, 1, 2……….n-1 
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This expression can be written more compactly as 

 ∑
−

=

−=
1

0,
)1(

n

ji
ji

i
m bbd ,    where   i+j=2m        (22) 

If we let d=col ( )..,........., 110 −nddd  

Ω

Ω
=−

1
1nP                                                  (23) 

Where 1Ω  is the matrix formed Ω by replacing 
its last column by vector d. so, 

Ω
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6. DYNAMIC MODEL OF INVERTER FED 
INDUCTION MOTOR DRIVE 

 

Recently considerable interest has been shown in 
the control of Induction motor drives by the 
researchers [23-29]. The dynamic behavior of an 
induction machine can be described by three vector 
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differential equations in a reference frame attached 
to the stator [25]: 

 
dt

d sψ
= sss Riu −                                            (25) 

rrr
r Riujw

dt
d

−=
ψ

                                     (26) 

 Mss Ti
dt
dwj −= )*Im(ψ                             (27) 

With the algebraic conditions 

mrssmrmslss LiLiLiLLi +=++= )(ψ  

rrmsmrlrmsr LiLiLLiLi +=++= )(ψ  

                                                                           (28) 

The equations are in per unit (p.u.) notation. The 
stator current vector and stator voltage vector are 

)(
3
2

)(
3
2

2

2

cbas

cbas

uauauu

iaiaii

++=

++=
                      (29) 

where 
3/2πjea =  

ba uu , and cu  are instantaneous values of phase-

to-neutral voltages, ba ii , and ci are instantaneous 
values of line currents. 

The system of equations is non-linear and it is 
difficult to see the reasons for the oscillations in the 
equations. If the equations were linear, the 
eigenvalues could be calculated, but they wouldn’t 
give any clue to why the oscillations occur. 

However, a mechanical equivalent of the 
mathematical model can be used to gain a better 
intuitive understanding of the induction machine. In 
this paper apparent mechanical equivalent model 
representations that give physical explanations for 
the oscillations is considered for the studies. 

Resonance frequencies of linear systems can be 
found by computing the eigenvalues of the system 
matrix. The induction machine is non-linear, and 
this method can not be used directly. However, the 
equations describing the machine can be linearized, 
and the eigenvalues of the linear system can be 
computed. 

To facilitate the linearization, the following time 
constants are defined 

R

L
lr

s

L
ls

R
L

R
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=

=

τ

τ
                                                    (30) 

)11(
1
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ss
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ms

LLRR
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LL

+
=

+
=τ            (31) 

Lmech JL=τ                                                      (32) 

The dynamic equations are rewritten so that the 
deviation from an operating point, oRoso ωψψ ,, , 
is investigated, 

RRoR

ssos

ψψψ
ψψψ
Δ+=
Δ+=

, ωωω Δ+= o ,             (33)    

uuu os Δ+=  

At steady state, the stator and rotor fluxes are equal, 

oRoso ψψψ ==                                              (34) 

The voltage needed at steady state for the flux ψ o 

is            o
M

s
o L

R
u ψ=                                     (35) 

With the above equations inserted, the following 
equations for the fluxes are obtained, 

R
ls

s
ms

s u
dt

d
ψ

τ
ψ

τ
ψ

Δ+Δ−Δ=
Δ 11

         (36) 

oRR
lr

s
lr

R jj
dt

d
ψωψωψ

τ
ψ

τ
ψ

ΔΔ+ΔΔ+Δ−Δ=
Δ 11

    (37) 

The value of oψ   and oω  in the tests of section  is 

oxψ =0          and       1−=oyψ , 0=oω       (38) 

The flux equations split into real (x) and imaginary 
(y) parts become 

Rx
ls

sx
ms

x
sx u

dt
d

ψ
τ

ψ
τ

ψ
Δ+Δ−Δ=

Δ 11
    (39) 
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and the mechanical equation  can be written 

M
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T
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d
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Δ    (43)   

If the non-linear terms, underlined above, are 
neglected, equations can be replaced by the matrix 
equation 
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Where 
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7. SIMULATION RESULTS  

 

The inverter fed induction motor oscillations 
problem described in the above section has been 
used as a case study. The following are the system 
parameters:  

sLls RL /=τ =0.138/0.07 = 1.97 

RLlr RL /=τ  = 0.138/0.076 = 1.82 
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Using the design procedures in section 4, and 5, 
the state feedback matrix was obtained for the 
above system of controllable pair (A, B). The 
proposed PSO algorithm described in section 4 has 
been applied to minimize the performance index in 
equation (16) for optimal selection of the state 
feedback gains. The PSO parameters used are the 
number of particles n = 15, maximum number of 
iterations m =100, maxw =0.9, minw = 0.4, and the 
maximum velocity constant factor k= 0.1. The 
algorithm is terminated when there is no significant 
improvement in the value of the performance index. 
The eigen values of the system matrix with and 
without feedback are given in Table 1. 

Table 1 
Eigen values of the system 

Without feedback With GA With PSO 
-0.0417         

 -..5291+0.4877i 
-.5291- 4877i 

-1.0796 
-0.0204 

-0.7904        
-.0570+.6402i 
-.0570-.6402i 
-.7379+.4821i 
-.7379-.4821i 

-3.4976 
-.0582+0.5512i 
-0.0582-.5512i 
-0.7250+ .3590i  
-0.7250-0.3590i 

 

The variation of the performance index is shown in 
Figure 2. Figures 3 to 7 shows the simulation of the 
state variables for the present PSO method and 
previous designs using VSC and GA. It can be 
observed from the figures 3 to 7 that the PSO 
method gives best oscillations damping compared 
with other methods.  

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ

Δ
Δ

Δ
Δ

=

ω

ψ
ψ

ψ
ψ

Ry

Rx

sy

sx

x

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

5
4
3
2
1

X
X
X
X
X

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−

=

0054.0054.0
055.0055.00
1055.055.0
051.0055.00
0051.0055.0

A



Journal of Theoretical and Applied Information Technology 

© 2005 - 2008 JATIT. All rights reserved.                                                                         
 

www.jatit.org 

 
944 

 

 
Figure 2: Performance index  

 
Figure 3: Variation of state variable X1 

 
Figure 4: Variation of state variable X2 

 

 
Figure 5: Variation of state variable X3 

 
Figure 6: Variation of state variable X4 

 
Figure 7: Variation of state variable X5 
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8. CONCLUSIOS 

A new method of selecting the state feedback 
gains is presented in this paper. This is 
accomplished by formulating the state feedback 
gains selection as an optimization problem and PSO 
is used in the optimization process. The proposed 
method provides an optimal and systematic way of 
feedback gains selection compared to methods 
reported in the literature such as VSC and GA. The 
application of the proposed method to improve the 
oscillations in the inverter fed induction motor 
drive problem reveals an improvement in the 
system performance. 
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APPENDIX 
 
A. LIST OF SYMBOLS 
 
Amplitude factor  : K  
Angular velocity  :ω  
Capacitance  : C 
Current   : i 
Rotor current  : Rr ii ,  

Stator current  : si  

Line current  : cba iii ,,  
Frequency  :  f 
Stator frequency  : ssf ω,  
Inductance  : L 
Mutual inductance : Mm LL ,  

Rotor leakage inductance : rlL  

Stator leakage inductance : slL  
Laplace operator  : s 

Linked flux  : 
ψ

 

Rotor flux  : Rr ψψ ,  

Stator flux  : sψ  
Moment of inertia : J 
Natural frequency : Ω  
Power factor  : ϕcos  
Relative damping  : ζ  
Resistance  : R  
Rotor resistance  : Rr RR ,  

Stator resistance  : sR  
Slip   : s  
Pull-out slip  : ps  
Time constant  : τ  
Time   : t   
Torque   : T   
Load torque  : mT  

Pull-out torque  : pT  
Voltage   : u  
Stator voltage  : su  

Phase-to-neutral voltage  : cba uuu ,,   
 
 
 
 
 
 

 
 
B. PER UNIT NOTATION 
 
Rated phase voltage           : nU  (peak value) 

Rated phase current           : nI (peak value) 

Rated electrical angular velocity : 1ω  

Rated mechanical angular velocity:
p

n z
1ωω =  

The number of pole pairs          : pz  

Rated phase flux                        : 
1ω

ψ Un
n =  

Rated apparent power         : nnn IUP
2
3

=  

Rated torque                       : 
n

n
n

PT ω=  

Base impedance                  : 
n

n
n I

Uz =   

Rated start time                       : 
n

n
P

JH
2ω=   

Voltage (pu)   : Un
u  

Current    : 
nI

i  

Resistance   : 
nZ

R  

Inductance   : 
nZ

L1ω  

Capacitance   : nCZ1ω  

Flux    : 
nψ

ψ  

Moment of inertia  : H1ω  

Torque    : 
nT

T   

Time    : t1ω  

Electrical angular velocity  : 
1ω

ωel  

Mechanical angular velocity : 
n

mech
ω

ω  


