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ABSTRACT 
 
Chemical  process  control  requires  intelligent  monitoring  due  to  the  dynamic  nature  of  the  chemical 
reactions and the non-linear functional relationship between the input and output variables involved. CSTR 
is one of the major processing unit in many chemical, pharmaceutical and petroleum industries as well as in 
environmental and waste management engineering. In  spite  of  continuing  advances  in  optimal  solution  
techniques  for  optimization  and  control  problems, many  of  such  problems  remain  too  complex  to  
be  solved  by  the  known  techniques.  Thus,  a  heuristic approach is often a viable alternative. Neural 
Network models offer the most unified approach to building truly intelligent systems, which can provide 
good optimal solution for many applications. In this  work  we propose a hybrid  (KohKal)  neural  network 
algorithm  which is being  used  to  model and solve  a  continuous  stirred  tank  mixer/reactor  (CSTM/R)  
problem  which  is  non-linear  and  stochastic  in nature. This hybrid algorithm is robust and converges fast 
without been trapped into a local minimal, as is the case with the popular back-propagation neural network. 
We also establish the characteristic equations governing the dynamics of the Continuous Stirred Tank 
Mixer/Reactor. A controller model was formulated and tested and found to be consistently stable at varying 
conditions. The volume of the mixture in the tank was maintained as require to give enough hold up time to 
allow for adequate mixture of the contents in spite of the variations in the inlet streams. The calculated 
results agreed with the output of our neural network. 
 
Keywords:  ANN, Kalkoh Hybrid Network, CSTR, Process Control Problem 
 
1. INTRODUCTION 
 
Neural  networks  are  well  known  for  their  
ability  to  imitate  the  skill  of  experts  by 
capturing  knowledge,  generalizing  non-linear  
functional  relationship  between  input- output  
variable,  and  they  provides  a  flexible  way  of  
handling  complex  and  intelligent information  
processing.  Artificial  Neural  Networks  (ANNs)  
have  been  shown  to  be effective  as  
computational  processors  for  various  tasks  
including  data  compression, classification,  
combinatorial  optimization  problem  solving,  
modeling  and  forecasting, adaptive control, multi-
sensor data fusion, pattern recognition etc. 
 
Control and optimization problems are some of the 
more difficult applications for ANN to  master  
(Patterson,  1996).  The  mapping  functions  that  

must  be  learned  are  generally very  complex  in  
nature  and  the  problem  constraints  that  must  be  
satisfied  are  often conflicting  (Control  problems  
typically  require  nonlinear  time  dependent  
mapping  of input signals). 
In process control, the ultimate goal usually is to 
detect or recognize abnormal process behavioral 
patterns and to find their corresponding causes or 
equipment / sensor whose malfunctioning have 
resulted to those faults. The faults usually present 
themselves in the following  symptoms: deviation  
in  flow,  temperature  and  pressure  leaks,  
blockage corrosion,  wear,  tear  or  mass  transfer  
etc.   (Watanabe et al.  1994, Himmelblau 1978). 
Most  chemical  process  control  occurs  in  a  
chemical  plant  (reactors,  heat  exchangers, 
pumps,  distillation  columns,  absorbers,  
evaporators,  tanks  e.t.c).  Chemical reactors are 
often the most difficult units to control in a 
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chemical plant, particularly if the reactions are 
rapid and exothermic. 
 
In this paper we proposed Kohkal network, which 
is a hybrid of the Counter-Propagation Neural 
Network (Kohonen Layer) and the Kalman Filter, 
which was used to model the dynamics of the 
CSTR problem and a typical problem was solved. 
 
2. A REVIEW RELATED WORKS 
 
Neural   Networks   based   on   adaptive   
resonance   theory   are   equipped   with   unique 
computational   abilities   that   are   needed   to   
function   autonomously   in   a   changing 
environment  [Carpenter  and  Grossberg,  (1988)],  
[Carpenter  et  al.,  (1992)]  [Aldrich  C., Moolman 
D.N and Van Deventer, (1995)] at the Department 
of Chemical Engineering at the  University  of  
Stellenbosch  implemented  a   self-organizing  and   
adaptive  neural network system in the monitoring 
and control of the behaviour of an 
industrial/platinum flotation plant 
(Hydrometallurgical process).   Other network 
formalisms; namely radial basis function (RBF) and 
adaptive resonance theory-2 (ART2) networks have 
also been employed  for  fault  detection,  diagnosis  
and  process  monitoring  task  [Leonard  and 
Kramer, (1991)],  [Whitley and Davis, (1994)]. 
Krishnaveni and Tulasi (2007) used ANN based 
systems to control patterns estimation for UPFC in 
power flow problem. [Zhang and Julian, (1994)] 
used a locally recurrent Neural Network to model 
the pH dynamics in 
a  continuous  stirred  tank  reactor  (CSTR). Petia  
and  Sebastiao  (2006)  applied  a  feed forward 
network in the modeling and control of a fed-batch 
crystallization process. 
 
2.1 The Kohonen-Kalman (Kohkal) Algorithm 
 
It is true that the Back Propagation Neural Network 
possess excellent pattern recognition, interpolation  
and  generalization  abilities,  it  is  however  faced  
with  difficulties  such  as entrapment into a local 
minima during network training, long training 
times, and several runs are necessary to optimize 
networks. Hence we propose the Kohkal network, 
which is 
a hybrid of the Counter-Propagation Neural 
Network (Kohonen Layer) and the Kalman Filter. 
These networks have not been combined this way 
to the best of our knowledge in literature prior to or 
during this research. 
 

The justifications for our hybrid network are the 
fact that 
 
(i)  it   is   believed   that   neural   
networks   implementing   both   supervised   and 
unsupervised learning algorithms are usually better 
than networks using only one learning algorithm. 
 
(ii)  The outputs of our Kohonen layer 
(which implements unsupervised learning) are  
entered  as  inputs  into  the  Kalman’s  layer  which  
uses  a  better  iterative procedure to solve the linear 
system of equations.  
 
2.2 DESCRIPTION OF THE KOHKAL 

NEURAL NETWORK 
 
This  Kohkal  Network  is  prototype  of  the  
Counter  Propagation  Networks  invented  by  
Hecht- Nielson (1987). Kohkal shares a lot of 
similarities with the CPNN, except that the 
Grossberg’s layer of CPNN implements Widrow-
Hoff   (Widrow-Hoff, 1960) rule while the Kalman 
layer of this Kohkal network uses an iterative 
procedure in handling the inputs. 
 
The CPNN architecture is a combination of two 
well-known algorithms; the self-organizing map 
of  [Kohonen,  (1984)]  and the  Grossberg’s  out  
star  [Grossberg,  (1968)].   The  CPNN  has  some 
advantages  like  the  training  algorithm  is  simple  
and  fast  [Peterson,  (1992),  Sorsa  and  Koivo, 
(1991)] and also that the optimal network 
architecture can be determined beforehand. 
Moreover, CPNN is not faced with entrapment into 
local minima problem. The Kohkal architecture 
(Fig.1) consists of three layers of neurons namely; 
Input, Kohonen  and Kalman layers. 
 

 
 
Figure 1 Schematic architecture of the Kohkal 
Network 
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(a)

 
 
FLOWCHART OF THE TRAINING ALGORITHM 
OF THE KOHKAL NETWORK 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. A flowchart of the training algorithm of Kalkoh          
Network 

 
 
 
 
 
 
 
 
 
 
. 
 
 
 
 
 
 
 
 
 
 
 

3. THE PROBLEM 
 

The problem under consideration is a non-linear, 
stochastic problem which has practical 
application  in  many  chemical,  pharmaceutical  
and  petroleum  industries  as  well  as  in 
environmental engineering and waste management. 
 
 
The problem is illustrated in fig.3(a) and (b) There 
are two input flows (with flow rates F1 and   F2    ,   
and   concentrations   C1and   C2    respectively)   
going   in   at   the   top   of   the mixer/reactor.  The 
two inputs are mixed in the tank to produce output 
with flow rate F3 and concentration C3  out at the 
bottom. 
 
 

  
 
 

        
 
(b) 
 
Figure. 3(a),(b)  A Continuous Stirred Tank Mixer 
(CSTM) / Feedback loop of the 
Continuous Stirred Tank Reactor (CSTR) 
 
The content of the tank is stirred continuously and 
hold time in the tank is assumed long enough to 
produce the desired degree of mixing.  Input valves, 
and the output control the input flow rates F1  and 
F2  by a constant size orifice.  The output flow rate 
is assumed to vary as the square-root of the static 
pressure head at the orifice.  This means 
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F k V3 =    (1) 
where V is volume of the material in the tank and K 
is an experimentally determined constant.   
K  = 0.02m 2/3 Sec. 
 
The problem here is to control input flows F1 and 
F2 so that the output concentration C3 is as near as 
possible to a desired nominal (set) value C3o.  At 
the same time, the volume of the mixture in the 
tank (V) is to be maintained at or near a desired 
nominal value so as to ensure both a sufficient and 
near constant output flow 

 
The reaction between A and B follows a second 
order chemical reaction as stated below. 
 
    A + B                 C ,    rA = 2CACB (2)
  
 
Also, it is desired that the mixture in the tank be 
maintained at a constant level or height h.[ i.e 
controlling the volume] 
 
Assumptions: 

i.   The system under consideration is isothermal 
(i.e temperature is constant, and hence have no 
effect on the rate of reaction). 
ii.  Q is taken to be Turbulent condition of flow. 
iii.  Time of measurement of controllers, valves, 
measuring devices are assumed negligible. 
(Electronic Controller) 
iv.  Inlet composition of the streams does not 
change. 
v.  The disturbance is assumed to be from the flow-
in alone. 
vi. The rate of reaction r = kCACB or 2CACB 
Where k = 2 
vii.  The set points are taken to be the steady state 
condition. 
 
4. DYNAMICS OF THE PROBLEM 
 
Recall the total material balance equation. 
 
d n

dt
d c V

dt
c F c F rVA A

Ai i
i inlet

Aj j
j outlet

( ) ( )
: :

= = − ±∑ ∑
     (3) 

 
writing this in terms of the variables in figure 3.10,  
we have 
dv
dt = FA + FB – Q.             (4)

      

(Assume at time t = 0, h = h , FA = F A , FB 

= F B) 
 that is taking steady state condition as  stated 
initially. 
 

=
∂
∂

t
hA

FA + FB - C .h                 
(5)     
  
Linearizing gives: 

=
∂
∂

t
hA

FA + FB – [( c h + 
( )hh

h

c
−

2   (6)
   
Rewriting equation (5) at steady state. 

A
F

t
h

==
∂
∂ 0

A + F B - nc            (7) 
Subtracting (7) from (6) gives : 

A
=

∂
∂

t
h

F′A + F′B′ - n

c

2 h′            (8) 
Where h′, FA′ , FB′ are deviations from steady 
state.   
 
5. SOLUTION BY LINEARIZATION AND 

LAPLACE TRANSFORM 
 
Taking Laplace transformation gives 

As h′(s) = F′A(s ) + F′B(s) - h

c

2 h′(s)     (9)
  

)(
)1(

1)(
)1(

1)( sF
sA

sF
sA

sh BA

ττ
+

+
+

=′∴

 (10) 

where    
A

C
h2

=τ
 

At steady state, 

AF = 0.015 m3/sec INAC
= 2 kmol/m3 

BF = 0.005 m3/sec INBC
= 1 kmol/m3 

C
= 0.020 m3/2 / sec BC = 0.1 kmol/m3 

h = 1m    AC = 0.14 kmol/m3 
A = 1m2     
since r = 2CACB  
Therefore K1 = 2 
Component continuity equation 
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dt
VCd

VCCKQCCF A
BAAINAA

)(
1 ++=

 (11) 

VCCKQCCF
dt

dCV
dt
dhC BAAINAA

A
A 1−−=+⇒

 (12) 

but substituting for dt
dh

 gives 

Therefore 

)(1 QFFCVCCKQCCF
dt

dCV BABBABINBB
B −+−−−=

    (13) 
 

AB
BA

BA

ABAINAAA
B

A
A

AINAA

CCK
V
F

V
F

CCK

V
V

CF

V

CF

V

CFF
V
CF

V
C

V
C

dt
dC

⎥
⎦

⎤
⎢
⎣

⎡
+++−

−⎥
⎦

⎤
⎢
⎣

⎡
−++⎥

⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
−=

11

222

)(
 (14) 

we can re-write equation 14 as 

ABBA
A CeCdVcFbFa

dt
dC

11111 −−+−=
    (15) 

Similarly 

ABBA
B CeCdVcFbFa

dt
dC

22222 −−+−−=
    (16) 

Taking Laplace of (15) and (16) respectively we have 
)()()()()()( 11111 sCdsVcsFbsFasCeS BBAA −+−=+      (17) 
)()()()()()( 22222 sCesVcsFbsFasCdS ABAB −+−−=+  (18) 

 
using equation 10, we write 

C S e S d e d
a S d S c S d a d S c d

S
F

b S d S c S d b d S c d
S

F

A A

B

[( )( ) ]
( )( ) ( ) ( )

( )( ) ( ) ( )

+ + − =
+ + + + + + −

+
⎡

⎣
⎢

⎤

⎦
⎥ +

+ + + + + + +
+

⎡

⎣
⎢

⎤

⎦
⎥

1 2 2 1
1 2

1
1 2 2 1

1
1 1

1

1 2
1

1 2 2 2
1

1 1
1

τ τ

τ

τ τ

τ (19) 
solving the above equation and using equation (10) and substituting the calculated values of a1 =1.86, b1= 
0.14  , c1 = -0.0272, d1 = 0.28, e1 = 0.22, a2 = 0.1, b2 =0.9, c2 = 0.003, d2 = 0.3, e2 = 0.2 and 1/τ = 0.01 

we have 
 

( ) ( ) BAA F
SSS

SSF
SSS

SSSC ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++

++
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++

++
=

)01.0(01.052.0
003664.03406.014.0

)01.0(01.052.0
05316.05774.086.1)( 2

2

2

2

      (20) 

           
 Figure 4(a) The block diagram for the control problem. Figure 4(a) Block diagram of the feedback 

control loop for CSTR problem 



Journal of Theoretical and Applied Information Technology 

© 2005 - 2008 JATIT. All rights reserved.                                                                         
 

www.jatit.org 

 
911 

 

Transfer function of the control process for the closed loop 1 in figure 4(a) and (b) is 
 

BAA F
gmgcgvH

HsetC
gmgcgvH

gcgvHSC
11111

12

11111

1111

11
)(

+
+

+
=

        (21) 
while the transfer function for the closed loop 2 is 

BA F
gmgcgvH

HF
gmgcgvH

Hseth
gmgcgvH

gcgvH
Sh

22231

22

22231

21

22231

2231

111
)(

+
+

+
+

+
=

     (22) 
These transfer functions are the controller with which we tested the behaviour of the 

process and hence establish the stability of the controller. 
 

)005.0(
)400)(5.3)(0025.0(

01.0035.0](01.0)035.0(52.0)035.0[(
005316.0)035.0(5724.0)035.0(86.11
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CA(S) = -0.0005809             (23) 
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where S = -3.01, we have 

 
h(S) = 0.08297              (24) 

 
6. SIMULATION OF THE PROBLEM AND 

IDENTIFICATION OF OUTPUT 
PARAMETERS FOR NEURAL 
NETWORK SYSTEM 

 
We considered a few but representative single 
faults which can occur during the steady- state 
operation of a CSTM/R when process parameters 
deviate by a fixed amount from their  normal  (or  
set)  values.  From  figures  3.(a)  and  (b)  we  see  
the  seven  (7)  fault parameters  
F1,F2,F3,C1,C2,C3  and  V,  but  the  flow  rates  
(F)  and  concentrations  (C)  can either be high or 
low thus making thirteen fault pattern in all. 
 

(i) input flow rate for Input pipe1 (F1)  high  
(ii) input flow rate for Input pipe1 (F1)low 

(iii) input flow rate for Input pipe2 (F2) 
  high 
(iv) input flow rate for Input pipe2 (F2)  
 low 
(v) input concentration for input pipe1 
  (C1) high 
(vi) input concentration for input pipe1 
 (C1) low 
(vii) input concentration for input pipe2 
  (C2) high 
(viii) input concentration for input pipe2 
  (C2)low 
(ix) output flow rate (F3) high 
(x) output flow rate (F3)low 
(xi) output concentration (C3) high 
(xii) output concentration (C3)low 
(xiii) Volume of mixture in the CSTM/R (vo) 
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We assume that these faults occur in a mutually exclusive manner. That is, only one type of fault can occur 
at any given time. 

 
 

 

Table 1. Architecture of the Network Used. 
 

Network used KalKoh Hybrid Network
Learning rule Extended Gradient descent

Transfer functions 1 and 2 Winner Takes all and Tan-Sigmoid 
Learning method Unsupervised and Supervised

No. of inputs 13
No. of output 1

No. of hidden layer 3
 

 
 

7. SIMULATION OF FAULTS 
 
All the thirteen faulty process conditions were 
simulated separately. Each of the thirteen data sets 
so generated corresponds to 0.1-15% deviation (at 
the interval of 0.3%) from the normal value of the 
individual, process parameter responsible for the 
malfunction. Thus, each  fault  is  represented  by  
150  patterns.  Subsequently,  all  the  thirteen  data  
sets  were combined  to  form  a  single  input  set  
for  network  training. Table 1. Shows the details 
of the architecture of the training network.  The  
data  structure  of  the resultant training input set is 
given in Table 2 This set can be visualized as a 
matrix of size  (195,7)  consisting  of  195  fault  
patterns  representing  thirteen  faults.  Out  of  the  
15 patterns of each fault covering 0.1-15% 
deviation range, the values corresponding to 6% 
and 15% deviations only are listed. 
 
Table 2: Data structure for network training and 
testing 
 
 
8. DISCUSSION 
 
A controller was designed to automatically annul 
the effect of the disturbance FB  in loop 1 so as to 
keep the outlet concentration of CA at a maximum 
point of 0.14 kmol/m3  

Which is the set value (CA  Set) and again to 
control the accumulation of material within the 
tank at a level of hset=1m even in the presence of 
disturbance from FA  and FB  that have direct 
effect on the liquid level in the tank. 
 
The  controller  seeks  for  a  deviation  between  
CA    and  CAset  and  h(s)  and  h(s)set 
respectively.  i.e.  C(A)set -  C(A),  h(s)set   –  
h(s).  The  CA   obtained  by  our  controller  is 
consistently negative (-ve) for the problem under 
consideration for all values of FB  input while 
there is no deviation in h(s) as shown on table 3. 
 
The result obtained from the feedback control 
loop, CA  = -0.0058093. (figure 5) shows a 
negative  deviation  which  implies  that  our  CA   
does  not  and  will  exceed  CA  set.  If  CA 
obtained is positive, summation of the deviation 
value plus the actual CA  will result to a 
CA  value greater than CA  set. The output value 
of h(s) = 0.08297 shows that there is no deviation  
and  hence  the  volume  of  the  mixture  in  the  
tank  remains  consistent.  The network result 
agrees with the calculated result. 
 
To establish the stability of the controller, some 
inputs values for FA  and FB  over a range of  0%  
to  100%  at  an  interval  of  10%  were  entered.  
The  inputs  were  tested  the  results obtained are 
shown on Table 3. 
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Figure 5.  The test of stability of the controller 
 

 
9. CONCLUSION 
 
The stability of the controller system have been 
proved to be consistent at various level of 
disturbance of FB  varying from 0% to 100% on 
CA  which have been consistently below 
0.1% deviation from the steady state condition. 
Likewise the deviation of the liquid level 
in the tank with aforementioned disturbance range 
of FB  coupled with that of  FA  stream which was 
primarily meant to neutralize the effect of FB  but 
also a form of disturbance on the liquid level have 
been kept at less than 10% consistently (precisely 
8%) which is still tolerable.  Results  obtained  as  
shown  on  the  table  3  reveals  that  the  
concentration  CA varies in a consistent manner 
with a negative deviation while the volume 
(height) of the mixture in the tank is maintained at 
a particular  height in spite of the variations in the 
inlet streams. The calculated results agreed with 
the output of our neural network. 
 
Conclusively we can confidently say the controller 
designed for the problem was stable. The Kalkoh 
hybrid network was successfully used to model 
and solve the CSTR problem keeping the system at 
its optimum. 
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Table 2. Controller output validating the controller’s stability 
 

Percentage 
Variation 

 
FA 

 
FB

 
CA

 
H(S)

 
CA (%) 

 
H(S) 

(%)   (%) 
0 0.0150 0.0050 -0.0058093 0.083034 0.05 8 % 

10 0.0165 0.0055 -0.00674169 0.083032 0.06 8 % 
20 0.0180 0.0060 -0.0007674 0.083029 0.07 8 % 
30 0.0195 0.0065 -0.0008606 0.083027 0.08 8 % 
40 0.0210 0.0070 -0.00095387 0.083025 0.09 8 % 
50 0.0225 0.0075 -0.00104710 0.083023 0.10 8 % 
60 0.0240 0.0080 -0.00114034 0.080210 0.11 8 % 
70 0.0255 0.0085 -0.00123357 0.083018 0.12 8 % 
80 0.0270 0.0090 -0.00132680 0.083016 0.13 8 % 
90 0.0285 0.0095 -0.00140043 0.083014 0.14 8 % 

100 0.0300 0.0100 -0.00151327 0.083012 0.15 8 % 
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Table 3: Data structure for network training and testing 
 

Nature of fault Fault 
Code 

Training Data (Inputs) Test Data (inputs) 
Pattern no(s) Deviation (%) Pattern no(s) Deviation (%) 

Input flow rate for Input 
pipe 1(high) 

F1H 1 – 15 (+)0.1- 15 1 – 150 (+)0.01- 15 

Input flow rate for Input 
pipe 1 (low) 

F1L 16 – 30 (-)0.1- 15 151 – 300 (-)0.01 - 15 

Input flow rate for Input 
pipe 2 (high) 

F2H 31 – 45 (+)0.1- 15 301 – 450 (+)0.01- 15 

Input flow rate for Input 
pipe 2 (low) 

F2L 46 – 60 (-)0.1- 15 451 – 600 (-)0.01 - 15 

Input concentration for 
input pipe 1(high 

C1H 61 – 75 (+)0.1- 15 601 – 750 (+)0.01- 15 

Input concentration for 
input pipe 1 (low 

C1L 76 – 90 (-)0.1- 15 751 – 900 (-)0.01 - 15 

Input concentration for 
input pipe 2 high 

C2H 91 – 105 (+)0.1- 15 901 – 1050 (+)0.01- 15 

Input concentration for 
input pipe 2 (low 

C2L 106 – 120 (-)0.1- 15 1051 – 1200 (-)0.01 - 15 

output flow rate high F3H 121 – 135 (+)0.1- 15 1201 – 1350 ( +)0.01- 15 
output flow rate low F3L 136 – 150 (-)0.1- 15 1351 – 1500 (-)0.01 - 15 

output concentration 
high 

C3H 151 – 165 (+)0.1- 15 1501 – 1650 (+)0.01- 15 

output concentration low C3L 166 – 180 (-)0.1- 15 1651 – 1800 (-)0.01 - 15 

Volume of mixture in the 
CSTM 

V 180 – 195 (+)0.1- 15 1801 – 1950 (+)0.01- 195 

 


