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ABSTRACT 
 

With an aim of improving the field oriented control, the control of the induction motor by Input-Output 
linearization techniques are used to track torque and rotor flux and the scheme is extended for speed 
control is presented. A comparative study between the performances of the proposed controller and field 
oriented control is carried out. The methods are compared in terms of their ability to handle loads on the 
motor shaft, their speed tracking capability and their sensitivity to operating condition variations. To 
estimate the rotor flux, an open loop observer is used. Index Terms-Nonlinear Control, induction motors, 
field orientation, input output linearization, observer. Simulation results show the effectiveness of the 
proposed method. 
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1. INTRODUCTION  
 

Advanced control of electrical machines requires 
an independent control of magnetic flux and 
torque. For that reason it was not surprising, that 
the DC-machine played an important role in the 
early days of high performance electrical drive 
systems, since the magnetic flux and torque are 
easily controlled by the stator and rotor current, 
respectively.  

The introduction of Field Oriented Control [1] 
meant a huge turn in the field of electrical drives, 
since with this type of control the robust induction 
machine can be controlled with a high 
performance. My this order has a great weakness 
opposite the exact knowledge of the reference 
mark (d,q), a low robustness against the parametric 
variations of the engine, and in addition with the 
mode of over peed where decoupling only 
becomes partial. To improve the Field Oriented 
Control, full linearizing state feedback control 
based on differential geometric theory [2], has 
been proposed in [7] for the electromagnetic 
torque control and in [8] for the adaptive speed 
control of a fifth order model of an induction 
motor. In this paper, a comparative study between 
the classical Field Oriented Control [4] and a 
newly proposed nonlinear controller has been 
carried out. The new controller is based on the 
theory of feedback linearization. The controller is 
used for the speed control of a fourth-order model 
of an induction motor. Since all the states are not 
available for direct measurement, a, open loop flux 

observer is proposed for the estimation of the rotor 
flux.  

This paper is organized as follows. In section 2, 
the dynamic model of the induction motor is 
described. The Field Oriented Control is reviewed 
in section 3, and analysis of the necessity of a high 
performance control strategy for high speed ranges 
is carried on in the same section. In section 4, the 
nonlinear controller is designed for the speed and 
flux magnitude control of a fourth order model of 
an induction motor. The observer required for the 
rotor flux estimation is presented in section 5. 
Section 6 provides numerical simulation results, 
followed by the conclusion.  There is no problem 
with spark and corrosion [3]. 

2. FIELD ORIENTED CONTROL   
 

One particular approach for the control of 
induction motors is the Field Oriented Control 
(FOC) introduced by Balaschke. Fig. 1 shows a 
block diagram of an indirect field-oriented control 
system for an induction motor. In this system, the 
d-q coordinate’s reference frame is locked to the 
rotor flux vector rotating at the stator frequency U, 
as shown in Fig.1. This result in a decoupling of 
the variables so that flux and torque can be 
separately controlled by stator direct-axis current 
id, and quadrature-axis current i, respectively. The 
stator quadrature-axis reference idsref is calculated 
from torque reference input Tref as: 
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Figure 1 a block diagram of an indirect field-oriented 
 
The machine equations in the stator reference 

frame, written in terms of space vectors, are 
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Assuming a rotor flux reference frame, and 

developing the previous equations with respect to 
the axis and axis components, leads to. 
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These equations represent the basic principle of 
the FOC: in the rotor flux reference frame, a 
decoupled control of torque and rotor flux 
magnitude can be achieved acting on the d and q 
axis stator current components, respectively. A 
block diagram of a basic DFOC scheme is 
presented in Fig. 1. The rotor flux estimation is 
carried out by. 
 

 sss
s iRv

dt
d

−=
ϕ

                               (11) 

)( sss
r

r iL
M
L

σϕϕ −=                                 (12) 

 
The flux estimator has been considered to be 

ideal, being the effects due to parameter variations 
at low speed out of the major aim of this paper. 
The current controller has been implemented in the 
rotor flux reference frame using PI regulators with 
back emf compensation. 
 
3.    INPUT OUTPUT LINEARIZALION  

 
The induction motor consists of three-phase 

stator windings and a rotor with short cut 
windings. Since the torque produced is a function 
of the difference between the mechanical speed 
(times the pole pair number) and the angular speed 
of the supplied stator voltage, this results in a 
nonlinear model. To reduce the complexity of a 
three-phase model, an equivalent two-phase 
representation is chosen (see e.g., [5]). For the 
FOC this two-phase model is usually transformed 
in a rotating (d, q) reference frame. This allows a 
partial linearization of the model. This 
transformation is a source of problems but usually 
the FOC approach does not allow control the 
model in a stator fixed (α,β) reference frame. 
Using nonlinear feedback allows to control the 
model in the stator fixed (α,β) reference frame 
avoiding the transformation in a rotating reference 
frame. The complete model in stator fixed (α,β) 
reference frame can is written in a linear form for a 
control in torque and flux:   
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In let us introduce the following definitions: 
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We do not develop the details of input-output 

linearization techniques but directly show the 
application on the induction motor drive. The 
quantities which will be controlled are 
differentiated with respect to time until the input u 
appears and the derivatives of the state variables 
are eliminated using the state-space representation 
of (12).  
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Thus the derivatives of the outputs are given by 
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The controller design is based on the fourth order 

dynamic model obtained from the (d, q) axis 
model of the motor under the field oriented 
assumptions so that either speed or flux magnitude 
control objective can be fulfilled. 

The underlying design concept is to endow the 
closed loop system with high performance 
dynamics for high speed ranges while maximizing 
power efficiency and keeping the required stator 
voltage within the inverter ceiling limits. In 
addition to filtering those control objectives, our 
control design aims to reduce the complexity of 
the control scheme, saving thereby the 
computation time of the control algorithm, which 
is an improvement over previous work found in 
the technical literature [8], [7]. The outputs to be 



Journal of Theoretical and Applied Information Technology 

© 2008 JATIT. All rights reserved.                                                                                 
 

www.jatit.org 

 
10 

 

controlled are the speed w and the square of the 
rotor flux magnitude = 4. The output vector is: 

 
The sum of the relative degrees of the torque r1=1 

and flux r2=2 is lower than the n=5 degree system 
S. we obtain a not observable dynamics of order 2. 
Define the change of coordinates:                                           
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Let us note that in the configuration 
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This system can be written as: 
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The decoupling matrix D(x) is singular if and 

only if 2
rϕ  is zero which only occurs at the start 

up of the motor. That is, to filtering this condition 
one can use in a practical setting, an open loop 

controller at the start up of the motor, and then 
switch to the nonlinear controller as soon as the 
flux goes up to zero. If the decoupling matrix is 
not singular, the nonlinear Sate feedback control is 
given by: 
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This system can be schematized by the figure 
 

 
 

Figure.2:  nonlinear controllers. 
 
The dynamic ones 54 zetz && are made not 

observable by the return of linearizing state. From 
the point of view of the state and not of the input-
outputs, it should then be shown that the dynamic 
ones of zero and stable. In let us choose the 
balance point of following: 
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The dynamics of the zeros becomes:  
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Where  4z   is the angle of rotor flux varying 

between 0 and 2π. The equation 34 and a stable 
first order linear dynamics (pole with -

J
f  ). The 

dynamics of zero is thus stable. The inversion of 
the D(x) matrix could in theory reveal a problem 
bus determine it is expressed according to the 
model of rotor flux. 
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however the mathematical description of the 
singularity 3rd of starting is not problem 
irreversible. 
It is a question, indeed, of adopting a sentence of 
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observer of flow, which is generally carried out.  
In order to obtain a good continuation of flux and 
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calculated in the following way:    
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Generally, an integral action is added in order to 

reject constant disturbances; as shown by Figure 3. 
 

 
 

Figure.3: Linearized system. 
 
Where Tref and Φref,  are torque and flux 

references.  Note that the references for torque and 
rotor flux have to be once or twice differentiated. 
Thus we implement a second-order state variable 
filter for the flux where the states give the flux 

 

 
 

 
 

Figure 4 Speed and rotor flux-controller of the     
            linearized system. 

 
Reference and their derivatives, since we want to 

control speed, we implement a PI controller which 
gives the reference for the torque Tref and 
compensates variations of the load torque TL. The 
gain kp is put on the speed measure to limit the 
overshoot in the speed response [2] (see Figure 4). 
For the safety of the inverter, it is advisable to 
limit the stator current Is of the induction motor. It 
is shown in [12] that keeping the torque constant 
while having a constant rotor flux norm results in a 
constant stator current. Thus, due to the 
decoupling of the nonlinear controller, to limit the 
stator current, the torque reference is limited while 
keeping the flux reference constant. Torque and 
flux will follow the references due to the tracking 
capabilities of the decoupling controller. 

 
4.     SIMULATION RESULTS 

 
To validate the performances of the proposed 

controller, we provide a series of simulations and a 
comparative study between the performances of 
the proposed control strategy and those of the 
classical Field Oriented Control. 
A 3kW induction motor with controller is 
simulated using the nonlinear controller and the 
following motor parameters: 
Rs＝2.89Ω，Rr＝2.39Ω，P＝2，Lr＝0.225H，

Ls＝0.225H,   Lm＝0.214H 
 The controller and Kalman filter are 

implemented using a sampling period of 1 ms. In 
order to show the robustness of the controller with 
respect to variation of rotor resistance and load 
structure, we then have the simulation cases with 
desired speed controls as follows: 
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• The speed command is designed, but the rotor 
resistance is increasing 100% during the time 
interval. Figure.5 shows the effects of the 
proposed control scheme. Obviously, the input 
stator voltage is increased to suppress the variation 
of the rotor resistance. 
• The speed command is designed, but both Rr 
and TL, are changed. Both Rr and TL are 
increasing 100% during the time interval. As 
shown in Figure 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                Figure 5 Variation of rotor resistance.                                   
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6 Variation of torque load 
 
The results of simulation of proposed nonlinear 

controller NL_FOC and shift classical Field 
Oriented Control FOC of induction motor is 
shown in the figures (7 to 14) respectively. In the 
first case where one considers only one variation 
of torque load TL shown in the figures (7a, 8a, 9a 
and 10a), results of simulation the time histories of 
speed, flux magnitude tracking and current 
behavior are reported on the figures (7 to 10), for 
of the Field oriented Control (FOC) and nonlinear 
controller (NLC) on the figures (7b, 8b, 9b and 
10b). As the figures show, it is observed that the 
speed tracks the reference values adequately well, 
for two methods. That is, with load torque 
perturbation. figure 7b, show the flux  presented  

the ripple around that for reference in FOC 
method, but the response of the flux are very good 
in  NLC, we can observe an optimal reduction of 
the stator current nodulations, as shown in Figure 
8b.It also appears that the rotor speed fits to the 
speed reference trajectory. The applied load torque 
has no effect on the flux and its effect on the speed 
is rapidly compensated. 

In the second test of simulation we make the 
resistances variations (Rr and TL). The simulation 
results on the figures (9 and 10) shows that a good 
tracking performance is achieved and the above 
results demonstrate that the proposed controller 
has strong robustness properties in the presence of 
load disturbance and parameter variations. 
Consequently, the use of the proposed feedback 
nonlinear control scheme can solve the control 
problem of induction machines in the presence of 
uncertainties in load torque and resistance 
parameters variations without rotor resistance 
estimation.  

 
4.1   VARIATIONS OF LOAD TORQUE 
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Fig.7.a:  magnitude of rotor flux in FOC 
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Fig.7.b:  magnitude of rotor flux in NLC 
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Fig.11.a:  magnitude of rotor flux in FOC Fig.11.b:  magnitude of rotor flux in NLC 
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Fig.8a:  Rotor speed in FOC 
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Fig.9b: Error between reference and Rotor speed in NLC 

4.2    VARIATIONS  OF  ROTOR RESISTANCE AND TORQUE  LOAD 
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Fig.12b:  Rotor speed in NLC 
 

Fig.12a:  Rotor speed in FOC 
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Fig.14a: Stator current in FOC Fig.14b: Stator current in NLC 

Fig.13a: Error between reference and Rotor 
speed in FOC 

Fig.13b: Error between reference and Rotor 
speed in NLC 
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5.       CONCLUSION 
 

In this paper, two control techniques have been 
compared for induction motors':  classical Field 
Oriented control, and input-output linearizing 
control, proposed by the current authors. From the 
comparative study, one can conclude that the two 
methods demonstrate nearly the same dynamic 
behaviour. However, the input-output linearizing 
controller shows better performance than the Field 
Oriented controller in speed tracking at high speed 
ranges. The numerical simulations validate the 
performances of the proposed method and even in 
the unknown parameter case and achieve better 
speed and rotor flux tracking. 
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