
Journal of Theoretical and Applied Information Technology

© 2008 JATIT. All rights reserved.

www.jatit.org

79

MEASUREMENT AND TUNING OF COMPUTER SYSTEMS
USING STATISTICAL DATA AND HEURISTICS

1Khalil Shihab, 2Haider Ramadhan
1Assist. Prof., Department of Computer Science, Box 36, Sultan Qaboos University, Oman
2Assoc. Prof., Department of Computer Science, Box 36, Sultan Qaboos University, Oman

Email: kshihab@squ.edu.om , haiderr@squ.edu.om

ABSTRACT

Satisfactory system performance requires a continuous adjustment of tunable system parameters. These
parameters are typically used to minimize the execution time. However, by the coupling of a performance
model with an application, system parameters can be determined without user intervention. In this work
presented here, a novel performance prediction system has been used to provide suitable performance
models which can determine application mapping parameters, code execution decisions, and system
choices on-the-fly. The method uses heuristics and system performance tools to the diagnosis of
bottlenecks and provides the necessary remedies to achieve acceptable computer performance. The work
introduces a parameter prioritizing tool to focus on those performance critical parameters. It also
demonstrates how to reduce the time when tuning a large system with many tunable parameters. The
search space can be reduced by checking the relations among parameters to avoid unnecessary search.

Keywords: Heuristics, Computer System Tuning; Bottleneck Detection; System Management.

1. INTRODUCTION

Satisfactory computer services depend greatly
on the choice of configurations and capacity in the
computer systems. Performance evaluation of
computer and communication systems helps not
only in determining how well they are performing
and whether any improvements need to be made,
but also in understanding their behavior in order to
plan and to design the systems of the future. As the
hardware cost of these systems is decreasing, their
complexity and the demands being placed upon
them are increasing dramatically. Therefore,
considerable theoretical research and applied
development have been focused on improving
computer system performance.

Literatures in system performance and
engineering reported many factors that affect
system performance [1, 2, 3, 4]. Usage patterns,
I/O configuration, CPU configuration, cache size,
and system and user software are examples of
these factors. Changing any of these variables can
lead to different system behavior. However, we
should regularly monitor our system and analyze
the values of these variables before any changes
we might consider. Based on the outcomes of the
analysis, necessary actions can be taken in order to
reach a well-configured system that has an
acceptable computer performance.

Computer system managers should consider two

views: user’s view of performance and the
computer’s view. If users’ jobs take a long time to
run and complete, the manager should expect a
number of complaints from them. On the other
hand, if the system hardware resources are not
well utilized, then the system is in trouble. This is
also the case when the load on the resources is
unbalanced or the throughput is low. Therefore,
we need to ensure that every user gets a fair share
of available resources and in the same time, we
should keep maintaining a healthy system.

Therefore, an effective computer program is
designed and built to help computer managers in
the tuning process of their computers. For
detection of bottlenecks, some heuristics and
operational laws are also used [4, 5] as a
framework for modeling the relationships among
the variables of computer performance. In
particular, the program encodes the functional
model of a computer operating system. The
inference method combines expert assessments
with the measures that produced the system
monitoring tools. These tools are also called
system management tools, tuning tools, or system
measurement tools (c.f. section 7).

Journal of Theoretical and Applied Information Technology

© 2008 JATIT. All rights reserved.

www.jatit.org

80

While the system is running, the program
predicts the values of observable system counters
available from the UNIX performance-monitoring
tools. During diagnostic inference, observed
performance monitor values are analyzed to find
the most probable assignment to the workload
parameters. The tuning problem is considered in
this work as two interrelated activities: self-tuning
and learning. The following sections provide some
background on automated bottleneck detection,
describe the structure of the system model, and
discuss empirical procedures for implementing
these activities.

2. DYNAMIC SYSTEM PERFORMANCE

When a computer system is running, many
factors should be considered for evaluation. These
contribute to a job’s total time. Therefore, we
should look at CPU time, I/O time, and network
time to find out whether the system is spending
more time in the System State (i.e. executing
operating system calls) than in the User State –
executing users’ programs. For instance, to find
out whether the system is overloaded, we may
need only to investigate the I/O time.

Other important factors should be considered in
order to achieve acceptable computer behavior.
These are system-related factors and they are as
important as user related factors. In any system,
there are three fundamental resources CPU,
memory, and I/O subsystems (e.g. disks and
networks). Each resource has its own particular
problems. The job of a manager is, therefore, to
determine which subsystem is causing his/her
system to slow down (i.e. a bottleneck). For
example, CPU contention and CPU utilization
provide good understanding of the status of the
CPU and its limitations. Memory contention arises
when the memory requirements of the active
processes exceed the physical memory that is
available on the system. Another good indication
of degradation of system performance is when we
notice that the system is paging [6, 7, 8].

The existing operating systems and the UNIX

systems in particular contain a number of
measurement tools available [9, 10]. These tools
are good resources that provide sufficient data
about general system and per component behavior.
The UNIX systems, for example, have a good
number of monitoring tools such as uptime, ps,
iostat, sar, vmstat, and netstat (c.f. section 7). We
can also use the UNIX utility cron that runs
specified UNIX commands at regular intervals and
collect the relevant data to system performance.

Necessary changes to the computer configuration
should be taken based on the analysis to of the
collected data.

3. UNDERSTANDING SYSTEM’S
WORKLOADS

The principal aim of performance tuning is to
analyze the behavior of the configuration of a
computer system to the existing workload [11, 12,
13]. Understanding our system workload is
therefore necessary to be able to determine the
necessary hardware that supports it. The workload
definition must include not only the type and rate
of each component but also the identification of
both the typical and peak request rates.

After a complete definition of the system’s

workload, we will be left with many courses of
actions that can be taken to enhance the
performance of our computer system. These
actions include eliminating unnecessary daemons
and other system processes, giving the highest
priority to the most important jobs, and shifting
some jobs to run at another time.

Analyzing the workload enables us to determine

some of its major characteristics, for example,
whether it is I/O-bound, CPU-bound, or both, and
so on. This requires characterization of the system
loads, see the following (section 4) for more
details.

3.1. Workload Characterization and
Parameterization

This stage involves the collection, classification
and implementation of a suitable set of
representative examples for different types of
workload.

The accounting software tool on the UNIX

system at the University was used to collect the
required data for workload modeling. Our first
intention was to find the most important traffic
measures and their roles in the selection of a
subset of workload components, and in the
classification of these components. Also we were
investigating the effect of the groups to which the
users belonged and of the source of the traffic in
order to assign an appropriate weight for each
group and for each source. A piece of software
was designed and implemented to extract the data
from the daily job accounting records, based on
our characterization scheme.

Our classification scheme is based on the

following classification principles:

Journal of Theoretical and Applied Information Technology

© 2008 JATIT. All rights reserved.

www.jatit.org

81

• Classes should consist of components that

reveal similar performance measures. (For
example, I/O bound components should not
be grouped in a single class that also contains
CPU-bound components).

• Classes must distinguish workload
components of special interest. (For example,
if we are only interested in the response time
of the interactive components, then we must
have one class representing the interactive
components and one or more classes
representing the rest).

• Classes must distinguish different workload
types (transaction, terminal and batch).

• Classes must not be limited to a small
number. (For example we may have several
classes representing batch services: One class
for short jobs, one class for medium-sized
jobs, and one for all others).

• Classes must distinguish different user groups
and locations.

3.2. Methodology
The objective, therefore, is to produce a

grouping of workload components based on
conceptual clustering techniques. The results were
compared with the results of the self-organizing
map (SOM). Therefore, we developed a
clusteruing technique that uses a weighted inter-
cluster criterion to select the better clustering
result. The method is outlined as follows:

Given:

1. A selected sample of data extracted from a
daily accounting routine, see Table 1. (The
standard measure or Z score was used [11] for
normalization of data.)

2. The classification principles that are
mentioned in the progress report (see
Workload Characterisation and
Parameterisation).

3. An extensive memory E of special cases and
their meaning.

4. A distance measure (inter-cluster criterion)
which is given as follows: Let Z1 and Z2 be
any two components (vectors) such that,

{ } { }1 11 12 13 1 2 21 22 23 2Z z z z z Z z z z zn n= =, , ,. . ., ; , , ,. . .,

()
ij

k
k

n

k
k

nD
w z z

w

ik jk
=

−∑

∑
=

=

2

1

1
Dij = the weighted Euclidean distance between
component i and component j
Qij = the weighted qualitative distance between
component i and component j
Tij = the total distance measure between
component i and component j
Wk = the weights that are assigned to workload
parameters. Initially, these values are based on
the objectives of the study and assigned to
each parameter to reflect its relative
importance. They are subsequently changed
during clustering according to the following
heuristic:

()k kW W W W N
= − =

+
1 1

10 0;

Where N is the number of cycles.

Goal:
Distinguish clusters C1, C2, . . ., Cn, using the

following method, and then select the better result
according to the weighted inter-cluster criterion
(ie. when inter-cluster similarity tends to be
minimized and intra-cluster similarity tends to be
maximized).

Method

The major steps of this method are as follows
Stepp and Michalski [14].

1. Select k distinct components from the
sample based on the given dissimilarity
measure and the classification criteria - k may
be found by using minimum spanning tree
(MST), when a sudden change in the linkage
distance has been reached.
2. Produce a category matrix. As an example,
using categories: 0, 1, 2, 3 and 4, if the
observed natural workload features vector is

Vp = (150, 100, 50, 20, 0), then its
representation is
Vr = (4, 3, 1, 1, 0).

This is accomplished by dividing Vp by 1.5 and
using the following scale:

The digit 0 represents the interval [0,20], the

interval (20, 40] is represented by the digit 1 and,
the interval (80, 100] is represented by the digit 4.

Journal of Theoretical and Applied Information Technology

© 2008 JATIT. All rights reserved.

www.jatit.org

82

By the same way we treat Table 1 that is
produced by the accounting tool on Solaris system.
If the table contains nominal data, it should be
categorized in the same way as we treated the
numerical data.

3. Reduce the number of columns, if possible, in

order to derive concepts. Columns that have
similar data across the majority of components
should be deleted. These columns (attributes)
do not add any useful information for
producing different clusters.

4. Set Wk = 0 for the corresponding deleted
columns.

5. Use the derived concepts for filtering the
workload components. The filtering technique

is based on the majority of a simple matching
method. For example, suppose that the
following concepts have been derived.

CS1 = {1, 2, 3}
CS2 = {3, 1, 2}
The following workload component WK1 = {5, 2,

3} should be, therefore, placed into the list of
components that are associated with the CS1
concept.

 6. If a component belongs to two or more
concepts, then this component should be placed
on an exception list.

7. Use the given formula above on the exception
list to find a place for each component.

Table 1: A summary report produced by the accounting tool on Solaris.

COMMAND NUMBER TOTAL TOTAL MEAN CHARACTER BLOCKS
NAME CMDS CPU-MIN REAL-MIN SIZE-K TRANSFER READ
sendmail 463 1.47 170.52 57.99 17056656 1438
elm 296 0.68 296.78 66.69 10591064 1887
sh 465 0.47 279.03 79.85 56579 233
vi 268 3.10 641.18 11.70 10820442 1160
mail 226 0.45 10.62 71.58 4266504 835
finger 223 0.72 34.59 44.29 13201744 11
ls 364 0.44 0.48 70.45 536915 47
pc0 82 0.55 0.80 39.28 8004808 272
cc1 49 0.42 0.50 36.90 1478240 51
ld 62 0.38 0.47 41.14 49133 119
quota 96 0.23 0.42 62.33 2183776 3
cpp 135 0.21 0.31 64.65 4559334 188
pc 86 0.19 2.05 64.57 71036 262
in.comsa 99 0.18 210.42 65.60 1129072 7
tty 138 0.19 0.21 56.32 195848 30
in.ident 57 0.22 0.40 46.89 15378304 2
rm 158 0.14 2.16 71.29 1030 259
rquotad 77 0.15 154.11 64.26 793408 1
date 119 0.10 0.12 88.89 92127 2
uudemon. 113 0.11 0.33 81.63 67694 20
cat 108 0.08 0.09 98.51 130005 6
pt_chmod 85 0.09 0.14 78.35 91885 176
w 60 6.43 0.13 50.81 153823 3
as 38 6.37 0.17 50.03 520103 41
cp 87 6.31 0.18 74.11 816246 179
un 18 6.24 238.95 2.24 16664128 54
sed 80 0.08 0.17 76.17 125186 2
ufsdump 55 0.54 21.01 10.39 201138400 480
tset 64 0.11 1.18 49.53 1799680 3
in.finge 45 0.33 4.68 15.63 5820984 12
a.out 61 0.08 2.64 63.89 36521 1
in.rlogi 30 3.83 726.68 1.24 3132856 51
uuxqt 48 0.06 0.10 76.93 855936 3
df 50 0.08 0.10 54.10 66500 3
gcc 51 0.07 1.31 56.27 77316 149

Journal of Theoretical and Applied Information Technology

© 2008 JATIT. All rights reserved.

www.jatit.org

83

talk 23 0.99 764.00 3.88 1893752 0
expr 62 0.06 0.14 63.18 15556 0
uusched 48 0.06 0.15 65.01 36096 260
fbe 22 0.14 0.17 24.88 844383 24
in.talkd 26 0.06 20.63 50.10 1082362 0
awk 27 0.04 0.07 75.14 15377 6
sadc 44 0.06 0.14 45.20 84392 11
more 27 0.04 5.88 61.81 121055 3
cg 22 0.16 0.18 15.02 4338408 25
ps 26 0.12 0.16 19.48 291880 9

After removing the outliers and smoothing the data if necessary (using a logarithmic function), the
resulted category table is as follows:

Table 2: The resulted category table after the discretization of table 1

COMMAND NUMBER TOTAL TOTAL MEAN CHARACTER BLOCKS
NAME CMDS CPU-MIN REAL-MIN SIZE-K TRANSFER READ
sendmail 5 4 5 5 4 5
elm 5 3 5 5 4 5
sh 5 2 5 5 1 4
vi 4 5 5 3 4 5
mail 4 2 3 5 4 5
finger 4 3 4 4 4 1
ls 5 2 1 5 3 3
pc0 2 3 1 4 4 4
cc1 1 2 1 4 3 3
ld 2 2 1 4 1 3
quota 3 2 1 5 3 0
cpp 3 1 1 5 4 4
pc 2 1 2 5 2 4
in.comsa 3 1 5 5 3 1
tty 3 1 0 5 2 2
in.ident 2 2 1 5 4 0
rm 3 1 2 5 0 4
rquotad 2 1 5 5 3 0
date 3 1 0 5 2 0
uudemon. 3 1 1 5 2 2
cat 3 0 0 5 2 1
pt_chmod 2 0 0 5 2 4
w 2 5 0 5 2 0
as 1 5 0 5 3 2
cp 2 5 0 5 3 4
un 0 5 5 0 4 3
sed 2 0 0 5 2 0
ufsdump 1 3 3 2 5 4
tset 2 1 1 5 3 0
in.finge 1 2 2 3 4 1
a.out 2 0 2 5 1 0
in.rlogi 0 5 5 0 3 3
uuxqt 1 0 0 5 3 0
df 1 0 0 5 2 0
gcc 1 0 1 5 2 3
talk 0 1 5 1 3 0
expr 2 0 0 5 1 0

Journal of Theoretical and Applied Information Technology

© 2008 JATIT. All rights reserved.

www.jatit.org

84

uusched 1 0 0 5 1 4
fbe 0 1 0 0 3 2
in.talkd 0 0 3 5 3 0
awk 0 0 0 5 1 1
sadc 1 0 0 4 2 1
more 0 0 3 5 2 0
cg 0 1 0 3 4 2
ps 0 1 0 3 2 1

The hierarchical representation produced by the program is as follows:

Resulting Tree =_|-> sendmail
 |-| |-> elm
 |-| |-> vi
 |-| |-> mail
 |-| |-> finger
 | |_|--> ls
 |-| |--> pc0
 | | __|----> quota
 |-| | |--| |----> in.ident
 | | |-| |--> w
 |-| | |--> cp
 | | |-> ufsdump
 |-| |_|----> un
 | | |----> in.rlogi
 | |_|----> as
 | |____|----> tty
 | |____|------> fbe
 | |------> cg
-| __|--> sh
 | |--| |--> ld
 | | |__|--> rm
 | | |__|--> pc
 | | |--> rquotad
 |-| |----> in.co
 | | ____|----> uudemon.
 | | | |____|----> cpp
 | | |------| |----> tset
 |--| | | |----> cc1
 | | |----| |------> gcc
 | | |----| |------> uusched
 | | |------| ____|------> a.out
 |----| |------| |------> expr
 | |____|----> talk
 | |____|------> in.talkd
 | |------> more
 | |----> in.finge
 | | ____|----> pt_chmod
 |------| | |____|----> cat
 | | |____|----> date
 |----| |____|------> sed
 | |______|--------> uuxqt
 | |--------> df
 |____|------> sadc
 |______|------> awk
 |------> ps

Journal of Theoretical and Applied Information Technology

© 2008 JATIT. All rights reserved.

www.jatit.org

85

We noticed that if a finer resolution is used, then
there is no significant change in the resulting
clusters but there is a little change in the
performance of the program.

3.3. Workload Clustering Using the Self-
Organizing Map (SOM)

Neural networks are being used in data
classification, and satisfactory results have
recently emerged. Therefore, we also used used
Kohonen's Self-Organising Map (SOM) for this
problem of workload characterisation .

SOM uses an unsupervised approach to

learning. It defines a mapping from the input data
space (input layer) Rn onto a regular two-
dimensional array (output layer) of nodes. Each of
these nodes is a composite profile or typical
representative of all cases that fit that profile. The
problem lies in which node should represent a case
(input vector), the solution is to let the nodes
compete for the right to represent a class of input
vector. The winner will adjust its weights so that it
becomes more like the input vector. Therefore, the
winner is closest to the input vector. The neighbors
of the winning node also adjust their weights to
become closer to the input. This means that
neighboring SOM nodes should be similar or
should represent similar SOM input vectors.

Repeating the corresponding columns

(attributes) has reflected the objectives of the
workload characterization. If, for example, the
interest is in the CPU performance rather than the
other components, then the CPU characterization
should be repeated to emphasize this importance.
This modification is to ensure the increase of the
importance of high-order attributes. Also, the
columns reduction step that is used in method 1 is
used here to make sure that the network does not
organizes the components based on the most
frequently occurring attributes that do not reflect
the important features. Hiotis [15], and Caudill
[16]I have noticed that the network self-organizes
on lower-order attributes which are not the most
critical for classification.

3.4. Workload Clustering

As presented in section 3 that the experimental
data were obtained from daily reports that were
collected on Sun Blade 100 at the Sultan Qaboos
University, running under the Solaris 9 operating
system. The reports, which relate to approximately
50 commands, form the input to the conceptual
clustering and the SOM. They contain a command

label and nine dimensions of data, such as the CPU
time consumed, the memory space required, the
number of disk I/O blocks transferred.

Our first intention was, therefore, to find the

most important traffic measures and their roles in
the selection of a subset of workload components,
and in the classification of these components. In
addition, we were investigating the effect of the
groups to which the users belonged and of the
source of the traffic in order to assign an
appropriate weight for each group and for each
source.

The workload dataset that was produced by the

UNIX accounting system at our University, shown
in Table 1, consists of 45 commands (senmail,
elm, sh, vi, etc.), each represented by six features,
namely number of commands (frequency), CPU
time, real time, memory size, character transfer,
and block read. In practice, these features are the
most relevant and sufficient for characterizing the
load on a UNIX system. It is worth mentioning
here that workload characterization is the first and
the most important step in computer performance
evaluation. Normally, it involves the following:

• data collection (using monitoring software or
an accounting routine),

• identification of the important components
for performance study,

• partitioning these components into workload
types, and

• performing cluster analysis on these types
[24, 25].

The clusters of UNIX commands found by
SOM are quite poor [21, 22]. It produces many
small clusters. When we used the visualization
programs that are included in the SOM package,
such as Sammon mapping and Planes [23], to
visualize the reference map, to identify distinct
clusters was difficult for us because the boundaries
between these clusters were vague. Clusters
correspond to clear zones separated by dark
hexagons, see Figure 1. Therefore, we used a data
histogram technique that shows how many data
vectors (UNIX commands) belong to a cluster
defined by each unit and its neighbors by counting
the number of hits. This number was obtained by
using a trained SOM and a dataset. After
calibration, some of the units in the map have
labels showing an area in the map that corresponds
to some of the UNIX commands. The resulted map
and the dataset were then used as two input files to
the visual program, which were included in the
SOM package, to generate a list of coordinates
corresponding to the best matching units (BMU) in

Journal of Theoretical and Applied Information Technology

© 2008 JATIT. All rights reserved.

www.jatit.org

86

the map for each data vector in the dataset (see
Table 1 and Table 3.)

It has been reported that the number of neurons

should usually be selected as large as possible,
with the neighborhood size controlling the
smoothness and generalization of the mapping.
The mapping does not considerably suffer, even
when the number of neurons exceeds the number
of input vectors, given that the neighborhood size
is selected appropriately. Nevertheless, as the size

of the map increases—e.g. to tens of thousands of
neurons—the training phase becomes
computationally and impractically too heavy for
most applications.

We conducted the experiments and clustered the

workload data using both the SOM and our
clustering algorithm. We also used a manual
partitioning of data as a reference to facilitate an
entropy calculation and comparison.

Figure 1: The u-matrix (unified distance matrix) visualization of the SOM for the UNIX workload dataset.
The map is 12 × 12 neurons. The map has also been labeled. Clusters correspond to clear zones separated
by dark hexagons.

The manual partitioning process has some

advantages, including division along natural
boundaries, but the process requires engineering,
time and insight. With the help of the technical
staff and the computer system manager in our
department, we analyzed and characterized the
reports that are generated by the accounting tool
on the UNIX system in the department. Our first
intention was to find the most important traffic
measures and their roles in the selection of a
subset of workload components, and in the
classification of these components. Additionally,

we were investigating the effect of the groups to
which the users belonged and the source of the
traffic to assign an appropriate weight for each
group and for each source. The characterization
scheme that we used for grouping workload
components is based on the identified
classification principles, see section 3.1. Table 4
shows the experimental results for the eight classes
that were identified and produced by SOM,
manual grouping, and our clustering technique.
The percentages represent the clustering accuracy
relative to the manual clustering.

Journal of Theoretical and Applied Information Technology

© 2008 JATIT. All rights reserved.

www.jatit.org

87

Table 3: UNIX commands cluster produced by SOM

Cluster Commands
1 sedmail elm
2 sh mail
3 vi in.rlogi talk
4 finger
5 ls
6 pc0
7 cc1 ld sadc
8 quota pc in.comsa
9 cpp rm
10 tty
11 in.indent tset
12 rquotad
13 date uudemo cat pt_chmod
14 w as cp Un
15 sed uuxqt awk
16 ufsdump
17 in.fing fbe cg Ps
18 a.out expr uushed
19 df intalk
20 gcc more

Table 4: The experimental results for the eight classes that were identified. The percentages represent the clustering
accuracy relative to a manual classification.

Clusters

 1 2 3 4 5 6 7 8
 Manual
Grouping

18
entries

2
entries

9
entries

2
entrie
s

1
entries

14
entries

1
entries

3
entries

Conceptual
Clustering

88% 100% 77% 100% 100% 100% 100% 66.67%

 SOM 89.89% 100% 44.44% 50% 100% 78.57% 100% 0%

4. SELF-TUNING SYSTEMS
In order to achieve a satisfactory level of

performance for a live system, the used method
should be fast and its overhead should be
negligible. These restrictions cannot be achieved if
a detailed analysis of a real workload is required.
Therefore, an alternative method suggested here is
based on system measurement tools, such as iostat,
vmstat, and ps. However, the process of workload
characterization and clustering should be first
carried out. As we presented in sections ***, it
enables us to understand the behavior of the
system and allows us to effectively and efficiently
use of the system measurement tools. Moreover,

workload characterization and clustering enable us
to identify and formulate performance tuning
heurists.

If the above-mentioned restrictions are taken

into account, then the dynamic tuning can be
achieved by an adjustment of the system's
parameters. However, these parameters are
dependent on the used operating system and the
hardware capacity and configuration. In particular,
the number of these tunable parameters differs
from one operating system to another, and it also
differs from one version of an operating system to
another. Furthermore, in order to change the
values of these parameters, each operating system
has built-in commands that can be used for this

Journal of Theoretical and Applied Information Technology

© 2008 JATIT. All rights reserved.

www.jatit.org

88

purpose. These commands are also operating
system dependent. Therefore, a general dynamic
tuning technique cannot be achieved. However, the
method can easily be adapted if it is required for a
different platform.

The system management tools, such as iostat,

vmstat, renice, ps, time, kill, and netstat, that are
provided with almost all operating systems are not
only being used for assessing the current state of
system performance but they are also used
successfully for tracking the changes in workloads
and system performance. Systems’

managers, for their daily management tasks, use
these tools and their demands are negligible.

Therefore, the on-line tuning should be based on
a quick analysis of the results that are produced by
these system management tools.

5. BOTTLENECKS DETECTION

A bottleneck is a limitation of system
performance due to inadequacy of hardware or a
software component. It is also the result of bad
system organization. Once a particular component
is identified as the bottleneck, a number of
remedies exist. Theses include running big jobs at
lower priority, terminating the jobs with largest
memory requirement, distributing I/O workload
more evenly, or eliminating unnecessary daemon
processes. Other actions require some changes to
the parameters of the operating system. These
include reducing the size of buffer cache if the
system reveals of having a memory problem or
increasing the size of memory cache if the system
has a disk I/O problem. These and other necessary
actions will resolve the bottleneck by reducing the
time spent using the component that is causing it.

Management tools play an important role in the
process of bottleneck detection of a live computer
system [17, 18, 19]. For example, response times
can be inferred from both the throughput and the
utilization measures that are produced by these
tools. The throughput itself enables us to identify
the bottleneck and its causes. Clearly, the system
component that saturates at the lowest rate is the
bottleneck. This component can be characterized
by having the largest service demands. The key to
determining this result is the consistency law.

Let Di and Ui denote the demand and the

utilization of hardware center i. The Throughput
Law states:

 T = Ui/Di (1)

Where T is the system throughput. When any of

the hardware components becomes saturated, that
is when its utilization = 1, the whole system
becomes saturated. Let max be the index of the
bottleneck center. The maximum throughput for
any resource i is

Tmax = 1/Di (2)

Therefore, the center with the smallest T in the
system will determine the maximum throughput
the system can achieve. This computer center is
the bottleneck.

6. THE UNIX SYSTEMS

AIX is the only operating system of the UNIX
family that allows us to tune its parameters without
need to rebuild the kernel and reboot the machine
[6, 20]. Other UNIX systems, such as Solaris, need
to redesign its kernel so that they accept the
automatic and dynamic tuning. Otherwise, the
tuning should be carried out when the system is
doing almost nothing, at night for example. In this
case, the anticipated load during the next day has
to be considered.

Linux and Minix have no system management

tools, and you also need to rebuild the kernel after
each change of the values of their tunable
parameters. It is not difficult to add these tools to
the kernel. However, it is hard to capture the
reaction of these systems, after changing their
parameters, to a real workload in order to fulfill
the first activity, namely the self-tuning activity.

Dynamic tuning cannot be carried out on a live

system unless the used method is fast and its
overhead is negligible. These restrictions cannot
be achieved if a detailed analysis of a real
workload is required. Therefore, our alternative
method, that is described here, is based on system
measurement tools, such as iostat, vmstat, and ps.

The tuning problem is considered in this work

as two interrelated activities: self-tuning and
learning (c.f. section 10).

7. SYSTEM-MANAGEMENT TOOLS

They are efficient commands that periodically
collect and record performance data. Other
features of these tools include the following:

Journal of Theoretical and Applied Information Technology

© 2008 JATIT. All rights reserved.

www.jatit.org

89

• They can provide system-performance
reports at a fixed interval indefinitely.

• They report on activity that varies with
different types of workload.

• They report on activity since the last previous
report, so changes in activity are easy to
detect.

Examples of these system-management tools

are:
• iostat provides a picture of the state of the

system every certain unit time.

• vmstat provides a picture of overall memory
use, and supplies data on I/O, and CPU. It
can be used to find out whether the system is
memory-limited or I/O, or both.

• ps reports the actives processes. It is a good
tool for identifying the programs that are
running in the system and the resources they
are using.

• sar displays statistics on operating system
activities such as directory access, read and
write system calls, forks, paging activity.

• uptime reports the average number of jobs in
the run queue over a given period of time.

• ab is apache bench which simulates multiple
web browsers. A good networking and
application server test.

Therefore, the system's parameters can be
adjusted based on an overall assessment of the
system behavior that is reported by the system-
management tools. For example, if it is found that
the disk service time is greater than 50ms, then the
inode cache size should be increased by 20%. This
quantity, i.e., 20%, is obtained by the off-line
training method (section 10 elaborates on this
point).

8. HEURISTIC RULES

Heuristics, a form of cognitive strategy, have
been studied in discplines such as cognitive
psychology, social psychology and social
cognition. Heuristics are rules of thumb for
reasoning, a simplification, or educated guess that
reduces or limits the search for solutions in
domains that are difficult and poorly understood.
Unlike formal structures like algorithms, heuristics
do not guarantee optimal, or even feasible,
solutions and are often used with no theoretical
guarantee.

The use of heuristics is often contrasted with
probalistic, statistical, or rationalistic reasoning,
according to which people use rationalistic and
systematic ways to solve problems and generally
seek the optimal results.

From the results of the measurement tools, an

overall assessment of system performance can be
initiated and that would lead to assign the best
values for system tunable parameters [2, 7].

The heuristic rules assist in the traversal of

MNG (management navigation graph).

Figure 2: MNG (management navigation graph)

Figure 2 represents a management navigation
graph, where P denotes system performance; R
denotes response time; U denotes utilization;
THRUPT denotes system throughput; QLEN
denotes queue length; Rcpu denotes the CPU time;
RI/O denotes the I/O time; Rpage denotes the time
spent in the paging activities.

Examples of the implemented heuristics are as

follows:

Rule 1: If any paging-space I/O is taken place, then
the workload is approaching the system memory
limits, i.e. there is a memory problem.

Rule 2: If the sum of user and system CPU
utilization is greater than 80%, then the workload
is approaching the CPU limits, i.e. there is a CPU
problem.

Rule 3: If the I/O-wait percentage is non-zero, a
significant amount of time is being spent waiting
on I/O, and some part of the workload is I/O-
bound, i.e. there is a disk problem.

Journal of Theoretical and Applied Information Technology

© 2008 JATIT. All rights reserved.

www.jatit.org

90

Rule 4: If the number of blocked processes
approaches or exceeds the queue length, then there
is a disk problem (bottleneck).

Rule 5: If there is more system time than user time
and the machine is not an NFS server, then there is
a system problem.

Rule 6: If the idle time and the load average are
both high, then we have a memory problem

Rule 7: If the average arrival rate is increasing,
then select QLEN.

Rule 8: If the service time is greater than 50ms,
then increase the inode cache by 20%.

Rule 9: If the queue length is more than four times
the number of CPUs, then it is long, i.e., selecting
QLEN.

Rule 10: If the utilization of CPU is greater than
80% or the utilization of a disk is greater than
35%, then there is a utilization problem, i.e. select
U.

Rule 11: If vmstat.swap is greater than 4000k, then
increase the swap area.

Rule 12: If sar,ufs.lpf is less than or equal to 100%
and greater than zero, then double the inode area.

Rule 13: If we have a disk problem (busy or a slow
disk), then we have a throughput problem.

Rules 14: If we have a throughput problem, use the
formula (2) to identify the disk that causes this
problem.

The conflict between memory performance, disk
performance, and processor performance is
resolved in favor of memory, and then in favor of
disk. This is because the memory problem can
cause a disk problem.

9. CACHE PRINCIPLES

Caches work on two basic principles. The first
is that if we spend a long time getting something
that we think we may need again soon, you keep it
nearby. The contents of our cache make up our
working set. The second principle is that when we
get something, we can save time by also getting
the extra items we suspect we will need in the near
future.

The first principle is called "temporal locality"
and involves reusing the same things over time.
The second principle is called "spatial locality"
and depends on the simultaneous use of things that
are located near each other. Caches only work well
if there is good locality in what you are doing.
Some sequences of behavior work very efficiently
with a cache, and others make little or no use of
the cache. In some cases, cache-busting behavior
can be fixed by changing the system to provide
support for special operations. In most cases,
avoiding cache-busting behavior in the workload's
access pattern will lead to a dramatic improvement
in performance.

A cache works well if there are a lot more reads

than writes, and if the reads or writes of the same
or nearby data occur close together in time. An
efficient cache has a low reference rate (it doesn't
make unnecessary lookups), a very short cache hit
time, a high hit ratio, the minimum possible cache
miss time, and an efficient way of handling writes
and purges.

10. IMPLEMENTATION AND RESULTS

The on-line tuning and the off-line learning
were carried out on the same system hardware
specifications. The on-line tuning was carried out
on the UNIX system running under Solaris
operating system. The off-line experimental
analysis and learning were conducted on the same
system, when the system is idle.

The programs that listed at the end of this paper

are selected pieces from our program. The first
program is a script written in cshell. It uses some
of the UNIX accounting tools for collecting the
required data for performance analysis. The second
program is written in C++ uses some heuristics
and the results of the first program for allocating
some possible bottlenecks.

11. SELF-TUNING SYSTEMS

A self-scaling benchmark is developed (see the
following subsection) in order to implement the
self-tuning strategy. LINUX is used in this work as
a platform for the implementation. This work
involves the learning activity, which is the main
step in the process of self-tuned operating system.
The second activity is for finding the best values
of system tunable parameters. The following
subsections explain these two activities.

11.1. The Learning Activity

Given:

Journal of Theoretical and Applied Information Technology

© 2008 JATIT. All rights reserved.

www.jatit.org

91

1. The values of the system measurements, CPU
utilization, I/O utilization, response time,
throughput, etc.

2. A self-scaling benchmark that produces

similar values of the system measurements that
are produced during the first activity (see the next
section for more details).

Use:
Heuristic rules (thresholds) and management

navigation graph (MNG) to learn the best values of
the system tunable parameters. Here we should
keep changing the values of the system
parameters, i.e. moving these values up and down,
within their permissible intervals until no more
enhancements in the system performance can be
achieved.

11.2. Self-Scaling Benchmark

In order to produce the best values of tunable
system parameters, a benchmark can be used that
automatically scales itself across the computer
system under study.

This type of workload model is characterized by

having a set of tunable parameters. The number of
these parameters depends on the number of
performance indexes (measurements) that are
indicated by the system measurement tools.
During the execution of this model, its parameters
can automatically be adjusted to reach a
performance state (base state). The base state is the
performance assessment of the current system that
is close enough to the performance assessment that
produced the system measurement tools on the
same system.

Adjusting of the benchmark parameters should

be guided by a set of heuristic rules instead of
using a random or a blind search.

There are a number of self-scaling benchmarks

that can be used, after some modifications, for this
purpose, such as TPC-B, TPPC, Sdet, and SDM.
Otherwise, it is not difficult to design and to build
a self-scaling benchmark.

Once the base state has been produced for a

particular run, the system should invoke the
second activity for finding the best values of
system tunable parameters.

11.3. System Tunable Parameters

Almost every operating system has a number of
tunable parameters, Solaris for example has
around 30 of such parameters, and AIX has around
52 tunable parameters. To change the default value
of each parameter, there are many commands that
can be used in order to tune these parameters. AIX
on PowerPC or RS/6000 has the tuning
commands: fdpr optimizes executable files; nfso
changes the values of NFS options; nice executes a
command at a specific priority; no changes the
values of network options; renice changes the
priority of running processes; schedtune changes
the values of VMM memory load control
parameters, the CPU-time-slice duration, and the
paging-space-low retry interval; vmtune changes
the Virtual Memory Manager page replacement
algorithm parameters [6, 26].

Frank Waters [6] in his book "AIX Performance

Tuning" reported a number of AIX tunable
parameters.

12. CONCLUSION

A computer system tuning model and a
computer program are developed. The underlying
technique is based on heuristics and sysetm
performance tools for detecting computer system
bottlenecks. The model and the program are
currently being extended and verified in order to
implement another set of heuristics and laws.
Fortunately, in the realm of computer performance
analysis, it is relatively easy to generate the needed
data and therefore to automate that data collection
effort. The implemented model is effective for
dynamic tuning of system operating parameters,
such as cache sizes, in response to inferred
application loading.

Designing and building a software tool for

construction of reliable workload models of given
real workloads is the first step in the process of
tuning and evaluation of computer performance.
The main advantage of the used method is its
capability of producing accaeptable clusters of
data. Using this approach, the workload models
that are produced will have a general applicability
to system performance evaluation, system tuning
and capacity planning.

Also, we plan to use similar approaches to

predict the effects of changes to application
workload parameters. The model can predict
throughput and bottlenecks given an increment to
application workloads.

Journal of Theoretical and Applied Information Technology

© 2008 JATIT. All rights reserved.

www.jatit.org

92

13. REFERENCES

[1] Harrison PG & NM Patel (1993), "Performance

Modelling of Communication Networks and
Commuter Architectures", Addison-Wesley.

[2] Lazowska ED at al. (1984) "Quantitative
System Performance: Computer System
Analysis Using Queuing Network Models",
Prentice-Hall, Inc.

[3] R. Bryant and D. O’Hallaron, Computer

Systems: A Programmers’ Perspective, First
Edition, Prentice Hall, 2003;

[4] Daniel P. Bovet and Marco Cesati,

Understanding the Linux Kernel, 1st Edition,
O'Reilly and Associates Inc., 2001.

[5] Khalil Shihab and Haider A. Ramadhan.

Automatic Detection of Performance
Bottlenecks Using a Case-Based Reasoning
Approach, Journal of Intelligent Systems,
Vol. 11, No 6, pp 385-407, 2001.

[6] Waters, F. AIX Performance Tuning, Prentice

Hall, 1996.

[7] Gian-Paolo D. Musumeci and Mike Loukides,

System Performance Tuning, 2nd Edition.
O’Reilly & Associates, 2002.

[8] Joseph D. Sloan, Network Troubleshooting

Tools. O’Reilly & Associates, 2001.

[9] Wilson, E. and James Naramore, Network

Monitoring and Analysis. Prentice Hall, 2000.

[10]] Jain, R. The Art of Computer System

Performance Analysis, John Wiley & Sons,
Ltd., 1991.

[11] Ferrari, D. Workload characterization for

tightly-coupled and loosely-coupled systems.
In Proceedings Sigmetrics and Performance
‘89 International Conference on Measurement
and Modeling of Computer Systems, page 210,
Berkeley, California. ACM, 1989.

[12] Haverkort, B.R., Performance of Computer

Communication Systems, John Wiley & Sons,
Ltd., 1998.

[13] Loukides, M. 1992; System Performance
Tuning, O’Reilly & Associations, Inc. 1992

[14] Stepp RE and RS Michalski (1986),

"Conceptual Clustering: Inventing goal-

directed classifications of structured objects",
in RS Michalski at al. (eds.), Machine
Learning: An artificial intelligence approach,
vol. 2, Morgan Kaufman.

[15] Hiotis A (1993) “Inside a Self-Organising

Map”, AI EXPERT, pp 38-43, April 1993.

[16] Caudill M (1993) “A Little Knowledge is a

Dangerous Thing”, AI EXPERT, pp 16-20,
June 1993.

[17] Cady J and B Howarth (1990) "Computer

Systems Performance Measurement and
Capacity Planning", Prentice-Hall, Inc.

[18] Terplan K (1992), "Communication Networks

Management", Prentice-Hall, Inc .

[19] Kant, K. Introduction to Computer System

Performance Evaluation, Mc Graw-Hill Inc.,
1992.

[20] Accetta et al. Mach: a new kernel for UNIX

development. In Proceedings of USENIX
Association Summer Conference, pages 93--
112, Atlanta; 1986.

[21] Khalil Shihab. Improving Clustering

Performance by Using Feature Selection and
Extraction Techniques, Journal of Intelligent
Systems, Vol. 13, No. 3, pp 249-273, 2004.

[22] Shihab, K. I. and Ramadhan, H., A Clustering

Technique Using Dynamic Filtering
Concepts and its Application to Computer
Workload Modeling, Journal of Intelligent
Systems, Vol. 10, 4, pp. 321-344, 2000.

[23] Kohonen T, at al (1992) "Self-Organising

Map", Program Package Ver. 1.2. Helsinki
University of Technology, Finland.

[24] Daniel A. Menasce, et al. Capacity Planning

and Performance Modeling - From
Mainframes to Client-Server

Systems,., Prentice-Hall, 1994

[25] Bolch, G., Greiner, S., de Meer, H. and

Trivedi, K. Queueing Networks and Markov
chains, 2nd Ed., John Wiley & Sons, Ltd.,
2006.

[26] Stern H. Mike Eisler, and Ricardo Labiaga,
Managing NFS and NIS, 2nd Edition. O’Reilly
& Associates, 2001.

93

Appendix
#!/bin/csh
long term performance collection script
if ($#argv != 2) then
echo "usage: monitor interval filename"; exit
else

 echo "Performance Log File Collected By
Monitor" > $2
 echo >> $2
endif
iostat -tDc -l 32 $1 2 > iolog$$ & vmstat $1 2 >
vmlog$$
echo >> $2
echo "performance for" $1 "seconds ending at "
`date`>>$2
wait
head -2 vmlog$$ >> $2
tail -1 vmlog$$ >> $2
rm vmlog$$
head -2 iolog$$ >> $2
tail -1 iolog$$ >> $2
rm iolog$$
uptime >> $2
//**

// To run program -
// g++ csp.C
// a.out
//This program finds the relevent figures from the
vmstat,
//iostat and uptime UNIX commands and identifies
the possible bottlenecks.

//
#include <iostream.h>
#include <stdlib.h>
#include <fstream.h>
#include <iomanip.h>

#define in_file "result.txt"
#define PO 53
#define DiskU1 104
#define DiskU2 108
#define DiskU3 112
#define DiskU4 116

#define DiskU5 120
#define DiskU6 124
#define CpuI 129
#define LoadAv 142

struct Values
{
 int PageOut; int CpuIdle; float LoadAverage;
 int CpuUtil; float DiskUtil[5];
};
void Setvalues(Values &Sysresults, int &counter,
ifstream monitorFile);
void OverThirty(float x); void cpu_idle(float a, int
b);
void cpu_disks(int CpuUtil, float diskAv);
void Outputfn(Values Sysresults);
main()
{
char z; char quitx; int count; Values Sysresults;
while (quitx != 'Q' && quitx != 'q'){
 count = 0; system("monitor 1 result.txt");
 ifstream monitorFile(in_file); if (!monitorFile){
 cout << "File Result.txt cannot be opened"<<
endl; quitx = 'q';}
 else {while (monitorFile.peek() != EOF){
 monitorFile.get(z);
 if (z == ' ') {
 count ++;
 while (monitorFile.peek() == ' ')
monitorFile.get(z);
 Setvalues(Sysresults, count,
monitorFile);}
 }
 monitorFile.close(); system("rm result.txt");
Outputfn(Sysresults);
 cout<<endl;
 cout<<"Press C to continue or Q to
quit"<<endl; cin>>quitx;
 }
 }
}
//**

// Outputs the results to the screen.
void Outputfn(Values Sysresults)
{
float diskAv = 0; int i;
for (i = 0; i < 6; i++) diskAv = diskAv +
Sysresults.DiskUtil[i];
system("clear");
cout<<"**********************************"
<<endl;
cout<<"*"<<endl;

94

cout <<"* Page Out: "<<setw (7)<<
Sysresults.PageOut;
if (Sysresults.PageOut > 0) cout<< " Paging has
reached a high level";
cout<<endl;cout<<"*"<<endl;
cout<<"**********************************
**"<<endl;
cout<<"*"<<endl;
cout <<"* Disk Utilisation: "<<endl;cout
<<"*"<<endl;
for (i=0; i < 6;i++){
 cout <<"* Disk "<<i<<": "<<setw
(7)<<Sysresults.DiskUtil[i];
 OverThirty(Sysresults.DiskUtil[i]);}
cout <<"*"<<endl;cout <<"* Average Disk
Utilisation: "<<setw (7)<< diskAv<<endl;
cout <<"*"<<endl;
cout<<"****************************"<<endl
;
cout<<"*"<<endl;cout <<"* CpuUtil: "<<
Sysresults.CpuUtil;
cpu_disks(Sysresults.CpuUtil, diskAv);cout
<<"*"<<endl;
cout<<"**************************"<<endl;
cout<<"*"<<endl;
cout <<"* CpuIdle: "<<Sysresults.CpuIdle<<endl;
cout <<"*"<<endl;
cout<<"***************************"<<endl;
cout<<"*"<<endl;
cout<<"* Load Av: "<<Sysresults.LoadAverage;
cpu_idle(Sysresults.LoadAverage,
Sysresults.CpuIdle);
cout <<"*"<<endl;
cout<<"****************************"<<endl
;
}
//********************************
// Places the relevant values in the structure
void Setvalues(Values &Sysresults, int &counter,
ifstream monitorFile)
{
int p;
switch (counter)
{
case PO: monitorFile >> Sysresults.PageOut;
counter ++;break;
case DiskU1:monitorFile >>
Sysresults.DiskUtil[0]; counter ++; break;
case DiskU2:monitorFile >>
Sysresults.DiskUtil[1]; counter ++; break;
case DiskU3:monitorFile >>
Sysresults.DiskUtil[2]; counter ++; break;
case DiskU4:monitorFile >>
Sysresults.DiskUtil[3]; counter ++; break;
case DiskU5:monitorFile >>
Sysresults.DiskUtil[4]; counter ++; break;

case DiskU6:monitorFile >>
Sysresults.DiskUtil[5]; counter ++; break;
case CpuI:monitorFile >> Sysresults.CpuIdle;
 Sysresults.CpuUtil = 100 -
Sysresults.CpuIdle;
 counter ++; break;
case LoadAv :monitorFile >>
Sysresults.LoadAverage; counter ++; break;
 }}
//**
*
//
// Determines if the disk figures are over
30%
//
void OverThirty(float x)
{
if (x > 30) cout<<" The Disk utilization is
high"<<endl;
else cout<<endl;
}
//*********************************
// Determines the state of the paging and
memory
void cpu_idle(float a, int b)
{
 if (a > 1 && b > 30)
 cout << "The system is paging and there is not
enough memory"<<endl;
 else cout << endl;}
//**
// Determines the cpu utilization and disk
figures.
void cpu_disks(int CpuUtil, float diskAv){
if (CpuUtil <30 && diskAv >30)
 cout<<" The system is I/O bound"<<endl;
 else if (CpuUtil > 30 && diskAv < 30)
 cout <<"The system is CPU bound"<<endl;
 else if (CpuUtil < 30 && diskAv < 30)

 cout <<" The system is
underutilized"<<endl;
 else if (CpuUtil > 30 && diskAv > 30)
 cout <<" The system is over
utilized"<<endl;
}

