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ABSTRACT 
 

Multi-objective evolutionary algorithms (EAs) that use non-dominated sorting and sharing have been 
criticized. Mainly for their: 1- )( 3MNO  computational complexity (where M is the number of 
objectives and N is the population size). 2- Non-elitism approach; 3-the need for specifying a sharing 
parameter. In this paper, a method combining the new Ranked based Roulette Wheel selection algorithm 
with Pareto-based population ranking Algorithm is proposed, named Non-dominated Ranking Genetic 
Algorithm (NRGA), which alleviates most of the above three difficulties. A two tier ranked based roulette 
wheel selection operator is presented that creates a mating pool from the parents’ population by selecting 
the best (with respect to fitness and spread) solutions stochastically. Simulation results on benchmark test 
problems show that the proposed NRGA, in most of the problems, is able to find much better spread of 
solutions and faster convergence near the true Pareto-optimal front compared to NSGA-II other elitist 
MOEA that pay special attention to creating a diverse Pareto-optimal front. Much better performance of 
NRGA is observed.  

Keywords: Elitism, Genetic Algorithms, Multi-Criterion Decision Making, Multi-Objective 
Optimization, Pareto-Optimal Solutions. 

 
1. INTRODUCTION  
 

The Presence of multiple objectives in a 
problem, in principle, gives rises to not only single 
optimal solution but a set of optimal solutions 
(largely known as Pareto-optimal solutions). In the 
absence of any further information, one of these 
Pareto-optimal solutions cannot be said to be 
better than the other. This entails a user to find as 
many Pareto-optimal solutions as possible. 
Classical optimization methods (including the 
multi-criterion decision-making methods) suggest 
converting the multi-objective optimization 
problem to a single-objective optimization 
problem by emphasizing one particular Pareto 
optimal solution at a time. When such a method is 
to be used for finding multiple solutions, it has to 
be applied many times, with a view of finding a 
different solution at each simulation run. Over the 
past two decades, a number of multi-objective 
evolutionary algorithms (MOEAs) have been 

suggested [1], [2], [4], [5], [6], [7], and [16]. The 
primary reason for this is their ability to find 
multiple Pareto-optimal solutions in one single 
simulation run. Since evolutionary algorithms 
(EAs) work with a population of solutions, a 
simple EA can be extended to maintain a diverse 
set of solutions; with an emphasis on moving 
toward the true Pareto-optimal region. In this 
paper, a new algorithm named Non-dominated 
Ranking Genetic Algorithm (NRGA) is proposed. 
From the simulation results on a number of 
benchmark test problems, NRGA outperforms 
NSGA-II other elitist MOEA.  

In the remainder of the paper, section 2 briefly 
lists a number of existing elitist MOEAs. 
Thereafter, in Section 3 the proposed NRGA 
algorithm is discussed. Section 4 presents 
simulation results of NRGA and compare them 
with NSGAII. Finally, the conclusion of this paper 
is outlined in section 5. 
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2. ELITIST MULTI-OBJECTIVE 
EVOLUTIONARY ALGORITHMS 
 

During 1993−2005, a number of different EAs 
were suggested to solve multi-objective 
optimization problems. Of them, MOGA-III [4], 
SPEA2 [16], NSGA-II [10], Srinivas and Deb 
NSGA [6], and Horn et al. NPGA [5], Fonseca and 
Fleming MOMGA [17], for detailed information 
about other MOEA algorithms readers are 
encouraged to refer to [1] and [2]. The [17],[6] and 
[5] algorithms demonstrated the necessary 
additional operators for converting a simple EA to 
a MOEA. Two common features on all three 
operators were the following: 1) assigning fitness 
to population members based on non-dominated 
sorting; 2) preserving diversity among solutions of 
the same non-dominated front. Although they have 
been shown to find multiple non-dominated 
solutions on many test problems and a number of 
engineering design problems, researchers realized 
the need of introducing more useful operators to 
solve multi-objective optimization problems 
better. Particularly, the interest has been to 
introduce elitism to enhance the convergence 
properties of a MOEA. Elitism helps in achieving 
better convergence in MOEAs as shown in [8]. 
Among the existing elitist MOEAs, Zitzler and 
Thieles SPEA [7], [16], Knowles and Cornes 
Pareto-archived PAES [9], MOMGA-III [3], 
PAES [19], PAES-II [18], NSGA-II [10] are well 
studied. For details, readers are advised to refer to 
the original studies. In the following section, the 
proposed non-dominated ranking GA approach is 
presented.  
 
3. ELITIST NON-DOMINATED RANKING 
GENETIC ALGORITHM 
 

The following sections describe in brief the 
algorithms used in NRGA. Algorithms in section 
3.1 and 3.3 are embedded in the NRGA algorithm 
for the sake of comparing with NSGAII, where 
any other sorting algorithm and diversity 
mechanism can be used. 
3.1. Sorting Algorithm 

In this study the fast non-dominated sorting 
approach from [10] is used for two reasons, 
because of the comparison with NSGA-II, and its 

)( 3MNO computations.  
3.2. Ranked Based Roulette Wheel Selection 

The authors of [14] and [15] use modified 
roulette wheel selection algorithm where each 
individual is assigned a fitness value equal to its 
rank in the population; the highest rank has the 

highest probability to be selected (in case of  
maximization). 
The probability is calculated as illustrated in the 
following equation: 

)1(*
*2

+
=

NN
RankPi   (1) 

Where N is the number of individuals in the 
population. In this study the individuals in a front 
are ranked based on their crowding distance, and 
the fronts ranked based on the non-dominated 
rank. 
3.3. Diversity Mechanism 

Along with convergence to the Pareto-optimal 
set, it is desired that an EA maintains a good 
spread of solutions in the obtained set of solutions. 
In NSGA-II the crowded-comparison approach is 
used alone with the crowded-comparison operator. 
This approach does not require any user-defined 
parameter for maintaining diversity among 
population members. Also, the suggested approach 
has a better computational complexity. Readers are 
encouraged to refer to [10] for more information 
about both the crowding-comparison approach and 
operator. NRGA maintains the diversity by 
ranking the solutions in each non-dominated 
Pareto-front using their crowding distance.  
3.4. Survival Selection (elitism) 

After evaluating the offspring’s fitness (non-
dominated rank, crowding distance), parents and 
offspring fight for survival as Pareto dominance is 
applied to the combined population of parents and 
offspring. Then the least dominated N solutions 
survive to make the population of the next 
generation. 
3.5. NRGA 

Initially, a random parent population P is 
created. The sorting of the population is based on 
the non-domination. Each solution is assigned a 
fitness (or rank) equal to its non-domination level 
(1 is the best level, 2 is the next-best level, and so 
on). 

Thus, minimization of fitness is assumed. At 
first, the usual Ranked based Roulette wheel 
selection, recombination, and mutation operators 
are used to create an offspring population Q of size 
N. Since elitism is introduced by comparing 
current population with previously found best non-
dominated solutions, the procedure is different 
after the initial generation. First the ith generation of 
the proposed algorithm as shown in algorithm 1 is 
described.  

The algorithm 1 shows that NRGA is simple 
and straightforward. First, a combined population 

QP∪  is formed. The combined population is of 
size 2N then, the combined population is sorted 
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according to non-domination. Since all previous 
and current population members are included in 
the combined population elitism is ensured. This 
procedure will select N solutions out of 2N.  

The new population of size N is used for selection. 
Now, two tiers ranked based roulette wheel 
selection [14] and [15] is applied, one tier to select 
the front and the other to select solution from the 
front, here the solutions belonging to the best non-
dominated set F1 have the largest probabilities to 
be selected. Thus, solutions from the set F2 are 
chosen with less probability than solutions from 
the set F1 and so on. Then crossover and mutation 
are applied to create a new population P of size N. 
The diversity among non-dominated solutions is 
introduced by the second tier of ranked based 
roulette wheel selection, which ranks the solutions 
(in the same front) based on their crowding 
distance. The solutions with least crowding 
distance will have the higher probabilities. 
Since solutions compete with their crowding 
distance (a measure of density of solutions in the 
neighborhood), no extra niching parameter (such 
as shareσ  needed in the NSGA) is required. 
Although the crowding distance is calculated in 
the objective function space, it can also be 
implemented in the parameter space, if so desired 
[11]. However, the objective function space 
niching is used in all simulations performed in this 
study. 
 
4. SIMULATION RESULTS 

 

In this section, first the test problems used to 
compare the performance of NRGA with NSGA-II 
are described, second the performance metrics are 
illustrated, and finally the results are discussed. 
The identical parameter setup for both algorithms 
NRGA and NSGA-II is maintained for the 
comparison purpose. 
4.1. Test Problems 

In 1999, Zitzler et al. [8] followed the suggested 
systematic way of developing test problems for 
multi-objective optimization by [11] and 
suggested well known six test problems five of 
them are chosen. These problems called ZDT1, 
ZDT2, ZDT3, ZDT4, and ZDT6. All of them have 
two objective functions. None of these problems 
have any constraint. Reader can refer to [1], [2], 
[8] for more information about the benchmark test 
problems. Table 1 describes these problems; also 
the table shows the number of variables, their 
bounds, the Pareto-optimal solutions, and the 
nature of the Pareto-optimal front for each 
problem.  

The simulated binary crossover (SBX) operator 
and polynomial mutation [12] are used. The 
crossover probability of Pc = 0.9 and a mutation 
probability of Pm = 1/n (where n is the number of 
decision variables) are set. Distribution indexes 
[12] for crossover and mutation operators as cη  = 

20 and mη = 20, respectively are specified. The 
population size was fixed to 100 in all the 
problems, for 350 generations in ZDT1 and 400 
generations in the remaining problems. 
4.2. Performance Measures 

Unlike in a single-objective optimization, there 
are two goals in a multi-objective optimization: 1) 
convergence to the Pareto-optimal set and 2) 
maintenance of diversity in solutions of the Pareto-
optimal set. These two tasks cannot be measured 
adequately with one performance metric. Many 
performance metrics have been suggested [1], [2], 
[13], and [20]. Here, two running performance 
metrics to understand the behavior of the 
algorithm from [20] are used in evaluating each of 
the above two goals, reader recommended to refer 
to the original study [20] for more details about the 
used running (convergence and diversity) metrics. 
In the experiments the number of grids is equal to 
the population size and f2 = 0 plane to project the 
points.  
4.3. Discussion of the Results 

Figures 1 − 5 show the final generation, figure 1 
shows all non-dominated solutions obtained after 
350 generations with NRGA and NSGA-II on 
ZDT1 problem. The Pareto-optimal region also is 
shown in the figure. This figure demonstrates the 
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abilities of NRGA in converging to the true front 
and in finding diverse solutions in the front. In 
both aspects of convergence and distribution of 
solutions, NRGA performed better than NSGA-II 
in this problem. Since NSGA-II could not 
converge to the true Pareto-optimal front in the 
final generation. Next, the non-dominated 
solutions on ZDT2 problem are shown in figure 2. 
This problem has a non-convex Pareto-optimal 
front. The performance of NRGA is better than 
NSGA-II. Although NRGA get closer to the true 
Pareto-optimal front than NSGAII, NRGA have 
found a better spread and more solutions in the 
entire Pareto-optimal region than NSGA-II. The 
problem ZDT3 has disconnected Pareto-optimal 
front, NRGA converged and distributed uniformly 
on each part of the Pareto-optimal front than 
NSGA-II see figure 3. The problem ZDT4 has 

921  or ( )111094.7  different local Pareto-optimal 
fronts in the search space, of which only one 
corresponds to the global Pareto-optimal front. 
Figure 4 shows that both NSGAII and NRGA get 
stuck at different local Pareto-optimal sets, but the 
convergence and ability to find a diverse set of 
solutions are definitely better with NSGA-II. Since 
NRGA converges poorly on this problem (see 
figure 4). Finally, Figure 5 shows that NRGA finds 
a better converged distributed set of non-
dominated solutions in ZDT6 compared to NSGA-
II algorithm. 
But the previous figures will not give a clear 
picture about the behavior of the algorithms, for 
that the figures 6 − 15 illustrate the convergence 
and diversity behavior of both NRGA and NSGA-
II algorithms. Figure 6 shows that the convergence 
metric of NRGA on problem ZDT1, quickly 
moves to zero faster than NSGA-II, thereby 
implying that starting from a random set of 
solutions NRGA quickly approach the Pareto-
optimal front faster than NSGA-II. A zero value of 
convergence metric implies that all non-dominated 
solutions match the chosen Pareto-optimal 
solutions. After about 20 generations, NRGA 
population comes very close to the Pareto-optimal 
front, whereas NSGA-II took too much oscillating 
to get closer to the Pareto-optimal front. The same 
happens in figures 7, 8, 9, and 10. Figure 11 
explains the diversity metric, which increases 
exponentially till 50 generations in NRGA and till 
200 generations in NSGA-II after that the diversity 
remains more or less the same. Although the 
obtained solutions are very close to the chosen 
Pareto-optimal front, the diversity metric oscillates 
near a stable value. NRGA in generation 50 gets a 
very good diversity value than NSGA-II which 
reaches this value at generation 200, the same 

behavior of the diversity metric in the remaining 
figures. 
From above NRGA outperforms NSGA-II in most 
of the test problems. NRGA with the adoption of 
two tiers ranked based roulette wheel selection is 
promising for these types of problems, and it is 
able to find a reasonably better spread and faster 
convergence of solutions than NSGA-II algorithm. 
5. CONCLUSIONS 

 
The new elitist ranked based MOEA proposed 

(NRGA) tested on five benchmark test problems, 
and shows that NRGA was able to converge 
significantly faster than NSGA-II, while 
maintaining reasonably better spread of solutions 
compared to NSGA-II, without specifying any 
additional parameter like shareσ , NRGA maintains 
the diversity among the solutions by controlling 
dynamically the crowding distance. With the 
properties of two tiers ranked based roulette wheel 
selection, a fast non-dominated sorting procedure, 
and elitist strategy. NRGA alleviates most of the 
difficulties of non-dominated sorting and sharing 
evolutionary algorithms.  
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Figure 1: ZDT1 final generation 

Figure 2: ZDT2 final generation 

Figure 3: ZDT3 final generation 
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Figure 4: ZDT4 final generation 

Figure 5: ZDT6 final generation 

Figure 6: ZDT1 convergence 

Figure 7: ZDT2 convergence 

Figure 8: ZDT3 convergence 

Figure 9: ZDT4 convergence 
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Figure 10: ZDT6 convergence 

Figure 11: ZDT1 diversity 

Figure 12: ZDT2 diversity 

Figure 13: ZDT3 diversity 

Figure 14: ZDT4 diversity 

Figure 15: ZDT6 diversity 
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