Journal of Theoretical and Applied Information Technology

© 2005 - 2007 JATIT. All rights reserved. e

www.jatit.org

A HIERARCHICAL APPROACH TO FAULT DIAGNOSIS IN
LARGESCALE SELF-DIAGNOSABLE WIRELESS ADHOC
SYSTEMS

'P.M.Khilar, 2S.Mahapatra
'Department of CSE, NIT, Rourkela- 769 008
Department of E & ECE, 11T, Kharagpur- 721 302
Email: khilarpm@yahoo.com

ABSTRACT

This paper proposes a multi-cluster hierarchical distributed system-level diagnosis approach for large-
scale self-diagnosable distributed systems, such as one formed by overlaying mobile adhoc networks
(MANETS) over another class of adhoc network, known as wireless sensor networks (WSN). The
proposed diagnosis strategy assumes multiple numbers of initiators that initiate the diagnosis process in
contrast to a diagnosis strategy having one initiator node, which creates a bottleneck in the system. The
diagnosis strategy also avoids a costly distributed diagnosis algorithm where every node is an initiator of
the diagnosis process. The approach enables the diagnosis at the host level where some external operator
can collect all the diagnostic information accessing any active node after issuing a command to the
initiator nodes at the highest layer in the hieararchy. The sensor nodes in the lowest layer in the hierarchy
are static tested only nodes and thus do not maintain any kind of diagnosis information. Key results of
this paper include an adaptive heartbeat-comparison based testing mechanism and fault models and an
efficient and scalable distributed diagnosis algorithm using clustering that provides every active node a
global diagnostic view of all the nodes. The correctness proof of the algorithm has been given. The
analysis of algorithm has shown that the diagnosis latency and message complexity of the algorithm are
O(I(Tx + T¢ + max(Toun, Tourz)) + Txeg) @and O(nCy) respectively. The simulation results show that the
diagnostic latency, message complexity and diagnosability of the proposed clustering approach is better
than the equivalent non-clustering approach.

Keywords: Ad-hoc networks, clustering, diagnosability, diagnosis latency and message complexity.

when it goes out of range or is physically damaged
1. INTRODUCTION or due to a battery failure. A value faulty mobile
node may produce erroneous result due to
Wireless Adhoc Networks such as mobile incorrect computation. Similarly, a static sensor
adhoc networks (MANETS) and wireless sensor node is subjected to crash fault due to either
networks (WSNs) are fully autonomous distributed physical damage or due to battery failure. The
systems and can be set up anywhere and at any sensor nodes are subjected to value fault due to
time without either a wired backbone or incorrect computation.
centralized control. The typical distributed systems
comprising of mobile nodes in MANETS and static The existing diagnosis algorithms for wireless
nodes in WSNs form an arbitrary network distributed systems result in diagnosis overhead
topology and are of great use in many application such as high diagnostic latency and message
scenarios such as in battlefield/emergency/rescue complexity [1-3]. They assume a single initiator
operations for monitoring the environment. Fault node that initiates the diagnosis process thus
diagnosis of wireless adhoc networks with static creating a centralized bottleneck. In case of failure
and mobile nodes is an important problem in of the initiator, all other nodes wait for diagnosis
designing a fault tolerant system for smooth information and this results in starvations. The
running of the applications. The static and mobile assumptions of a static fault environment i.e., the
nodes are subjected to crash (hard) and value (soft) nodes do not change their status during execution
faults. A mobile node is subjected to a crash fault, of the algorithm is rather impractical. Particularly,

s
25

the algorithms are not suitable for MANET
because mobile nodes move from one place to
another place during the execution of the diagnosis
procedure. Therefore, the existing diagnosis
algorithms cannot handle such situations. The
diagnosability of the network is limited by its
connectivity [14-15]. Moreover, the existing
algorithms assume that a node can test another
node directly, which is not feasible for wireless
distributed systems due to their time varying

topology.

In order to address the above problems, this
paper proposes a diagnosis approach for large-
scale self-diagnosable wireless distributed systems
such as an overlayed MANET on a WSN. Our
goal is to allow every active node to learn the
status of every other active node in the system.
The passive sensor nodes are tested only nodes and
need not maintain the global diagnostic view.

The main contributions of this paper are as
follows: (i) it provides a hierarchical clustering
method that resolves the scalability issue over a
non-clustering method; (ii) both static as well as
dynamic fault environments are assumed where
the static and mobile nodes in different clusters are
subjected to crash and value faults; (iii) the
presence of multiple initiator nodes avoids the
centralized bottleneck of having a single initiator
node; (iv) As all the nodes do not act as initiators,
the diagnosis overhead is significantly reduced
compared to traditional distributed diagnosis
techniques where every node needs to learn the
status of every other node.

The paper is organized as follows: in section
2, we describe system and fault model that exactly
describes the adhoc networks where the nodes
either remain stationary or allowed to move from
one place to another. The different notations used
are also given in this section. Section 3 describes
the distributed diagnosis algorithm using
clustering approach for wireless ad-hoc systems.
The correctness proof and complexity analysis of
the algorithm have been presented in section 4
where its cost is computed in terms of diagnosis
latency and message complexity. The simulation
results are presented in section 5 and end the paper
with concluding remarks in section 6.

2. PRELIMINARIES
In this section, we describe the system model,

fault model, diagnostic model and the basic
definitions with different notations and their

26

meanings. The system model specifies the
topological structure of the underlying network
with different system parameters. The fault model
specifies the types of faults the system components
are subjected to. The diagnostic model presents the
mechanism used to detect the specified faults.

2.1 System Model

We consider the system of n wireless nodes
(static or mobile), which communicate via radio
transceivers. The wireless nodes are either
switches or endpoints. In MANET or WSN, all
devices deployed are not identical, and hence we
treat some nodes as switches and some other nodes
such as sensor nodes as endpoints. Each switch is
equipped with transceivers and processing logic
within it whereas each endpoint has only sensing
and transceivers logic without any processing logic
as such. A synchronous system is assumed where
the execution time of diagnosis tasks and
communication delays are bounded. Generic
parameters are assumed for executing the
diagnosis tasks, send initiation time, and
propagation time of the heartbeat and the
diagnostic messages. Each node is assigned with a
unique identifier and can be encoded using log(n)
bits. Each node knows its identifier and the
identifiers of its neighbors.

We assume that all the transmissions from any
node u are omni-directional. Thus, any node in its
neighborhood, i.e., within its transmitting range,
can receive a message sent by u. The
neighborhood of node u is denoted by N(u). The
topology of the system can be described as a
directed graph G (V,E), called the
communication graph, where V is the set of nodes
and E is the set of edges connecting the nodes.
Given any u,v € V, directed edge (u,v) € E exists
if and only if v € N(u). We assume that there
exists a link level protocol providing the following
services: a MAC protocol is executed to solve
contentions; the protocol provides two
communication primitives: 1-hop reliable
broadcast (1_hB) and Selective Send (SelSend).
Primitive 1_hB(m) delivers a message m to all the
nodes in the senders neighborhood, while
primitive SelSend(v,m) delivers m only to
neighboring node v. It is assumed that the
underlying network protocol handles the message
delivery and message collisions. The
communication graph is assumed to remain
connected at all times. The network is divided into
a number of clusters at various layers in the
hierarchy. Every cluster in the network may have

one or more mobile nodes along with a set of
stationary nodes.

2.2 Fault Model

The wirelessly connected nodes in the
network are subjected to crash and value faults.
Crash faulty nodes are unable to communicate
with the rest of the system, due to either physical
damage, or battery depletion or being out of range.
Value faulty nodes produce and communicate
erroneous values while processing the data packet
[16]. A crash fault model captures not only the
faulty nodes due to physical damage or battery
depletion but also the mobile nodes that are out of
range. Both static and mobile nodes are subjected
to value faults. New faults may occur during the
execution of the diagnosis protocol (viz, other than
those already present before the start of the
diagnosis session), which leads to a dynamic fault
environment. The dynamic fault model also
captures the faulty cluster heads and faulty
initiator nodes during execution of the diagnosis
algorithm. The set of fault-free and faulty nodes
are denoted by FF and F, with |FF| = ff > 0 and |F|
=f > 0 respectively.

2.3 Diagnostic Model

The algorithm assumes a heartbeat based
testing mechanism to detect faulty nodes in a
cluster. A node x can test another node y if y is a
neighbor of x. Testing is assumed to be error-free.
The diagnostic model that is used to identify the
crash and value faulty nodes is based on an
adaptive heartbeat [18] and comparison-based
technique as follows. A time-out mechanism is
used to detect a crash fault. If a testee node does
not respond within certain timeout period Ty OF
Touz, We say the node is crash faulty. Whereas, to
detect a value fault, we assume that each wireless
node has an estimated value (may be the remaining
energy value or value of a diagnosis task) already
known to it. The observed values obtained from
the tested nodes are compared with the estimated
value and their difference is computed. If the
deviation is greater than certain threshold 6, we
say that the node is value faulty. The time-out
mechanism can be implemented using an interrupt
by the tester nodes such that it generates a high-
observed remaining energy value [17]. When this
time-out value is compared with the estimated
remaining energy value, the difference between
estimated and observed remaining energy value
will be automatically beyond the threshold 6, thus
recording a crash fault event. The main reason for

27

incorporating this fault model is to reduce the
model to the state of the art diagnosis mechanism
called the comparison-based diagnosis. Therefore,
both crash and value faults in wireless nodes are
detected by the comparison outcomes between
tester and testee nodes [19-20]. The set of
comparison outcomes or test results is known as a
syndrome. The fault-free nodes achieve the
diagnosis based on the syndromes collected so far.

The algorithm assumes that the diagnosis
process is initiated by a set of fault-free nodes at
the highest layer of clusters, henceforth called
initiators, in response to an explicit request of an
external operator. There are two types of messages
exchanged during the diagnosis execution: fixed
size heartbeat messages, and variable size
diagnostic messages. The heartbeat messages are
of two types such as initiation heartbeat message
and response heartbeat message. The format of the
heartbeat message sent by a node u contains (u, v,
diagnostic value, message-code), where v is the
identifier of the node from which u received the
first heartbeat message (u itself if u is the initiator),
diagnostic value is the result of the testing task and
the message code is used to identify the type of
heartbeat message. Heartbeat messages with
comparison-based mechanism are used to detect
the crash and value faulty nodes. The diagnostic
messages exchanged during the execution of the
algorithm are of two types: the local diagnostic
message and the global diagnostic message. The
format of a diagnostic message sent by a node u
contains (u, F, message code), where F, is the set
of identifiers of the nodes currently diagnosed as
faulty by node u and message code is the code to
identify the type of message. The local diagnostic
messages are used to contain the identities of
faulty nodes within a subtree rooted at a cluster
head. Whereas, global diagnostic messages are
used to contain the identities of faulty nodes in the
entire network. A variable diagnostic message size
was chosen to accommodate the faults that would
occur during the diagnosis process as well as the
faults that were present before the start of a
diagnosis session. Since the messages keep only
the status of the faulty nodes, the message size is
reduced.

In order to maintain the status of the nodes
about the entire network, each cluster head
maintains a vector known as Status Table[u]
which stores the status of each node u in the
network. An entry 0 or 1 in this vector indicates
that the status of node u is fault free or faulty
respectively, and x denotes that the status of a

node u is unknown. The corresponding entry in
this vector is updated as and when any event is
known to occur in that node. Note that, the main
aim of the algorithm is to achieve distributed
diagnosis, i.e., every node in the system needs to
learn the status of every other node in the system.
We will show that our diagnosis approach allows
every node to obtain a global diagnostic image
without testing all the system nodes.

2.4 Definitions and Notations

We present the following definitions, which
are common in diagnosis literature. We again
include them here for the sake of completeness of
the paper.

Definition 1: The connectivity k(G) of a graph G
is the minimum number of nodes whose removal
results in a disconnected graph.

Definition 2: The cluster connectivity k. is the
minimum number of nodes in the cluster whose
removal makes the clusters a disconnected graph.

Definition 3: A wireless network described by the
communication graph G is said to be t-diagnosable
if correct diagnosis is always possible provided the
number of faults does not exceed t. The largest
integer t for which G is t-diagnosable is called the
diagnosability of G, denoted tg.

Definition 4: A diagnosis session means the time
elapsed between the initiations of the diagnosis
session till all other nodes receive the global
diagnostic message of the entire network. This is
known as diagnosis in on-demand basis.

The notations used in this paper are summarized in
Fig. 1.

3. THE DESCRIPTION OF DIAGNOSIS
APPROACH

In this section we introduce the diagnosis
approach for wireless adhoc networks using a
hierarchical clustering method. Clustering or
partitioning methods have been suggested to
provide scalable solutions to the diagnosis problem
in many large networking systems [4-13]. The
nodes in wireless systems are expected to
autonomously group themselves into clusters, each
of which functions as a multi-hop packet radio
network. A hierarchical structure allows the
clusters to be organized into different layers. The
lowest layer contains all the nodes in the network.

28

Some nodes in the upper layers are the cluster
representatives of the clusters at the immediate
lower layer. The representatives of the clusters in a
layer form the next higher layer. The instance of
the clustering scheme operating at each layer
places the nodes into multiple clusters.

The wireless network clustering problem is
defined as follows: Let C, be a positive integer,
such that, 1 < C, < |V|. For each connected
component, find a collection of subsets Vi, ...,
Vn,of V, so that the following conditions are met.

1. uV;=Vfori=1ton. All vertices are
part of some cluster.

2. GJ[Vj], the subgraph of G induced by V; is
connected.

3. 1< |V < C This is the size bound for
the clusters.

4. |VinVj| ~ O(1). Two clusters should have

up to a small constant number of common
nodes.

We consider the case when all the nodes in the
network have the same transmission range. In this
case, the underlying communication graph consist
of a value R > 0 and an embedding of the vertices
in the plane, such that (u, v) is an edge if and only
if d(u, v) < R. For such graphs, it can be seen that
if a node has many neighbors, i.e., a vertex has
very high degree, then all these vertices have to be
within its transmission radius. These neighboring
nodes will, therefore, be relatively close to each
other. As a consequence many of these
neighboring nodes will be within transmission
range of each other and will have edges between
themselves in the communication graph. Since the
transmission range depends on the power available
at the node, in general, for a homogeneous set of
nodes, the transmission radii would be close to
each other. We do not consider here the nodes
having different transmission ranges.

Figure 1. The different notations and their meaning

Cluster formation consists of the discovery of
a Breadth First Search (BFS) tree and then forming
clusters. We use a BFS tree because its radius is
bounded by the diameter of the graph. Fig. 3 gives
the algorithm for the discovery of a BFS tree and
cluster creation. Fig. 4 outlines the distributed
diagnosis technique, whereas Fig. 5 and Fig. 6
present the procedure to merge the smaller partial
clusters and to split larger clusters respectively.
The proposed diagnosis approach using
hierarchical clustering has two phases: Cluster

creation and cluster diagnosis. The cluster creation
phase is invoked when the existing clustering falls
below a quality threshold. Cluster diagnosis is the
second phase that handles node mobility and other
usual dynamics such as crash and value faults in
the network.

3.1 Discovery of a BFS tree and Clustering

The BFS tree is discovered for the undirected
graph G(V,E). The procedure assumes the node S
as the starting vertex, or the source node. The
purpose of a BFS tree is to discover all the nodes
reachable from the source node S, or to measure
the number of hops between S and any reachable
node. In an unweighted graph, the paths in this
BFS tree are identical to the shortest paths between
S and the reachable nodes. At last, the parent of
each node in the BFS tree is found and recorded.
The algorithm GRAPH-CLUSTER can be initiated
by any node in the network. There are two parts in
cluster creation: Tree Discovery and Cluster
Formation.

The messages for Cluster Formation are
piggybacked on the messages for the tree
Discovery component. This is a distributed
implementation of creating a BFS tree. Each node,
u, transmits a tree discovery beacon, which
indicates its shortest hop-distance to the root r. The
beacon contains the following fields: {src-Id,
Parent-Id, root-1d, root-seg-no, root-distance}. If
any neighbor, v of u on receiving this beacon,
discovers a shortest path to the root through u, it
will update its hop-distance to the root
appropriately and will choose u to be its parent in
the tree. The parent-ld field will be initially
NULL, and change as the appropriate parent in the
BFS tree is discovered. The root-distance field
reflects the distance in hops from the root of the
tree. The root-1d is used to distinguish between
multiple simultaneous initiators of the Cluster
Creation phase of which only one instance is
allowed to proceed. The root-seg-no is used to
distinguish between multiple instances of the
Cluster Creation Phase initiated by the same root
node at different time instants.

To create the clusters on the BFS tree, each
node needs to discover its subtree size and the
adjacency information of each of its children in the
BFS tree as explained below. A cluster formation
message is piggybacked onto the tree discovery
beacon by each node. This has the following
fields: {subtree-size, node adjacency}. The subtree
size information is aggregated on the tree from the

29

leaves to the root. This subtree size at a node u is

given by [1 + 2, children(u) Subtree-size(v)]. When a
node w detects that its subtree size has crossed the
size parameter C,, it initiates cluster formation on
its subtree. If the entire subtree T(w) is of size less
than C, it creates a single cluster for the entire
subtree. Otherwise, it will create a set of clusters
by appropriately partitioning its sub trees into
these clusters. This information is subsequently
propagated down the child subtrees as cluster
assignment messages to the relevant nodes.

The partitioning of the subtrees into clusters is
implemented as specified in the graph cluster
algorithm (Fig. 3). To do this, node w needs to
know the adjacency information of its children in
the tree. This is available as the neighborhood
information, N(u) carried in the node-adjacency
field of the cluster formation message from each
child, u. In its subsequent cluster formation
messages to its parent, node w does not include all
the nodes, that it has assigned to different clusters.
This is equivalent to the deletion of these nodes
from the tree in the algorithm GRAPH CLUSTER
and MERGEPARTIALCLUSTERS.

Let T be this rooted BFS tree, and T(v) denote
the subtree of T rooted at vertex v. We use |T(v)| to
denote the size of the subtree rooted at v. Let C(v)
be the set of children of v in T. We assume that |V/|
> C,, else we can treat the entire graph as one
cluster. First, we identify a node u such that |T(u)|
> C,. For each v € C(u) we have |T(v)| < Cs. Let
C(u) consist of | nodes vy, ..., v;. The clustering
can be achieved by taking the set of subtrees
{T(v1) ,..., T(vp)} where vy, ..., v, are the children
of u in the tree. The clusters are, by definition,
disjoint and each partition consists of a set of sub-
trees such that the number of all vertices in the
subtrees comprising the clusters lies between 1 to
C,. Each cluster is created by adding subtrees
sequentially to it until the size lies between 1 to Cs.
Addition of a single subtree can increase the
partition size to more than Cs. In such case, the
nodes beyond C; are taken out to be part of a new
cluster.

The algorithm is implemented via post-order
traversal of T. When we are visiting a vertex, we
can check the size of the subtree rooted at that
vertex. If the subtree has size > C, then we can
trigger the above scheme. Once we output a set of
clusters and consequently delete the vertices that
belong to these clusters, we can update the size of
the current subtree and continue with the post-
order traversal at the parent of this vertex.

L J
- .
O
QO ., —
- ¥(?—(Ny L J\Y .
- Lo 3\ [«
-~ O 5 -

Figure 2. Hierarchical Clustering
3.2 Leader Election

In case a cluster head fails, then the children
nodes have to cooperate to elect a new cluster
head. The fault free node within a cluster is elected
as the cluster head if the current cluster head fails.
The main advantage of electing a leader using
node ids is that these node ids are also exchanged
for diagnosis purposes. Each fault-free node in the
cluster sends its node id to all other nodes in a
cluster. The node ids within a cluster are arranged
in ascending order and first node is the cluster
head. The decisions about the identity of the
cluster head can be made locally and consistently.
The assignment of the representative tasks is
dynamic in that the identities of the representatives
may change after each diagnosis session due to
failures or repairs. Since every cluster may have
one or more mobile nodes along with the static
sensor nodes, the leader election procedure
identifies a mobile node as the cluster head.

3.3 Testing and Hierarchical Diagnosis

Once the cluster creation phase generates a set
of clusters, the diagnosis phase is invoked to
diagnose the nodes with crash or value faults as
specified in the fault model. The following
distributed diagnosis procedure performs testing
and diagnosis at every layer in the hierarchy in
each cluster. Our clustering method divides the
system into clusters and into a number of layers
depending on the size of the system. The number
of layers I, is computed as: I = [log cs(N/Ninit) |,
where Ni,: is the number of initiator nodes. A
specialized number of nodes from one or more
clusters, consisting of initiators of diagnosis
process at the top layer in the hierarchy, initiate the
testing and diagnosis process. The cluster size Cs
and the number of layers |. are two variables used
to tune the clusters such that a balance is achieved
between these two.

At the start of the diagnosis process, each
initiator node executes the following:

30

Forward dissemination of heartbeat
messages. Each imitator node initiates
testing by sending a heartbeat initiation
message top-down in the BFS tree, rooted
at the initiator node, to its neighbors using
the 1 hB primitive. Each cluster head
down the tree, upon receiving the
heartbeat message, forwards it to all its
children nodes. Heartbeat messages are
propagated throughout the network, and a
tree spanning all fault-free nodes
corresponding to each initiator is built
during propagation. Once a node has
propagated the message, it waits for the
reply heartbeat messages from its children
nodes, diagnosing as fault-free the sender
of any message received. After the
timeout period Tg, nodes that did not
reply with their heartbeat message are
diagnosed as crash faulty. If the message
arrives but does not match with the actual
value, it is considered as value faulty.
Thus, if a cluster head exists, it will
record a fault event in its Status_Table
irrespective of whether the node is crash
or value faulty. If a node was found to be
fault-free, the diagnosis information is
later obtained from that fault-free node
about the entire sub-tree formed by the
node. The proposed algorithm assumes
100% test coverage [21-25].

Backward propagation of local
diagnosis information. Each cluster head
v achieves its local diagnosis
independently, i.e., it knows the state of
all of its neighbors, based on the heartbeat
message received. Once these diagnosis
information have been received, node v
combines all of them as well as its own
local diagnosis into a unique diagnostic
message m containing the identities of all
the faulty nodes adjacent to at least one
fault-free node in the sub tree rooted at v,
and selectively sends m backwards to its
parent in the spanning tree. It is noted that
the diagnosis algorithm executed at the
node v captures the status of both crash
and value faulty nodes. This process is
repeated for each of the cluster heads in
the hierarchy until the initiator nodes
achieve the complete diagnosis about the
nodes in the spanning tree rooted at the
initiator node. It is noted that, the
spanning trees formed by each of the

initiator nodes are independent of each
other. In order to preserve this property,
when a node moves from one cluster to
another cluster, it becomes a member of
the later cluster and the cluster head of
the destination cluster will assign a new
node-id to this migrating node and
consider this node as a member of its own
cluster.

Exchange of the diagnosis information
among initiator nodes and Global
diagnosis broadcast: Once the initiators
receives diagnostic messages from all its
children in the spanning tree, it combines
the diagnostic information of these
messages with its own diagnosis in order
to obtain a global diagnosis view of the
system, i.e., the identities of all the faulty
nodes in the system. It is noted that when
a child node does not receive a heartbeat
message within the time out period Ty
or receives an erroneous message from its
cluster head, it detects the cluster head to
be faulty and elects another cluster head
from the nodes in that cluster. For
implementing this, the child nodes also
maintain another time out period.
Therefore, at any time, a fault-free nodes
would act as the head of a cluster.. This
property of the algorithm satisfies the
dynamic fault environment in the sense
that when a cluster head becomes faulty
during execution of the diagnosis process,
the child nodes detect this and elects
another cluster head. This ensures that
cluster heads and initiator nodes towards
higher layer in the hierarchy except the
nodes in the lowest layer contain only
fault-free nodes. Since the initiator nodes
keep the status of entire network, they are
fault-free and thus reliable. The initiator
nodes exchange the diagnosis information
among themselves and therefore achieve
the global diagnosis of the entire network
i.e., identities of all the faulty nodes in the
system. The global diagnosis is then
disseminated downward in the spanning
tree using a broadcast protocol.

Each active node in the network maintains the
status of every other node in the network in a
diagnosis session. The diagnosis session captures
the events that were previously present in the
network and the events that occur within a
diagnosis session. A diagnosis session consists of

31

executing the above three phases by the mobile
and the active nodes of the wireless network. The
nodes are subjected to any of the events such as: a
new node joins, an existing nodes leaves and the
nodes become faulty or fault-free. It is noted that
the messages that contain only fault status of some
nodes are exchanged.

4 THE CORRECTNESS PROOF AND THE
COMPLEXITY ANALYSIS

In this section, we shall first prove the correctness
of our diagnosis approach and then perform the
complexity analysis of the algorithm in terms of
diagnosis latency and message complexity. The
diagnosis latency is the duration between the
inception and the end of the diagnosis procedure,
whereas the message complexity is defined as the
total number of messages exchanged during a
diagnosis session.

For a distributed self-diagnosis algorithm to be
correct it should guarantee that at the end of each
diagnosis session each fault-free node correctly
diagnoses not only the state of all its nodes within
cluster, but also that of all the nodes in the system.
In the following we prove that our algorithm is
correct and complete. The correctness proof is
based on the following two main properties:
Partial correctness i.e., the fault status of any node
connected to the network is correctly diagnosed by
at least one fault-free node and Completeness, i.e.,
local diagnostic views generated by fault-free
nodes are correctly received by any other fault-free
node in a finite time. The first property certifies
that cluster heads know the fault status of all nodes
within the cluster that are connected to the network
at the end of the local testing/diagnosis phase.
While, the second property ensures that after
propagating the partial diagnostic views by cluster
heads i.e., at the end of the dissemination of global
diagnostic messages, correct diagnosis is achieved
in a finite time. The first property is proved in the
Lemma 2, while Lemma 3 proves the second
property. Assume the network topology is time
varying, and the communication graph G is the
connected communication graph of the system at
time t during the diagnosis session, with tg,; <t <
tend.

Lemma 1. Once a diagnosis session has been
initiated, the nodes in the hierarchy will receive
the first heartbeat message in at most T, + (I;-1)«
1_hrB_delay time where Ty is the send initiation
time of the heartbeat message and 1-hrB_delay is

the one hop reliable broadcast delay within the
cluster.

Proof: The initiator node generates

a heartbeat message at most in time T, This
heartbeat message reaches the cluster heads of the
next layer in the hierarchy in time
T,+1 hrB_delay. And, the leaf nodes in the
spanning tree rooted at the initiator node will
receive this message at the latest by T,+(lc-1)=
1 hrB_delay. As the leaf nodes will be the last
ones to receive the message, it follows that in at
most T,+(lc-1)-1_hrB_delay, all the nodes in
spanning tree will receive the heartbeat message
sent by initiator nodes.

Lemma 2. If a diagnosis session has been
initiated, then the fault status of each node
connected to the network during the diagnosis
session is correctly diagnosed by at least one fault-
free node.

Proof: Assume that node u is in the network. u
may be either fault-free or faulty. If node u is fault-
free, irrespective of it is static or mobile, it will
receive a heartbeat message in a finite time
according to Lemma 1. Hence, if it receives a
heartbeat message then it will report about its
status to its cluster head by sending a reply
heartbeat message. Since we are considering
diagnosable adhoc network (i.e., the diagnosability
bound in each cluster is preserved), node u will
always have its cluster head in the cluster at any
point of time, which will correctly diagnose its
state. Now if node u is faulty, there are four
scenarios. The first is that u is a static value-faulty
node. In this case, the same reasoning applies, i.e,
u will receive a heartbeat message and will reply
by sending a reply heartbeat message carrying an
erroneous result within a bounded time allowing
its cluster head to diagnose its faulty state.
However, if u is static crash faulty node (second
scenario), then its cluster head will be able to
diagnose its state once a timeout occurs. The third
scenario is that node u is a dynamic value-faulty
node. In this case, node u may not receive the
initiation heartbeat message from its cluster head
since it has moved to some other clusters.
However, it will receive a heartbeat message from
the cluster head for the cluster where it has joined.
In this case, it will send an erroneous reply
heartbeat message to its new cluster head. The new
cluster head can diagnose this node value faulty
node. The last scenario is that node u is a dynamic
crash-faulty node, and hence, the state of u will be

32

correctly identified once the timer in the cluster
head times out.

Now, we prove the second property, i.e., all
nodes are correctly diagnosed in a finite time.

Corollary 1. If a diagnosis session has been
started, then the last cluster head node to transmit
its local diagnostic view will do so in at most T +
(Ic-1)-[1_hb_delay +max(Tou, Touz)]-

The proof of this corollary follows trivially from
that of Lemma 1 given that after receiving its first
heartbeat message the node will transmit its
heartbeat message to all its children nodes, which
are the leaf nodes, and then waits for at most Ty
before starting preparation of local diagnostic
message. In case any parent node fails, including
the initiator nodes, the children nodes will be able
to identify by timeout T,y,. Hence, the last cluster
head to compute its local diagnostic view will do
soin Ty +(lc-1)<[1_hb_delay + max(Tout, Touz)]-

Lemma 3. Let G be the graph representing the
adhoc systems during a diagnosis session. If G is
connected and the total number of faulty nodes is
at most 5, = (kc~1) in a cluster, then the local
diagnostic view generated by the cluster head is
correctly received by any other fault-free node
connected to the system during the diagnosis
session in a finite time.

Proof: The graph G is connected means there is a
path between every pair of nodes in the entire
graph. If a cluster does not exceed its
diagnosability bound &, it will remain connected
and its cluster head will acquire the status of its
children nodes within the time out period Ty,
stored at the cluster head. The cluster head
prepares a local diagnostic message containing the
fault status of only faulty nodes in this cluster
within a bounded time. The local diagnostic
message is transmitted to the cluster head bottom
up in the hierarchy to reach the initiator nodes in
the spanning tree using the SelSend primitive.

If the number of faulty nodes in a cluster exceeds
its diagnosability bound, the cluster heads in the
next higher layer in the hierarchy determine this
within a time out period of Tyy. If a cluster head
becomes faulty, it will be detected by its children
nodes that elect another node in the cluster as
cluster head within a time out Ty, maintained at
the children nodes. The diagnosis tasks executed at
the top layer in the hierarchy exchange the local
diagnostic messages. It is noted that if an initiator

node is faulty, it will be detected by its fault-free
children node that elect another initiator
dynamically in the same diagnosis session.
Therefore, the initiator nodes are always fault-free
and achieve the global diagnosis within a bounded
time. Once, the global diagnosis message is
prepared by an initiator node, it is broadcast to all
the nodes in its spanning tree. It is easy to observe
that the complete diagnostic message sent by
respective initiators reach all the leaf nodes within
a bounded time according to Lemma 1. This shows
that all the nodes get the global diagnosis
information within a finite time.

Theorem 1: Let G be the graph representing the
system during a diagnosis session. If G is
connected and the total number of faulty nodes in
each cluster is at most 3, = k1, then every fault-
free node connected to the system during a
diagnosis session correctly diagnoses the state of
all the nodes in the system in a finite time.

Proof: The proof of Theorem 1 follows trivially
from lemma 2 and lemma 3. In fact, once all the
nodes have been diagnosed at the end of the
diagnosis session within a cluster, the local
diagnostic view from the cluster heads is sent
bottom up towards the initiator nodes. The initiator
nodes then exchange the local diagnosis messages
and prepare the global diagnosis message by
combining the local diagnosis messages within a
finite time. This global diagnosis message is then
sent to every node in the respective spanning trees
of each of the initiator nodes. This message is
correctly received by all the fault-free nodes
connected to the system. Given that G; is
connected and K; < dpin, Where dpin is the minimum
node degree in G, it follows that each node is
adjacent to at least one fault-free neighbor, and
hence, it is correctly diagnosed by at least one
fault-free node.

Now, we evaluate the performance of our
algorithm in the worst-case by analyzing its time
and message complexity. The time complexity
refers to the duration of a diagnosis session
whereas the message complexity refers to the total
number of 1-hop reliable broadcast messages
transmitted during a diagnosis session. To
determine the performance improvement achieved
by clustering the nodes, we look at the time
complexity and message count of the clustering as
compared with single level or non-clustering
method. The following theorems evaluate the time
and message complexities of the proposed
diagnosis algorithm.

33

Theorem 2: If I, < A, the diameter of the
network without clustering, then the proposed
hierarchical clustered diagnosis algorithm has the
time-complexity of O(l¢(Tx + Te+ max(Tour, Toutz))
+Txcg)-

Proof: Any initiator node originates the initiation
heartbeat message in time T,. This means that in
time at most I, (Tx + Ty), the furthest node in the
network receives the heartbeat message. The nodes
in the lowest level in the network respond to this
heartbeat message by sending response heartbeat
messages bottom up in the spanning tree in at most
time (Ty + I(Ty + Tg)). Each cluster head receives
the diagnosis information and prepares the local
diagnostic message by aggregating this with the
diagnosis information received from the other
nodes in the cluster latest by the time:

(I + 1)(Tx + Te)+ max(Tous, Tourz). The time for the
initiator nodes to receive the local diagnostic
messages from the different cluster heads is at
most 2('0'1)(Tx + Tf)+ (Ic'l)maX(Toutl,ToutZ)- The
initiator nodes prepare the global diagnostic
message by exchanging these local diagnostic
messages since the start of the diagnosis session in
at most time: 2(l. - 1)(Txy + To+ (-
1)max(Toun, Touz) + Txg Where Ty is the time
needed to exchange the diagnosis information by
all the initiators at the top layer in the hierarchy in
order to form the global diagnosis message. This
global diagnosis message is then sent downwards
in the spanning tree. The last non-leaf node in the
hierarchy receives the global diagnosis
information at the latest by the time 3(I, - 1)(Tx +
To)+ (le-1)max(Toug, Tou) + Txeg - It is noted that
the leaf nodes are passive wireless devices and do
not keep any diagnosis information. This follows
by observing that this is the worst-case time at
which any fault free node receives the global
diagnosis information once the diagnosis session is
initiated. Therefore, the worst case time
complexity of the proposed algorithm is O(I.(T, +
Tf+ maX(Toutl,ToutZ)) + Txcg)-

Theorem 3: The message complexity of the
hierarchical cluster based diagnosis approach is
O(ncCs).

Proof: The worst-case scenario is when all the
nodes are fault-free. In this case, one heartbeat
message goes from each initiator to every other
node in the network for a total of (n.Cs-Nini)
messages. The other nodes send one reply
heartbeat message each to their respective cluster
heads. Each cluster head sends one local

diagnostic message upwards in the hierarchy.
These two operations lead to (ne-1)(Cs+l)
messages. Finally, the initiators broadcast the
global diagnosis message in the tree rooted at the
initiators. The total number of global diagnosis
messages will be (n.-1) where n. is the number of
clusters in the spanning tree rooted at the initiators.
Hence, the total number of messages exchanged
can be estimated as (n.Cs + (n.-1)(Cs+1)+ (nc-1)-
Nini). Here, we ignore the number of local
diagnosis messages exchanged among the initiator
nodes to formulate the global diagnosis message.
In the order notation, this can be expressed as
O(nCy).

Theorem 4: The percentage of the diagnosability
improvement of the proposed clustering approach
over the non-clustering approach with cluster
connectivity k. is ((a -B)/o)*100 where o and f
are diagnosability of clustering and nonclustering
approach respectively given by o= n¢(k.-1) and
B=k(G)-1, k(G) being the connectivity of the
network.

Proof: It is observed from the clustering method
that union of set of all clusters produced by the
clustering algorithm covers all the nodes in the
network. The node or cluster connectivity of each
cluster is k.. During the diagnostic phase of the
cluster, the cluster heads in each cluster initiate
test procedures and all clusters conduct their tests
simultaneously. The results are exchanged among
the initiators at the top layer in the hierarchy. It
can be observed that the diagnosability of the non-
clustering algorithms is given by p=k(G)-1.

The cluster-based diagnosis algorithm proposed
here allows the diagnosis process to proceed
independently in each of the clusters. Clustering
the whole system into almost equal size clusters
allows each cluster to diagnose up to a number of
(k. — 1) faults and the local diagnosability of each
cluster is (k.-1). The global diagnosability of the
clustering method is a = n.(k. — 1). The percentage
improvement of the diagnosability of clustering
approach is ((oo - B)/a)*100. Thus, follows the
theorem.

5. SIMULATION RESULTS

A simulator has been developed using
language C++ for evaluating the diagnosis latency
and message complexity of the proposed
distributed diagnosis approach. Graphs were
randomly generated for a given n and k. The links
were randomly introduced such that every node
has at least k neighbors to ensure k-connectivity.

34

The connectivity of this network is then found by
running the Ford_Fulkerson algorithm [9]. When
the connectivity of the network is below k, n links
are randomly introduced into the network. To
investigate the suitability of the networks, five
different networks were generated for every value
of (n, k). Simulations were performed on arbitrary
network topologies of sizes 16, 32, 64, 128, 256
and 512 nodes of cluster size 4, 8, and 16 using
discrete event simulation techniques. The arbitrary
network topologies were generated with
connectivity value k(G) = 3.

The tree discovery beacons are transmitted by
each node once every w units of time, over the
duration of the cluster creation phase. The period &t
is chosen depending on the average connectivity of
a node in the network. The average number of
beacons sent by a node for the entire cluster
creation phase is approximately bounded by the
diameter of the network. As the cluster creation
phase ends, only the cluster information needs to
be retained by the clusters. The BFS tree does not
need to be maintained any further.

We simulated the operations of our clustering
scheme assuming that the number of mobile nodes
in a cluster is at least one and the remaining nodes
are static nodes keeping their state holding time of
60 plus a random number generated by poison
process with mean equal to 1 and 200 units to
represent the status of mobile and static nodes in
the system. This models the dynamic nature of the
proposed approach. When an event occurs on a
node, the time at which the next event occurs on
the same node is the state holding time for the
current state plus an additional time as given by
the Poisson process. If a failure event is not
possible to occur because the number of failed
nodes in a cluster is greater than (k.-1), then the
failure event is rescheduled to a later time again
according to a Poisson process. In all simulations,
the minimum state holding times is different for
both the static sensor and mobile nodes. This
reflects the situation that the mobile nodes are
more prone to faults than static sensor nodes. The
mobile nodes are subjected to three types of crash
faults: out of range, physically damaged and low
battery power. Therefore, the state holding time is
computed assuming mean 1 unit whereas sensor
nodes will not have mobility and therefore the
state holding time was chosen to be 200 unit.

The time spent due to initial clustering of the
BFS tree is not taken into account. In the
experiments reported here, we choose the average

time gap between successive initiations of
diagnosis sessions by an initiator node to be 60
units. The send initiation time Ty, diagnosis task
execution time, propagation time were assumed to
follow an uniform distribution between lower and
upper limit as follows:

T,: 0.002 units

1-hB-delay: 0.008 to 0.08 units
Diagnosis Task Execution Time:
units

Clustering Task execution Time: 0.01 units
Diagnosis sessions: 1000 simulation run

0.01 to 0.05

o 350
= —o—Cs=4
2 300 —
S 50 —#—Cs=8
230 Cs=16
';@200 T Non-Clustering
S B150
1S
< 100
©
= 50 +— .-

0 L * M

0 100 200 300 400 500
n

Figure.7 Maximum diagnostic latency vs. n

5.1 Diagnosis Latency Vs Number of Nodes
(Clustering & Non-Clustering with varying
cluster size)

It is observed that, if we increase the number
of nodes, the diagnosis latency does not increase
much. This is due to clustering the system graph
into almost equal sized clusters and executing the
diagnosis process in each cluster in parallel. In
fact, the diagnosis latency depends on the number
of layers in the hierarchy, cluster size, and
message size. Figure 7 and Figure 8 compares the
diagnosis latency of clustering method over non-
clustering method for different number of nodes
16, 32, 64, 128, 256 and 512 with cluster size 4, 8,
and 16.

Another observation in the result is that the
diagnosis latency increases lenearly but slowly as
the number of nodes increases keeping the cluster
size fixed. This is due to the fact that, since the
diagnosis is parallel in each cluster, increasing the
network size does not affect much on the diagnosis
time. Because, the diagnosis time depends on the
cluster size and the number of layers in the
hierarchy. When the network size is increased and
cluster size is constant, the diagnosis time varies
linearly and slowly due to the fact that, increase in
number of nodes results in increase in humber of
layers if cluster size is fixed. It is noted that, if
cluster size is fixed, the number of initiators are
not changed unless more than one cluster is

35

considered as number of initiators. Figure shows
this observation.

250
§ 200 [——co 1
% i Cs5=8
b Cs=16
¢ 150
S
[a)
)
g 100
2

50

== ‘ ‘ :

0 100 200 300 400 500

Figure. 8 Average diagnostic latency vs. n

5.2 Message Complexity Vs No. of Nodes
(Clustering & Non-Clustering with varying
cluster size)

Figure 9 compares the number of messages
required by the clustering method versus the
number required for the non-clustering algorithm.
The communication complexity of our algorithm
depends on number of messages and the message
size. The number of messages in clustering scheme
is reduced due to the limited number of initiators
which is less than C; (cluster size at the highest
layer in the hierarchy) as compared to
conventional non-clustering method which
assumes all nodes to become an initiator in the
diagnosis process as a result of which the number
of messages are of O(n.e) where n is the number of
nodes and e is the number of links in the network.
However, the number of messages generated by
the diagnosis process using clustering is O(n.Cs)
due to spanning tree formed by a limited number
of initiators. Our diagnosis approach allows every
node to acquire a global diagnostic view about the
entire system using a spanning tree with the
exchange of minimum number of messages as
compared to any non-clustering method that uses
flooding.

The diagnostic latency and message
complexity increases with increase in the cluster
size. This is because, as the cluster size increases,
the diameter of the network also increases. We
show the diagnostic latency and message
complexity for the number of nodes such as 16.
32, 64, 128, 256 and 512 node in an arbitrary

network topology of different cluster sizes such as
4, 8, and 16. In general, it is desirable to have
clusters of low diameter so that maximum
parallelism can be achieved.

6000

—e—Cs=4
0 1] —m—cs=8
g0 +— Cs=16
g Non-Clustering
3000
5
S000 —
1000
0 JJ

0 100 200 300 400 500

n

Figure. 9. No. of Messages vs. n

5.3 Diagnosability improvement vs. number of
nodes

In this section, we show that there is an
improvement in the diagnosability of our
algorithm assuming five initiator nodes. The result
shows that, the diagnosability increases with
increase in transmission radius of individual
clusters. Because, the increase in transmission
range increases the connectivity of each cluster.
We show the diagnosability improvement for 16,
32, 64, 128, 256 and 512 nodes in an arbitrary
network topology with average cluster
connectivity k. = 3 with cluster size of 4 for
clustering method. The results are compared with
non-clustering method considering the
connectivity value k(G) = 3. Figure 10 shows the
percentage of diagnosability improvement of the
clustering over the non-clustering approach versus
the number of nodes in the network.

2 100 * TS
05 | g0
©
25 00 L
cg 9 T
o0
832 85
52 1
S g’ 80 & +— %age of H
- diagnosability
2 75 improvement |
S

70 — ——

0 50 100150200250300350400450500550
n

Figure.10. % age of diagnosability improvement vs. the
number of nodes

36

6. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a hierarchical
clustering method for large-scale self-diagnosable
wireless distributed systems exploiting the
topological properties of these classes of
distributed systems. The approach was analyzed
and validated through exhaustive simulation. The
analysis shows that the diagnosis algorithm has
diagnosis latency and message complexity of
O(Ic(Tx+Tf+ maX(Toutl,ToutZ)) +Txcg) and O(nccs)
respectively. The proposed clustering approach
outperforms the non-clustering method in terms of
diagnosis overhead. It is assumed that there is an
upper limit to the state holding time. The multi-
cluster approach is shown to provide better
performance in terms of reduced diagnosis time,
message complexity and diagnosability while
increasing the admissible network size by an order
of magnitude. The proposed distributed diagnosis
approach presented in this paper has the following
advantages: (i) improved scalability, (ii) reduced
message overhead, (iii) reduced diagnosis latency
and (iv) improved diagnosability.

The proposed diagnosis approach can be
extended in many possible ways providing the
solutions to several problems such as adding more
heterogeneity to the existing systems. Our future
work includes the investigation of roving diagnosis
where some of the clusters may run the application
while other clusters in the system may execute the
diagnosis algorithm simultaneously. We are
interested to know the kind of distribution for
interleaved/simultaneous execution of applications
and diagnosis processes in a network. Any
heterogeneous hierarchically organized distributed
system such as the Internet can use our diagnosis
approach to acquire a global diagnostic view any
time and anywhere.

REFERENCES
[1] Stefano Chessa and Paolo Santi,
“Comaprisom-based system level fault

diagnosis in ad hoc networks, Proc. SRDS’
01, New Orleans, LA (October-2002)

[2] Stefano Chessa and Paolo Santi, “Crash
faults identification in wireless sensor
networks “, Computer Communications, 00
(2002) 000-000

[3] M.Barborak, M.Malek, A.Dahbura, “ The

Consensus Problem in Fault-Tolerant
Computing,” ACM Computing Survey, vol.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

25, No.2, 171-220, June 1993.

pp.
Barborak, M. Malek, M, “ Partitioning for
Efficient Consensus”, In proc. of the IEEE
26™ Hawaii International Conference on
System Technology Sciences, 1993, pp.
438-446.

0O.Benkahla, C.Aktouf & C.Robach, “System-
Diagnosis of Cluster-Based Parallel
Architectures”, In proceedings of IEEE
conference on Parallel and Distributed
Processing’96, 1996 pp. 305-309.

Duarte E.P.Jr. and Nanya T., “ A Hierarchical
Adaptive Distributed System-Level
Diagnosis Algorithm”, IEEE Trans.
Computers, vol.47, pp.34-45, Jan. 1998.

Duarte E.P Jr. and Nanya T. “Multi-Cluster
Adaptive Distributed System-Level
Diagnosis Algorithms, “ IEICE Technical

Report FTS 95-73, 1995.
A. Brawerman, E.P.Duarte Jr. “An
Isochronous Testing Strategy ~ for

Hierachical Adaptive Distributed System-
Level Diagnosis”, Journal of Electronic
Testing: Theory and Applications 17, 185-
195, 2001.

Su M.S., Thulasiraman K. and Das A., “A
Scalable On-line Multilevel Distributed
Network Fault Detection/Monitoring
System based on the SNMP protocol”,
IEEE GlobeComm 2002, November 2002.

Su M.S., Thulasiraman K., and Goel V.,
“The Multi-Level Paradigm for Distributed
Fault Detection in Network with Unreliable
Processors”, ISCAS’03, Proc. of the 2003
Intl symposium on Circuits and Systems,
vol.3, pp 862-865, May 2003.

Paritosh Chandrapal and Padam Kumar, “A
Scalable Multi-level Distributed System-
Level Diagnosis”, Proc. of ICDCIT 2005,
LNCS 3816, pp. 192-202, 2005, Springer-
Verlag Berlin Heidelberg 2005.

G.Jeon and Y.Cho, “A Partitioning Method
for Efficient System-level Diagnosis”, The
Journal of Systems and Software 63 (2002)
1-16.

37

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Sailesh. Chutani,“A Framework For Fault
diagnosis of Networks”, Ph.D Dissertation,
University of North Carolina, Chapel Hill,
USA, 1996.

M.Stahl, R.Buskens and R.P.Bianchini, “On-
Line Diagnosis in General Topology
Networks”, Workshop on Fault Tolerant
Parallel and Distributed Systems, (July
1992).

Rangarajan. S, Dahbura. A. T, Ziegler, E.A,,
“ A distributed system-level diagnosis
algorithm for arbitrary network topologies”,
IEEE Trans. Computers. 44(2), 312-
334,1995.

K-F. Ssu, Ch.H.Chou, H.C.Jian, W-T Hu,
“Detection and diagnosis of data
inconsistency failures in wireless sensor
networks”, Computer Networks, 50, (2006)
1247-1260.

D. Blough and H. W. Brown, The Broadcast
comparison model for on-line fault
diagnosis in multicomputer systems: Theory

and implementation, IEEE Trans.
Computers. Vol. 48, no. 5, pp. 470-493,
May 1999.
Arun Subbiah, and D. M. Blough,

“Distributed Diagnosis in Dynamic Fault
Environments”, IEEE Trans on PDS, Vol
15, No. 5, May 2004,

J.Maeng and M.Malek, “A Comparison
Connection Assignment for Self diagnosis
of Multi-processor Systems,” Digest 11"
Int’l Symp. Fault-Tolerant Computing, pp.
173-175 -1981.

E. P. Duarte Jr., A. Brawerman, and L. C. P.
Albini, “An Algorithm for Distributed
Hierarchical Diagnosis of Dynamic Fault
and Repair Events,” Proc. IEEE
ICPADS'00, pp. 299-306., 2000.

L. C. E. D Bona & E. P. Duarte Jr. “A
flexible Approach for Defining Distributed
Dependable Tests in SNMP-Based Network

Management Systems,” in Journal of
Electronic Testing: Theory and
Applications 20, 447-454, 2004.

A. Bagchi and S. L. Hakimi, “An Optimal
Algorithm for Distributed System Level

[23]

Diagnosis,” Proc. Digest of the 21% Int’l
Symp. Fault Tolerant Computing, pp.214-
221, 1991.

Sailesh Chutani and Henri J. Nussbaumer, “
On the Distributed Fault Diagnosis of
Computer Network®, Proceedings of IEEE
Symposium on Computers and
Communications, 1995, 27-29 June 1995,

[25]

Detection in Wireless Sensor Networks”,
IEEE Trans. on Computers, vol. 55, no. 1,
January 2006.

Sampath Rangarajan and Don Fussell “A
Probabillistic Method for Fault Diagnosis of
Multiprocessor Systems”, Proceedings of
the 18™ International Symposium on Fault-
Tolerant Computing, Tokyo, Japan, pp.

Pages:

71-77. 278-283, June 1988.

[24] Xuanwen Luo, Ming Dong and Yinlun

Huang, “On Distributed Fault-Tolerant

G (V,E) be the communication graph of the wireless network

Gy The topology of the communication graph at time t

0 Represents the maximum deviation between estimated and observed remaining
energy/diagnostic value

n Number of nodes in the system

Ninit The number of initiator nodes;

tstart @Nd teng The starting and finishing times of the diagnosis session.

Anc The diameter of the network without clustering;

I The number of layers in the hierarchy or depth of the spanning tree

Cs The Cluster size i.e., the number of nodes in a cluster;

Ne Number of clusters;

T An upper bound to the time needed to propagate a diagnostic message and accounts for the
time needed to aggregate the diagnostic information and to send it to the parent node or to the
children in the spanning tree.

Armin The minimum of node degrees;

T, Send initiation time;

1 hrB_delay One hop reliable broadcast delay;

Toutt The time out value of the timer maintained by the initiators and cluster heads;

Tour The time out value of the timer maintained by the children node;

ke The connectivity of the cluster;

k(G) The connectivity of the entire network;

8¢ Diagnosability of the cluster;

o Diagnosabilty of system using clustering;

B Diagnosability of system without clustering;

Init-HB-msg Init-HB-msg: Initiator heartbeat message;

Reply-HB-msg Reply-HB-msg: reply heartbeat message;

Loc-diag-msg local diagnostic message;

Global-diag-msg | 9lobal-diagnostic-message;

N(u) The Neighborhood of a vertex u, is the set of vertices that have an edge to the vertex u in the
graph.

R The common transmission radius of all the wireless nodes;

d(u,v) : The distance or proximity between two nodes u and v;

Figure 1. The different notations and their meaning

Each node in the arbitrary graph executes the following.

Proc. 1: GRAPHCLUSTER(G,Cy)

T: A BFS tree of graph G
root(T): Root of the BFS tree
T(x): subtree of T, rooted at vertex x.

38

|T(x)| denote the size of the subtree rooted at x.
ClusterSet: The set of clusters created by the algorithm
RemChildren: Variable used to store the set of remaining children (i.e., that has not
been deleted) that are yet to be processed at a vertex.
C, is the cluster size;
PartialClusterSet: Set of temporary clusters those have size < Cs.
Children(u): the set of children of u in T; u is the parent node;
N(u) is the set of adjacent or neighbor nodes of u.
Empty set is denoted by ¢;
Temp is a temporary set;
Tree-discovery-beacon: The beacon contains the following fields: {Src-1d, Parent-Id, Root-1d, Root-
seg-no, Root-distance}
cluster-form-msg: {subtree-size, node adjacency}
Root-distance: the field reflects the distance in hops from the root of the tree.
Root-1d: is used to distinguish between multiple simultaneous initiators of the cluster creation phase of
which only one instance is allowed to proceed. The node having lowest id can initiate.
Root-seg-no: is used to distinguish between multiple instances of the cluster creation phase initiated by
the same root node at different time instants.
{Root-1d, Root-seqg-no}: is used to uniquely identify cluster creation phase instance;
Parent-1d = NULL
Step 1: T = BFS tree of G; ClusterSet = ¢
Step 2: For each node u do
transmits the tree discovery beacon to all the nodes; this indicates it’s shortest
hop-distance to the root r.
N(u) receives the tree discovery beacon;
If [shortest-path (N(u) and root)] == “FOUND”
update the hop-distance to the root
update the root-distance;
Change u = parent of v € T(u);
Endif
Endfor

Step 3: Piggyback the cluster formation messages on the tree discovery beacon
If (T(u) <C;) then
Create one single cluster for the entire subtree;
ClusterSet = ClusterSet U T(u);
Else
Continue until a single partial cluster remains in the tree;
endif;

Step 4: Create Clusters using the post-order traversal of BFS tree T: Create the set of disjoint
clusters or subtrees {T(v4) ,..., T(vp)} where vy, ... , v, are the children of u in the tree, from subtree T(u)
such that the number of all vertices in the subtrees comprising the clusters lies between 1 to C,.

4.1 For u € G, in post-order traversal of T do // Left-Right-Root
discover the |T(u)| and N(u) of each of its children v e Children(u) in the BFS tree.
Aggregate subtree size information on the tree from the leaves to the root.
[T(U)| =1 + X, c children(u) SUbtree-size(v)
Let Children(u) = {vy, ..., v}
Let |Children(u)| =1
/I Initiate cluster formation on its subtree;
4.5 if (JT(u)| = 1) and |T(v)| < Cs Vv e Children(u)) then
Receive Cluster-form-msg from each child node v; from Children(u)
Find the Cluster-form-msg.node-adjacency information of Children(u) in the tree;
PartialClusterSet = ¢
RemcChildren = Children(u)

s
39

4.6 While 3v € RemChildren do
TempCluster = T(v);
Remove v from RemChildren;

4.7 While (JTempCluster|< C) A (3x € RemChildren, s.t x has an edge tow e
Children(u) » TempCluster) do

4.8 TempCluster = TempCluster U T(x) // inclusion of a children node into cluster

4.9 Remove x from UnpChildren

4.10 endwhile
411 if (|TempCluster|< C,) then
PartialClusterSet = PartialClusterSet «w TempCluster;
/IAdd each subtree T(v) to Cluster(u) sequentially until 1< |Cluster(u)|< Cs.

4.12 Remove all subtrees from the TempCluster;
4.13 endif
4.14 endwhile

415 MERGEPARTIALCLUSTERS(u, Cs, PartialClusterSet, ClusterSet)
4.16 if (Children(u) = ¢) A (u has been assigned to some cluster) then
Remove u from the tree // T(u) is already processed and put into some cluster
endif
endif
4.17 Propagate the cluster assignment information down the child subtrees T(u).
4.18 Endfor
4.19 if PartialClusterSet = ¢ then
420 {|PartialClusterSet| = L; Let P e PartialClusterSet}
4.21 ClusterSet = ClusterSet U {P U {root(T)}}
4.22 endif

Figure 3. Proc 1 for Creating clusters of size 1-C;

A set of nodes forms a cluster till the cluster size remains less than Cs. Once cluster size exceeds Cs, it is
included in TempCluster. A set of clusters are included in the PartialClusterSet.

Proc. 2: DISTRIBUTED-DIAG-ADHOC()

We use the following notation in the diagnosis algorithm:

f: Number of faulty nodes;

ff: Number of fault-free nodes;

8, : diagnosability of the cluster;

Init-HB-msg : Initiator heartbeat message;

Reply-HB-msg: reply heartbeat message;

Loc-diag-msg: local diagnostic message;

Global-diag-msg: global-diagnostic-message;

Init-Node-Id: initiator node identity;

Clust-head-1d: Cluster head identity;

Leaf-node: the nodes without any children node;

T(x): Subtree of T, rooted at vertex Xx;

Status_Table[Node-1d]: status of all nodes in the network maintained at every node
N(u): Neighbor of node u;

CLUSTER(u): All the nodes in a cluster with cluster head u

Terminate = False; // boolean variable used to terminate the protocol
Start_Diagnosis = True; // Boolean variable used to initiate the protocol

FF = ¢; /I Set of neighbor nodes diagnosed as fault-free

F = ¢; // Set of nodes diagnosed as faulty

D = ¢; /I Set of nodes which sent their diagnosis to the initiator

Fu = set of the identifiers of the nodes currently diagnosed as faulty by node u.

s
40

Parent = -1; /I variable Parent is used to detect the sender of the first heartbeat message received
by v, which is the parent of u in the spanning tree;

ToSend = False; // Boolean variable ToSend is True only if node v received at least one heartbeat
message but still has to send its heartbeat message

C(v) =¢; /I Set of the children of v in the spanning tree

Each initiator node executes the following.

Repeat
Choice {
[] Start_Diagnosis:
1-hB(Init-HB-msg, Initnode-Id);
Set_Timeout(Tour, Toutz);
Start_Diagnosis = false;
[] receive (u, Initnode-Id):
/I the sender of the heartbeat message is diagnosed as fault-free
Status_Table[u] = fault-free;
FF=FF U {u};
/I the nodes that replied an erroneous message are diagnosed as faulty
F = N(Initnode-Id) - FF;
If (F = N(Initnode-Id)) Then
/I if all of its neighbors are faulty then the diagnosis is complete
Terminate = True;
Endif;
[] Timeout:
/I the nodes that did not reply within time T, are diagnosed as faulty
F = N(Initnode-Id) — FF;
If (F = N(Initnode-Id)) Then
/I if all of its neighbors are faulty then the diagnosis is complete
Terminate = True;
Endif;
If (children(Init-id) times out)
Initiate elect(); // Elects a New Initiator
Update entry in Status_Table[u];
[] receive-local-diag-msg(u, Fu):
/I 'Upon receiving a local diagnostic message local-diag-msg, the diagnosis contained
in local-diag-msg is used to extend the initiators diagnosis
F=FUFu;
D=DU {u};
If (D = N(Initnode-1d) — F) Then
/I 1f all fault-free neighbors sent their diagnosis, the initiator’s diagnosis is
/I complete and is sent to all the fault-free nodes in the network using a
/I broadcast protocol
1 hB(Initnode-1d, F);
Terminate = True;
Endif;
Update entry in Status_Table[u];
[1 global-diag-Intiators(local-diag-msg, Initnode-Id):
/I All initiator nodes exchange local diagnostic message among themselves to
prepare global diagnosis message
1-hB(local-diag-msg, Initnode-1d);
Initiator node prepares a global diagnostic message;

[] cluster-diagnosability(children(Initnode-1d), Initnode-Id):
If (f < 5) then
If (a cluster-head is not present) then

41

Elect() // Elect a cluster head from Fault-free members;
Else
Continue
Endif
Else
This implies that its cluster has exceeded the diagnosability bound, and repairs or
reconfiguration is necessary. The cluster does not have a head and merge the fault-
free nodes into another cluster.
Endif

}

Until Terminate;

Any arbitrary active node (cluster head) v executes the following:
Node v:
Repeat
Choice {
[] receive-HB(u,w):
/I the sender of the heartbeat message is diagnosed as fault-free
Status_Table[u] = fault-free;
FF=FF U {u};
If (Parent = -1) then
/I the first heartbeat message is received
/I the sender of this message is the v’s parent in the spanning tree
Parent = u;
ToSend = true;

Else

If v =w then

C(v) = C(v) U {u}; // node u is a child of v in the spanning tree
Endif;

[] ToSend:
1 hB(v, Parent); // node v sends its heartbeat message
Set_Timeout(Toutr, Tout2);
ToSend = False;

[] TimeQOut:
/I nodes that did not reply within time T,;are diagnosed as faulty
F=N(v) - FF;

If (C(v) = ¢) Then
/I if node v has no fault-free children it sends its diagnosis to the parent
SelSend(Parent, (V, F));
Endif;
Update entry in Status_Table[u];

[] Receive-HB(u, v):
/I the nodes that replied an erroneous heartbeat message are diagnosed as faulty
F =N(v) - FF;
If (C(v) = ¢) Then
/I if node v has no fault-free children it sends its diagnosis to the parent
SelSend(Parent, (V,F));
Endif;

[] Cluster-Head-Timeout:

/I the cluster heads that did not reply within T, are diagnosed as faulty
/I invoke election to elect a new cluster head

42

[1 Receive-local-diag-msg(u, Fu):
I/ upon receiving a local diagnostic message local-diag-msg, the diagnosis contained in
local-diag-msg is used to extend the diagnosis of node v
F=FU Fu;
D=DU {u};
If (D =C(v)) Then
/'1f all the children in the spanning tree sent their diagnosis, the diagnosis of v is sent
to its parent in the tree using selective send
SelSend(Parent, (V,F));
Endif;

[] receive-global-diag-msg(u, (Initiator, Finitiator)):
F = Finitiators
/I the global diagnosis message global-diag-msg from the Initiator is propagated to the
children
For Each u € C(v) do
SelSend(u, (Initiator, Fynitiator));
/I the protocol for node v terminates when the complete diagnosis sent by the
/I initiator is received and is propagated downward in the tree
Terminate = true;
update-status(Node-1d):

[] leave-cluster(u, v):
I 1f any cluster exceeds the diagnosability bound then repairs or reconfiguration is necessary.
At each layer, the diagnosis is among fault-free cluster heads, and therefore, testing is not
required. If all the mobile nodes from a cluster move to some other cluster, the former
cluster may not have a cluster head.

If (f < 3) then
If (a cluster-head is not present) then
Elect a cluster head from fault-free mobile nodes using Elect();
Else
Continue;
Endif
Else
MergePARTIALCLUSTERS (u, C;, P, ClusterSet);

/I This implies that its cluster has exceeded the diagnosability bound, and repairs or
reconfiguration is necessary. The cluster does not have a head and merge the nodes
into another cluster.
Endif
[1join-cluster(u, v);
/I'If a new node joins into a cluster, the cluster size increases
If (CLUSTER(v) > C) then
Call SPLIT-CLUSTERS(u, C, P, ClusterSet);
Endif
}
Until_Terminate;
Any static node w executes
Node w:
Repeat
Choice {
[] receive-HB(w,u):
If (Parent = -1) then
/I the first heartbeat message is received
/I the sender of this message is the w’s parent in the spanning tree

43

Parent = u;
ToSend = true;
Endif;
[] ToSend:
1 hB(w, Parent); // node w sends its reply heartbeat message to node u.
ToSend = false;

[1 join-cluster(w,u);
/I'If a new node joins into a cluster, the cluster size increases
If (CLUSTER(u)| > C;) then

Call SPLIT-CLUSTERS(u, Cs, P, ClusterSet);
Endif

Until_Terminate;

The diagnostic algorithm executing at the initiator nodes terminate after sending the global diagnostic
message. The diagnostic algorithm executing at the cluster heads and leaf nodes terminate when they
receive the global diagnostic message.

Figure. 4. The Distributed Diagnosis algorithm

The following procedure MergePARTIALCLUSTERS merges the partial clusters using subtrees;

Proc. 3: MergePARTIALCLUSTERS (u, Cs, P, ClusterSet)

: Temp=4¢
While (P # ¢) do
Pick an arbitrary partial cluster p from P
Temp = Temp U p; Remove p from P
if (|Temp| < C;) then
ClusterSet = ClusterSet U {Temp U {u}}
Remove all subtrees in Temp; Temp = ¢
endif
end while

oM E

Figure 5. Proc 3 for Merging two clusters into a single cluster of size 1-C;

The following procedure SPLIT-CLUSTERS splits the larger cluster whose size is greater than C; into
clusters using subtrees of cluster size between 1 and C,.

Proc. 4: SPLIT-CLUSTERS(u, Cs, Q, ClusterSet)

1. if (|ClusterSet| > C,) then

2: Form a subtree TempCluster such that |[TempCluster U{u}}| = C;;
3: {Let Q € Remaining nodes of the ClusterSet}
4; PartialClusterSet = Q U TempCluster;
5: Remove all subtrees in TempCluster;

6 Root(T) = PartialClusterSet LU Root(T);

7: endif

Figure 6. Proc 4 for splitting a cluster into two clusters of size 1-C;

44

