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the algorithms are not suitable for MANET 
because mobile nodes move from one place to 
another place during the execution of the diagnosis 
procedure. Therefore, the existing diagnosis 
algorithms cannot handle such situations. The 
diagnosability of the network is limited by its 
connectivity [14-15]. Moreover, the existing 
algorithms assume that a node can test another 
node directly, which is not feasible for wireless 
distributed systems due to their time varying 
topology. 
 

In order to address the above problems, this 
paper proposes a diagnosis approach for large-
scale self-diagnosable wireless distributed systems 
such as an overlayed MANET on a WSN. Our 
goal is to allow every active node to learn the 
status of every other active node in the system. 
The passive sensor nodes are tested only nodes and 
need not maintain the global diagnostic view.  
 

The main contributions of this paper are as 
follows: (i) it provides a hierarchical clustering 
method that resolves the scalability issue over a 
non-clustering method; (ii) both static as well as 
dynamic fault environments are assumed where 
the static and mobile nodes in different clusters are 
subjected to crash and value faults; (iii) the 
presence of multiple initiator nodes avoids the 
centralized bottleneck of having a single initiator 
node; (iv) As all the nodes do not act as initiators, 
the diagnosis overhead is significantly reduced 
compared to traditional distributed diagnosis 
techniques where every node needs to learn the 
status of every other node.  

 
The paper is organized as follows: in section 

2, we describe system and fault model that exactly 
describes the adhoc networks where the nodes 
either remain stationary or allowed to move from 
one place to another. The different notations used 
are also given in this section. Section 3 describes 
the distributed diagnosis algorithm using 
clustering approach for wireless ad-hoc systems. 
The correctness proof and complexity analysis of 
the algorithm have been presented in section 4 
where its cost is computed in terms of diagnosis 
latency and message complexity. The simulation 
results are presented in section 5 and end the paper 
with concluding remarks in section 6.  
 
2.   PRELIMINARIES  
 

In this section, we describe the system model, 
fault model, diagnostic model and the basic 
definitions with different notations and their 

meanings. The system model specifies the 
topological structure of the underlying network 
with different system parameters. The fault model 
specifies the types of faults the system components 
are subjected to. The diagnostic model presents the 
mechanism used to detect the specified faults.  
 
2.1 System Model    
 

We consider the system of n wireless nodes 
(static or mobile), which communicate via radio 
transceivers. The wireless nodes are either 
switches or endpoints. In MANET or WSN, all 
devices deployed are not identical, and hence we 
treat some nodes as switches and some other nodes 
such as sensor nodes as endpoints. Each switch is 
equipped with transceivers and processing logic 
within it whereas each endpoint has only sensing 
and transceivers logic without any processing logic 
as such. A synchronous system is assumed where 
the execution time of diagnosis tasks and 
communication delays are bounded. Generic 
parameters are assumed for executing the 
diagnosis tasks, send initiation time, and 
propagation time of the heartbeat and the 
diagnostic messages. Each node is assigned with a 
unique identifier and can be encoded using log(n) 
bits. Each node knows its identifier and the 
identifiers of its neighbors.  
 

We assume that all the transmissions from any 
node u are omni-directional. Thus, any node in its 
neighborhood, i.e., within its transmitting range, 
can receive a message sent by u. The 
neighborhood of node u is denoted by N(u). The 
topology of the system can be described as a 
directed graph G = (V,E), called the 
communication graph, where V is the set of nodes 
and E is the set of edges connecting the nodes. 
Given any u,v ∈ V, directed edge (u,v) ∈ E exists 
if and only if v ∈ N(u). We assume that there 
exists a link level protocol providing the following 
services: a MAC protocol is executed to solve 
contentions; the protocol provides two 
communication primitives: 1-hop reliable 
broadcast (1_hB) and Selective Send (SelSend). 
Primitive 1_hB(m) delivers a message m to all the 
nodes in the senders neighborhood, while 
primitive SelSend(v,m) delivers m only to 
neighboring node v. It is assumed that the 
underlying network protocol handles the message 
delivery and message collisions. The 
communication graph is assumed to remain 
connected at all times. The network is divided into 
a number of clusters at various layers in the 
hierarchy. Every cluster in the network may have 
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one or more mobile nodes along with a set of 
stationary nodes.   
 
2.2 Fault Model 
 

The wirelessly connected nodes in the 
network are subjected to crash and value faults. 
Crash faulty nodes are unable to communicate 
with the rest of the system, due to either physical 
damage, or battery depletion or being out of range. 
Value faulty nodes produce and communicate 
erroneous values while processing the data packet 
[16]. A crash fault model captures not only the 
faulty nodes due to physical damage or battery 
depletion but also the mobile nodes that are out of 
range. Both static and mobile nodes are subjected 
to value faults. New faults may occur during the 
execution of the diagnosis protocol (viz, other than 
those already present before the start of the 
diagnosis session), which leads to a dynamic fault 
environment. The dynamic fault model also 
captures the faulty cluster heads and faulty 
initiator nodes during execution of the diagnosis 
algorithm. The set of fault-free and faulty nodes 
are denoted by FF and F, with |FF| = ff ≥ 0 and |F| 
= f ≥ 0 respectively.  
 
2.3 Diagnostic Model 
 

The algorithm assumes a heartbeat based 
testing mechanism to detect faulty nodes in a 
cluster. A node x can test another node y if y is a 
neighbor of x. Testing is assumed to be error-free. 
The diagnostic model that is used to identify the 
crash and value faulty nodes is based on an 
adaptive heartbeat [18] and comparison-based 
technique as follows. A time-out mechanism is 
used to detect a crash fault. If a testee node does 
not respond within certain timeout period Tout1 or 
Tout2, we say the node is crash faulty. Whereas, to 
detect a value fault, we assume that each wireless 
node has an estimated value (may be the remaining 
energy value or value of a diagnosis task) already 
known to it. The observed values obtained from 
the tested nodes are compared with the estimated 
value and their difference is computed. If the 
deviation is greater than certain threshold θ, we 
say that the node is value faulty. The time-out 
mechanism can be implemented using an interrupt 
by the tester nodes such that it generates a high-
observed remaining energy value [17]. When this 
time-out value is compared with the estimated 
remaining energy value, the difference between 
estimated and observed remaining energy value 
will be automatically beyond the threshold θ, thus 
recording a crash fault event. The main reason for 

incorporating this fault model is to reduce the 
model to the state of the art diagnosis mechanism 
called the comparison-based diagnosis. Therefore, 
both crash and value faults in wireless nodes are 
detected by the comparison outcomes between 
tester and testee nodes [19-20]. The set of 
comparison outcomes or test results is known as a 
syndrome. The fault-free nodes achieve the 
diagnosis based on the syndromes collected so far.     
 

The algorithm assumes that the diagnosis 
process is initiated by a set of fault-free nodes at 
the highest layer of clusters, henceforth called 
initiators, in response to an explicit request of an 
external operator. There are two types of messages 
exchanged during the diagnosis execution: fixed 
size heartbeat messages, and variable size 
diagnostic messages. The heartbeat messages are 
of two types such as initiation heartbeat message 
and response heartbeat message. The format of the 
heartbeat message sent by a node u contains (u, v, 
diagnostic value, message-code), where v is the 
identifier of the node from which u received the 
first heartbeat message (u itself if u is the initiator), 
diagnostic value is the result of the testing task and 
the message code is used to identify the type of 
heartbeat message. Heartbeat messages with 
comparison-based mechanism are used to detect 
the crash and value faulty nodes. The diagnostic 
messages exchanged during the execution of the 
algorithm are of two types: the local diagnostic 
message and the global diagnostic message. The 
format of a diagnostic message sent by a node u 
contains (u, Fu, message code), where Fu is the set 
of identifiers of the nodes currently diagnosed as 
faulty by node u and message code is the code to 
identify the type of message. The local diagnostic 
messages are used to contain the identities of 
faulty nodes within a subtree rooted at a cluster 
head. Whereas, global diagnostic messages are 
used to contain the identities of faulty nodes in the 
entire network. A variable diagnostic message size 
was chosen to accommodate the faults that would 
occur during the diagnosis process as well as the 
faults that were present before the start of a 
diagnosis session. Since the messages keep only 
the status of the faulty nodes, the message size is 
reduced.    
 

In order to maintain the status of the nodes 
about the entire network, each cluster head 
maintains a vector known as Status_Table[u] 
which stores the status of each node u in the 
network. An entry 0 or 1 in this vector indicates 
that the status of node u is fault free or faulty 
respectively, and x denotes that the status of a 



 

 
28 

 

node u is unknown. The corresponding entry in 
this vector is updated as and when any event is 
known to occur in that node. Note that, the main 
aim of the algorithm is to achieve distributed 
diagnosis, i.e., every node in the system needs to 
learn the status of every other node in the system. 
We will show that our diagnosis approach allows 
every node to obtain a global diagnostic image 
without testing all the system nodes. 
 
2.4 Definitions and Notations 
 

We present the following definitions, which 
are common in diagnosis literature. We again 
include them here for the sake of completeness of 
the paper. 
    
Definition 1:  The connectivity k(G) of a graph G 
is the minimum number of nodes whose removal 
results in a disconnected graph. 
 
Definition 2: The cluster connectivity kc is the 
minimum number of nodes in the cluster whose 
removal makes the clusters a disconnected graph. 
 
Definition 3: A wireless network described by the 
communication graph G is said to be t-diagnosable 
if correct diagnosis is always possible provided the 
number of faults does not exceed t. The largest 
integer t for which G is t-diagnosable is called the 
diagnosability of G, denoted tG.  
 
Definition 4: A diagnosis session means the time 
elapsed between the initiations of the diagnosis 
session till all other nodes receive the global 
diagnostic message of the entire network. This is 
known as diagnosis in on-demand basis.  
 
The notations used in this paper are summarized in 
Fig. 1.  
 
3. THE DESCRIPTION OF DIAGNOSIS 

APPROACH 
 

In this section we introduce the diagnosis 
approach for wireless adhoc networks using a 
hierarchical clustering method. Clustering or 
partitioning methods have been suggested to 
provide scalable solutions to the diagnosis problem 
in many large networking systems [4-13]. The 
nodes in wireless systems are expected to 
autonomously group themselves into clusters, each 
of which functions as a multi-hop packet radio 
network. A hierarchical structure allows the 
clusters to be organized into different layers. The 
lowest layer contains all the nodes in the network. 

Some nodes in the upper layers are the cluster 
representatives of the clusters at the immediate 
lower layer. The representatives of the clusters in a 
layer form the next higher layer. The instance of 
the clustering scheme operating at each layer 
places the nodes into multiple clusters.  
 

The wireless network clustering problem is 
defined as follows: Let Cs be a positive integer, 
such that, 1 ≤ Cs ≤ |V|. For each connected 
component, find a collection of subsets  V1, …, 
Vnc of V, so that the following conditions are met.  
 

1. ∪ Vi = V for i = 1 to nc. All vertices are 
part of some cluster. 

2. G[Vi], the subgraph of G induced by Vi is 
connected. 

3. 1 ≤ |Vi| < Cs. This is the size bound for 
the clusters. 

4. |Vi∩Vj| ∼ O(1). Two clusters should have 
up to a small constant number of common 
nodes.  

 
We consider the case when all the nodes in the 

network have the same transmission range. In this 
case, the underlying communication graph consist 
of a value R ≥ 0 and an embedding of the vertices 
in the plane, such that (u, v) is an edge if and only 
if d(u, v) ≤ R. For such graphs, it can be seen that 
if a node has many neighbors, i.e., a vertex has 
very high degree, then all these vertices have to be 
within its transmission radius. These neighboring 
nodes will, therefore, be relatively close to each 
other. As a consequence many of these 
neighboring nodes will be within transmission 
range of each other and will have edges between 
themselves in the communication graph. Since the 
transmission range depends on the power available 
at the node, in general, for a homogeneous set of 
nodes, the transmission radii would be close to 
each other. We do not consider here the nodes 
having different transmission ranges. 
 
Figure 1. The different notations and their meaning 
 

Cluster formation consists of the discovery of 
a Breadth First Search (BFS) tree and then forming 
clusters. We use a BFS tree because its radius is 
bounded by the diameter of the graph. Fig. 3 gives 
the algorithm for the discovery of a BFS tree and 
cluster creation. Fig. 4 outlines the distributed 
diagnosis technique, whereas Fig. 5 and Fig. 6 
present the procedure to merge the smaller partial 
clusters and to split larger clusters respectively. 
The proposed diagnosis approach using 
hierarchical clustering has two phases: Cluster 
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creation and cluster diagnosis. The cluster creation 
phase is invoked when the existing clustering falls 
below a quality threshold. Cluster diagnosis is the 
second phase that handles node mobility and other 
usual dynamics such as crash and value faults in 
the network.  
 
3.1 Discovery of a BFS tree and Clustering 

 
The BFS tree is discovered for the undirected 

graph G(V,E). The procedure assumes the node S 
as the starting vertex, or the source node. The 
purpose of a BFS tree is to discover all the nodes 
reachable from the source node S, or to measure 
the number of hops between S and any reachable 
node. In an unweighted graph, the paths in this 
BFS tree are identical to the shortest paths between 
S and the reachable nodes. At last, the parent of 
each node in the BFS tree is found and recorded. 
The algorithm GRAPH-CLUSTER can be initiated 
by any node in the network. There are two parts in 
cluster creation: Tree Discovery and Cluster 
Formation.  
 

The messages for Cluster Formation are 
piggybacked on the messages for the tree 
Discovery component. This is a distributed 
implementation of creating a BFS tree. Each node, 
u, transmits a tree discovery beacon, which 
indicates its shortest hop-distance to the root r. The 
beacon contains the following fields: {src-Id, 
Parent-Id, root-Id, root-seq-no, root-distance}. If 
any neighbor, v of u on receiving this beacon, 
discovers a shortest path to the root through u, it 
will update its hop-distance to the root 
appropriately and will choose u to be its parent in 
the tree. The parent-Id field will be initially 
NULL, and change as the appropriate parent in the 
BFS tree is discovered. The root-distance field 
reflects the distance in hops from the root of the 
tree. The root-Id is used to distinguish between 
multiple simultaneous initiators of the Cluster 
Creation phase of which only one instance is 
allowed to proceed. The root-seq-no is used to 
distinguish between multiple instances of the 
Cluster Creation Phase initiated by the same root 
node at different time instants.  
 

To create the clusters on the BFS tree, each 
node needs to discover its subtree size and the 
adjacency information of each of its children in the 
BFS tree as explained below. A cluster formation 
message is piggybacked onto the tree discovery 
beacon by each node. This has the following 
fields: {subtree-size, node adjacency}. The subtree 
size information is aggregated on the tree from the 

leaves to the root. This subtree size at a node u is 
given by [1 + Σv∈Children(u) subtree-size(v)]. When a 
node w detects that its subtree size has crossed the 
size parameter Cs, it initiates cluster formation on 
its subtree. If the entire subtree T(w) is of size less 
than Cs it creates a single cluster for the entire 
subtree. Otherwise, it will create a set of clusters 
by appropriately partitioning its sub trees into 
these clusters. This information is subsequently 
propagated down the child subtrees as cluster 
assignment messages to the relevant nodes.  
 

The partitioning of the subtrees into clusters is 
implemented as specified in the graph cluster 
algorithm (Fig. 3). To do this, node w needs to 
know the adjacency information of its children in 
the tree. This is available as the neighborhood 
information, N(u) carried in the node-adjacency 
field of the cluster formation message from each 
child, u. In its subsequent cluster formation 
messages to its parent, node w does not include all 
the nodes, that it has assigned to different clusters. 
This is equivalent to the deletion of these nodes 
from the tree in the algorithm GRAPH CLUSTER 
and MERGEPARTIALCLUSTERS.     
 

Let T be this rooted BFS tree, and T(v) denote 
the subtree of T rooted at vertex v. We use |T(v)| to 
denote the size of the subtree rooted at v. Let C(v) 
be the set of children of v in T. We assume that |V| 
≥ Cs, else we can treat the entire graph as one 
cluster. First, we identify a node u such that |T(u)| 
≥ Cs. For each v ∈ C(u) we have |T(v)| < Cs. Let 
C(u) consist of l nodes v1, …, vl. The clustering 
can be achieved by taking the set of subtrees 
{T(v1) ,…, T(vp)} where v1, … , vp are the children 
of u in the tree. The clusters are, by definition, 
disjoint and each partition consists of a set of sub-
trees such that the number of all vertices in the 
subtrees comprising the clusters lies between 1 to 
Cs. Each cluster is created by adding subtrees 
sequentially to it until the size lies between 1 to Cs. 
Addition of a single subtree can increase the 
partition size to more than Cs. In such case, the 
nodes beyond Cs are taken out to be part of a new 
cluster.  
 

The algorithm is implemented via post-order 
traversal of T. When we are visiting a vertex, we 
can check the size of the subtree rooted at that 
vertex. If the subtree has size ≥ Cs then we can 
trigger the above scheme. Once we output a set of 
clusters and consequently delete the vertices that 
belong to these clusters, we can update the size of 
the current subtree and continue with the post-
order traversal at the parent of this vertex.  
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Figure 2. Hierarchical Clustering 
 
3.2 Leader Election  
 

In case a cluster head fails, then the children 
nodes have to cooperate to elect a new cluster 
head. The fault free node within a cluster is elected 
as the cluster head if the current cluster head fails. 
The main advantage of electing a leader using 
node ids is that these node ids are also exchanged 
for diagnosis purposes. Each fault-free node in the 
cluster sends its node id to all other nodes in a 
cluster. The node ids within a cluster are arranged 
in ascending order and first node is the cluster 
head. The decisions about the identity of the 
cluster head can be made locally and consistently. 
The assignment of the representative tasks is 
dynamic in that the identities of the representatives 
may change after each diagnosis session due to 
failures or repairs. Since every cluster may have 
one or more mobile nodes along with the static 
sensor nodes, the leader election procedure 
identifies a mobile node as the cluster head.  
 
3.3 Testing and Hierarchical Diagnosis  
 

Once the cluster creation phase generates a set 
of clusters, the diagnosis phase is invoked to 
diagnose the nodes with crash or value faults as 
specified in the fault model. The following 
distributed diagnosis procedure performs testing 
and diagnosis at every layer in the hierarchy in 
each cluster. Our clustering method divides the 
system into clusters and into a number of layers 
depending on the size of the system. The number 
of layers lc is computed as: lc = ⎡log Cs(n/Ninit)⎤ , 
where Ninit is the number of initiator nodes. A 
specialized number of nodes from one or more 
clusters, consisting of initiators of diagnosis 
process at the top layer in the hierarchy, initiate the 
testing and diagnosis process. The cluster size Cs 
and the number of layers lc are two variables used 
to tune the clusters such that a balance is achieved 
between these two.  
 

At the start of the diagnosis process, each 
initiator node executes the following:  

 
1. Forward dissemination of heartbeat 

messages. Each imitator node initiates 
testing by sending a heartbeat  initiation 
message top-down in the BFS tree, rooted 
at the initiator node, to its neighbors using 
the 1_hB primitive. Each cluster head 
down the tree, upon receiving the 
heartbeat message, forwards it to all its 
children nodes. Heartbeat messages are 
propagated throughout the network, and a 
tree spanning all fault-free nodes 
corresponding to each initiator is built 
during propagation. Once a node has 
propagated the message, it waits for the 
reply heartbeat messages from its children 
nodes, diagnosing as fault-free the sender 
of any message received. After the 
timeout period Tout1, nodes that did not 
reply with their heartbeat message are 
diagnosed as crash faulty. If the message 
arrives but does not match with the actual 
value, it is considered as value faulty. 
Thus, if a cluster head exists, it will 
record a fault event in its Status_Table 
irrespective of whether the node is crash 
or value faulty. If a node was found to be 
fault-free, the diagnosis information is 
later obtained from that fault-free node 
about the entire sub-tree formed by the 
node. The proposed algorithm assumes 
100% test coverage [21-25].  

 
2. Backward propagation of local 

diagnosis information. Each cluster head 
v achieves its local diagnosis 
independently, i.e., it knows the state of 
all of its neighbors, based on the heartbeat 
message received. Once these diagnosis 
information have been received, node v 
combines all of them as well as its own 
local diagnosis into a unique diagnostic 
message m containing the identities of all 
the faulty nodes adjacent to at least one 
fault-free node in the sub tree rooted at v, 
and selectively sends m backwards to its 
parent in the spanning tree. It is noted that 
the diagnosis algorithm executed at the 
node v captures the status of both crash 
and value faulty nodes. This process is 
repeated for each of the cluster heads in 
the hierarchy until the initiator nodes 
achieve the complete diagnosis about the 
nodes in the spanning tree rooted at the 
initiator node. It is noted that, the 
spanning trees formed by each of the 
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initiator nodes are independent of each 
other. In order to preserve this property, 
when a node moves from one cluster to 
another cluster, it becomes a member of 
the later cluster and the cluster head of 
the destination cluster will assign a new 
node-id to this migrating node and 
consider this node as a member of its own 
cluster.  

 
3. Exchange of the diagnosis information 

among initiator nodes and Global 
diagnosis broadcast: Once the initiators 
receives diagnostic messages from all its 
children in the spanning tree, it combines 
the diagnostic information of these 
messages with its own diagnosis in order 
to obtain a global diagnosis view of the 
system, i.e., the identities of all the faulty 
nodes in the system. It is noted that when 
a child node does not receive a heartbeat 
message within the time out period Tout2 
or receives an erroneous message from its 
cluster head, it detects the cluster head to 
be faulty and elects another cluster head 
from the nodes in that cluster. For 
implementing this, the child nodes also 
maintain another time out period. 
Therefore, at any time, a fault-free nodes 
would act as the head of a cluster.. This 
property of the algorithm satisfies the 
dynamic fault environment in the sense 
that when a cluster head becomes faulty 
during execution of the diagnosis process, 
the child nodes detect this and elects 
another cluster head. This ensures that 
cluster heads and initiator nodes towards 
higher layer in the hierarchy except the 
nodes in the lowest layer contain only 
fault-free nodes. Since the initiator nodes 
keep the status of entire network, they are 
fault-free and thus reliable. The initiator 
nodes exchange the diagnosis information 
among themselves and therefore achieve 
the global diagnosis of the entire network 
i.e., identities of all the faulty nodes in the 
system. The global diagnosis is then 
disseminated downward in the spanning 
tree using a broadcast protocol. 

 
Each active node in the network maintains the 

status of every other node in the network in a 
diagnosis session. The diagnosis session captures 
the events that were previously present in the 
network and the events that occur within a 
diagnosis session. A diagnosis session consists of 

executing the above three phases by the mobile 
and the active nodes of the wireless network. The 
nodes are subjected to any of the events such as: a 
new node joins, an existing nodes leaves and the 
nodes become faulty or fault-free. It is noted that 
the messages that contain only fault status of some 
nodes are exchanged. 
 
4 THE CORRECTNESS PROOF AND THE 

COMPLEXITY ANALYSIS  
 
In this section, we shall first prove the correctness 
of our diagnosis approach and then perform the 
complexity analysis of the algorithm in terms of 
diagnosis latency and message complexity. The 
diagnosis latency is the duration between the 
inception and the end of the diagnosis procedure, 
whereas the message complexity is defined as the 
total number of messages exchanged during a 
diagnosis session. 
 
For a distributed self-diagnosis algorithm to be 
correct it should guarantee that at the end of each 
diagnosis session each fault-free node correctly 
diagnoses not only the state of all its nodes within 
cluster, but also that of all the nodes in the system. 
In the following we prove that our algorithm is 
correct and complete. The correctness proof is 
based on the following two main properties: 
Partial correctness i.e., the fault status of any node 
connected to the network is correctly diagnosed by 
at least one fault-free node and Completeness, i.e., 
local diagnostic views generated by fault-free 
nodes are correctly received by any other fault-free 
node in a finite time. The first property certifies 
that cluster heads know the fault status of all nodes 
within the cluster that are connected to the network 
at the end of the local testing/diagnosis phase. 
While, the second property ensures that after 
propagating the partial diagnostic views by cluster 
heads i.e., at the end of the dissemination of global 
diagnostic messages, correct diagnosis is achieved 
in a finite time. The first property is proved in the 
Lemma 2, while Lemma 3 proves the second 
property. Assume the network topology is time 
varying, and the communication graph G is the 
connected communication graph of the system at 
time t during the diagnosis session, with tstart ≤ t ≤ 
tend.  
 
Lemma 1. Once a diagnosis session has been 
initiated, the nodes in the hierarchy will receive 
the first heartbeat message in at most Tx + (lc-1)* 
1_hrB_delay time where Tx is the send initiation 
time of the heartbeat message and 1-hrB_delay is 



 

 
32 

 

the one hop reliable broadcast delay within the 
cluster. 
 
Proof: The initiator node generates 
a heartbeat message at most in time Tx. This 
heartbeat message reaches the cluster heads of the 
next layer in the hierarchy in time 
Tx+1_hrB_delay.  And, the leaf nodes in the 
spanning tree rooted at the initiator node will 
receive this message at the latest by Tx+(lc-1)* 
1_hrB_delay. As the leaf nodes will be the last 
ones to receive the message, it follows that in at 
most Tx+(lc-1)*1_hrB_delay, all the nodes in 
spanning tree will receive the heartbeat message 
sent by initiator nodes.  
 
Lemma 2. If a diagnosis session has been 
initiated, then the fault status of each node 
connected to the network during the diagnosis 
session is correctly diagnosed by at least one fault-
free node. 
 
Proof: Assume that node u is in the network. u 
may be either fault-free or faulty. If node u is fault-
free, irrespective of it is static or mobile, it will 
receive a heartbeat message in a finite time 
according to Lemma 1. Hence, if it receives a 
heartbeat message then it will report about its 
status to its cluster head by sending a reply 
heartbeat message. Since we are considering 
diagnosable adhoc network (i.e., the diagnosability 
bound in each cluster is preserved), node u will 
always have its cluster head in the cluster at any 
point of time, which will correctly diagnose its 
state. Now if node u is faulty, there are four 
scenarios. The first is that u is a static value-faulty 
node. In this case, the same reasoning applies, i.e, 
u will receive a heartbeat message and will reply 
by sending a reply heartbeat message carrying an 
erroneous result within a bounded time allowing 
its cluster head to diagnose its faulty state. 
However, if u is static crash faulty node (second 
scenario), then its cluster head will be able to 
diagnose its state once a timeout occurs. The third 
scenario is that node u is a dynamic value-faulty 
node. In this case, node u may not receive the 
initiation heartbeat message from its cluster head 
since it has moved to some other clusters. 
However, it will receive a heartbeat message from 
the cluster head for the cluster where it has joined. 
In this case, it will send an erroneous reply 
heartbeat message to its new cluster head. The new 
cluster head can diagnose this node value faulty 
node. The last scenario is that node u is a dynamic 
crash-faulty node, and hence, the state of u will be 

correctly identified once the timer in the cluster 
head times out. 
 

Now, we prove the second property, i.e., all 
nodes are correctly diagnosed in a finite time. 
 
Corollary 1. If a diagnosis session has been 
started, then the last cluster head node to transmit 
its local diagnostic view will do so in at most Tx  + 
(lc -1)*[1_hb_delay + max(Tout1, Tout2)]. 
 
The proof of this corollary follows trivially from 
that of Lemma 1 given that after receiving its first 
heartbeat message the node will transmit its 
heartbeat message to all its children nodes, which 
are the leaf nodes, and then waits for at most Tout1 
before starting preparation of local diagnostic 
message. In case any parent node fails, including 
the initiator nodes, the children nodes will be able 
to identify by timeout Tout2. Hence, the last cluster 
head to compute its local diagnostic view will do 
so in Tx  + (lc -1)*[1_hb_delay + max(Tout1, Tout2)]. 
  
Lemma 3. Let G be the graph representing the 
adhoc systems during a diagnosis session. If G is 
connected and the total number of faulty nodes is 
at most δc = (kc–1) in a cluster, then the local 
diagnostic view generated by the cluster head is 
correctly received by any other fault-free node 
connected to the system during the diagnosis 
session in a finite time. 
 
Proof: The graph G is connected means there is a 
path between every pair of nodes in the entire 
graph. If a cluster does not exceed its 
diagnosability bound δc, it will remain connected 
and its cluster head will acquire the status of its 
children nodes within the time out period Tout1, 
stored at the cluster head. The cluster head 
prepares a local diagnostic message containing the 
fault status of only faulty nodes in this cluster 
within a bounded time. The local diagnostic 
message is transmitted to the cluster head bottom 
up in the hierarchy to reach the initiator nodes in 
the spanning tree using the SelSend primitive.  
 
If the number of faulty nodes in a cluster exceeds 
its diagnosability bound, the cluster heads in the 
next higher layer in the hierarchy determine this 
within a time out period of Tout1. If a cluster head 
becomes faulty, it will be detected by its children 
nodes that elect another node in the cluster as 
cluster head within a time out Tout2 maintained at 
the children nodes. The diagnosis tasks executed at 
the top layer in the hierarchy exchange the local 
diagnostic messages. It is noted that if an initiator 
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node is faulty, it will be detected by its fault-free 
children node that elect another initiator 
dynamically in the same diagnosis session. 
Therefore, the initiator nodes are always fault-free 
and achieve the global diagnosis within a bounded 
time. Once, the global diagnosis message is 
prepared by an initiator node, it is broadcast to all 
the nodes in its spanning tree. It is easy to observe 
that the complete diagnostic message sent by 
respective initiators reach all the leaf nodes within 
a bounded time according to Lemma 1. This shows 
that all the nodes get the global diagnosis 
information within a finite time.  
 
Theorem 1: Let G be the graph representing the 
system during a diagnosis session. If G is 
connected and the total number of faulty nodes in 
each cluster is at most δc = kc–1, then every fault-
free node connected to the system during a 
diagnosis session correctly diagnoses the state of 
all the nodes in the system in a finite time. 
 
Proof: The proof of Theorem 1 follows trivially 
from lemma 2 and lemma 3. In fact, once all the 
nodes have been diagnosed at the end of the 
diagnosis session within a cluster, the local 
diagnostic view from the cluster heads is sent 
bottom up towards the initiator nodes. The initiator 
nodes then exchange the local diagnosis messages 
and prepare the global diagnosis message by 
combining the local diagnosis messages within a 
finite time. This global diagnosis message is then 
sent to every node in the respective spanning trees 
of each of the initiator nodes. This message is 
correctly received by all the fault-free nodes 
connected to the system. Given that Gt is 
connected and kc ≤ dmin, where dmin is the minimum 
node degree in Gt, it follows that each node is 
adjacent to at least one fault-free neighbor, and 
hence, it is correctly diagnosed by at least one 
fault-free node. 
 

Now, we evaluate the performance of our 
algorithm in the worst-case by analyzing its time 
and message complexity. The time complexity 
refers to the duration of a diagnosis session 
whereas the message complexity refers to the total 
number of 1-hop reliable broadcast messages 
transmitted during a diagnosis session. To 
determine the performance improvement achieved 
by clustering the nodes, we look at the time 
complexity and message count of the clustering as 
compared with single level or non-clustering 
method. The following theorems evaluate the time 
and message complexities of the proposed 
diagnosis algorithm. 

  
Theorem 2: If lc < Δnc, the diameter of the 
network without clustering, then the proposed 
hierarchical clustered diagnosis algorithm has the 
time-complexity of O(lc(Tx + Tf+ max(Tout1,Tout2)) 
+ Txcg ).  
 
Proof: Any initiator node originates the initiation 
heartbeat message in time Tx. This means that in 
time at most lc (Tx + Tf), the furthest node in the 
network receives the heartbeat message. The nodes 
in the lowest level in the network respond to this 
heartbeat message by sending response heartbeat 
messages bottom up in the spanning tree in at most 
time (Tx + lc(Tx + Tf)). Each cluster head receives 
the diagnosis information and prepares the local 
diagnostic message by aggregating this with the 
diagnosis information received from the other 
nodes in the cluster latest by the time: 
(lc + 1)(Tx + Tf)+ max(Tout1,Tout2). The time for the 
initiator nodes to receive the local diagnostic 
messages from the different cluster heads is at 
most 2(lc-1)(Tx + Tf)+ (lc-1)max(Tout1,Tout2). The 
initiator nodes prepare the global diagnostic 
message by exchanging these local diagnostic 
messages since the start of the diagnosis session in 
at most time: 2(lc - 1)(Tx + Tf)+ (lc-
1)max(Tout1,Tout2) + Txcg  where Txcg is the time 
needed to exchange the diagnosis information by 
all the initiators at the top layer in the hierarchy in 
order to form the global diagnosis message. This 
global diagnosis message is then sent downwards 
in the spanning tree. The last non-leaf node in the 
hierarchy receives the global diagnosis 
information at the latest by the time 3(lc - 1)(Tx + 
Tf)+ (lc-1)max(Tout1,Tout2) + Txcg . It is noted that 
the leaf nodes are passive wireless devices and do 
not keep any diagnosis information. This follows 
by observing that this is the worst-case time at 
which any fault free node receives the global 
diagnosis information once the diagnosis session is 
initiated. Therefore, the worst case time 
complexity of the proposed algorithm is O(lc(Tx + 
Tf+ max(Tout1,Tout2)) + Txcg ).  
 
Theorem 3: The message complexity of the 
hierarchical cluster based diagnosis approach is 
O(ncCs).  
 
Proof: The worst-case scenario is when all the 
nodes are fault-free. In this case, one heartbeat 
message goes from each initiator to every other 
node in the network for a total of (ncCs-Ninit) 
messages. The other nodes send one reply 
heartbeat message each to their respective cluster 
heads. Each cluster head sends one local 



 

 
34 

 

diagnostic message upwards in the hierarchy. 
These two operations lead to (nc-1)(Cs+1) 
messages. Finally, the initiators broadcast the 
global diagnosis message in the tree rooted at the 
initiators. The total number of global diagnosis 
messages will be (nc-1) where nc is the number of 
clusters in the spanning tree rooted at the initiators. 
Hence, the total number of messages exchanged 
can be estimated as (ncCs + (nc-1)(Cs+1)+ (nc-1)-
Ninit). Here, we ignore the number of local 
diagnosis messages exchanged among the initiator 
nodes to formulate the global diagnosis message. 
In the order notation, this can be expressed as 
O(ncCs).  
 
Theorem 4: The percentage of the diagnosability 
improvement of the proposed clustering approach 
over the non-clustering approach with cluster 
connectivity kc is ((α -β)/α )*100 where α and β 
are diagnosability of clustering and nonclustering 
approach respectively given by α= nc(kc-1) and 
β=k(G)-1, k(G) being the connectivity of the 
network. 
 
Proof: It is observed from the clustering method 
that union of set of all clusters produced by the 
clustering algorithm covers all the nodes in the 
network. The node or cluster connectivity of each 
cluster is kc. During the diagnostic phase of the 
cluster, the cluster heads in each cluster initiate 
test procedures and all clusters conduct their tests 
simultaneously. The results are exchanged among 
the initiators at the top layer in the hierarchy. It 
can be observed that the diagnosability of the non-
clustering algorithms is given by β=k(G)-1.  
The cluster-based diagnosis algorithm proposed 
here allows the diagnosis process to proceed 
independently in each of the clusters. Clustering 
the whole system into almost equal size clusters 
allows each cluster to diagnose up to a number of 
(kc – 1) faults and the local diagnosability of each 
cluster is (kc-1). The global diagnosability of the 
clustering method is α = nc(kc – 1). The percentage 
improvement of the diagnosability of clustering 
approach is ((α - β)/α)*100. Thus, follows the 
theorem.  
 
5.   SIMULATION RESULTS  
 

A simulator has been developed using 
language C++ for evaluating the diagnosis latency 
and message complexity of the proposed 
distributed diagnosis approach. Graphs were 
randomly generated for a given n and k. The links 
were randomly introduced such that every node 
has at least k neighbors to ensure k-connectivity. 

The connectivity of this network is then found by 
running the Ford_Fulkerson algorithm [9]. When 
the connectivity of the network is below k, n links 
are randomly introduced into the network. To 
investigate the suitability of the networks, five 
different networks were generated for every value 
of (n, k). Simulations were performed on arbitrary 
network topologies of sizes 16, 32, 64, 128, 256 
and 512 nodes of cluster size 4, 8, and 16 using 
discrete event simulation techniques. The arbitrary 
network topologies were generated with 
connectivity value k(G) = 3.  
 

The tree discovery beacons are transmitted by 
each node once every π units of time, over the 
duration of the cluster creation phase. The period π 
is chosen depending on the average connectivity of 
a node in the network. The average number of 
beacons sent by a node for the entire cluster 
creation phase is approximately bounded by the 
diameter of the network. As the cluster creation 
phase ends, only the cluster information needs to 
be retained by the clusters. The BFS tree does not 
need to be maintained any further.  

 
We simulated the operations of our clustering 

scheme assuming that the number of mobile nodes 
in a cluster is at least one and the remaining nodes 
are static nodes keeping their state holding time of 
60 plus a random number generated by poison 
process with mean equal to 1 and 200 units to 
represent the status of mobile and static nodes in 
the system. This models the dynamic nature of the 
proposed approach. When an event occurs on a 
node, the time at which the next event occurs on 
the same node is the state holding time for the 
current state plus an additional time as given by 
the Poisson process. If a failure event is not 
possible to occur because the number of failed 
nodes in a cluster is greater than (kc-1), then the 
failure event is rescheduled to a later time again 
according to a Poisson process. In all simulations, 
the minimum state holding times is different for 
both the static sensor and mobile nodes. This 
reflects the situation that the mobile nodes are 
more prone to faults than static sensor nodes. The 
mobile nodes are subjected to three types of crash 
faults: out of range, physically damaged and low 
battery power. Therefore, the state holding time is 
computed assuming mean 1 unit whereas sensor 
nodes will not have mobility and therefore the 
state holding time was chosen to be 200 unit. 

 
The time spent due to initial clustering of the 

BFS tree is not taken into account. In the 
experiments reported here, we choose the average 
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time gap between successive initiations of 
diagnosis sessions by an initiator node to be 60 
units. The send initiation time Tx, diagnosis task 
execution time, propagation time were assumed to 
follow an uniform distribution between lower and 
upper limit as follows:   
Tx: 0.002 units 
1-hB-delay: 0.008 to 0.08 units 
Diagnosis Task Execution Time:  0.01 to 0.05 
units 
Clustering Task execution Time:  0.01 units 
Diagnosis sessions: 1000 simulation run 

Figure.7 Maximum diagnostic latency vs. n 
 
5.1 Diagnosis Latency Vs Number of Nodes 
(Clustering & Non-Clustering with varying 
cluster size) 

It is observed that, if we increase the number 
of nodes, the diagnosis latency does not increase 
much. This is due to clustering the system graph 
into almost equal sized clusters and executing the 
diagnosis process in each cluster in parallel. In 
fact, the diagnosis latency depends on the number 
of layers in the hierarchy, cluster size, and 
message size. Figure 7 and Figure 8 compares the 
diagnosis latency of clustering method over non-
clustering method for different number of nodes 
16, 32, 64, 128, 256 and 512 with cluster size 4, 8, 
and 16.   
 

Another observation in the result is that the 
diagnosis latency increases lenearly but slowly as 
the number of nodes increases keeping the cluster 
size fixed. This is due to the fact that, since the 
diagnosis is parallel in each cluster, increasing the 
network size does not affect much on the diagnosis 
time. Because, the diagnosis time depends on the 
cluster size and the number of layers in the 
hierarchy. When the network size is increased and 
cluster size is constant, the diagnosis time varies 
linearly and slowly due to the fact that, increase in 
number of nodes results in increase in number of 
layers if cluster size is fixed. It is noted that, if 
cluster size is fixed, the number of initiators are 
not changed unless more than one cluster is 

considered as number of initiators. Figure shows 
this observation.  
 

     Figure. 8 Average diagnostic latency vs. n 
 
5.2 Message Complexity Vs No. of Nodes 
(Clustering & Non-Clustering with varying 
cluster size) 
 

Figure 9 compares the number of messages 
required by the clustering method versus the 
number required for the non-clustering algorithm. 
The communication complexity of our algorithm 
depends on number of messages and the message 
size. The number of messages in clustering scheme 
is reduced due to the limited number of initiators 
which is less than Cs (cluster size at the highest 
layer in the hierarchy) as compared to 
conventional non-clustering method which 
assumes all nodes to become an initiator in the 
diagnosis process as a result of which the number 
of messages are of O(n.e) where n is the number of 
nodes and e is the number of links in the network. 
However, the number of messages generated by 
the diagnosis process using clustering is O(ncCs) 
due to spanning tree formed by a limited number 
of initiators. Our diagnosis approach allows every 
node to acquire a global diagnostic view about the 
entire system using a spanning tree with the 
exchange of minimum number of messages as 
compared to any non-clustering method that uses 
flooding. 
 

The diagnostic latency and message 
complexity increases with increase in the cluster 
size. This is because, as the cluster size increases, 
the diameter of the network also increases. We 
show the diagnostic latency and message 
complexity for the number of nodes such as 16. 
32, 64, 128, 256 and 512 node in an arbitrary 
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network topology of different cluster sizes such as 
4, 8, and 16. In general, it is desirable to have 
clusters of low diameter so that maximum 
parallelism can be achieved.  
 

              Figure. 9.  No. of Messages vs. n 
 
5.3 Diagnosability improvement vs. number of 
nodes      
 

In this section, we show that there is an 
improvement in the diagnosability of our 
algorithm assuming five initiator nodes. The result 
shows that, the diagnosability increases with 
increase in transmission radius of individual 
clusters. Because, the increase in transmission 
range increases the connectivity of each cluster. 
We show the diagnosability improvement for 16, 
32, 64, 128, 256 and 512 nodes in an arbitrary 
network topology with average cluster 
connectivity kc = 3 with cluster size of 4 for 
clustering method. The results are compared with 
non-clustering method considering the 
connectivity value k(G) = 3. Figure 10 shows the 
percentage of diagnosability improvement of the 
clustering over the non-clustering approach versus 
the number of nodes in the network. 
 

Figure.10. % age of diagnosability improvement vs. the 
number of nodes 
 
 

6.   CONCLUSIONS AND FUTURE WORK 
 

In this paper, we proposed a hierarchical 
clustering method for large-scale self-diagnosable 
wireless distributed systems exploiting the 
topological properties of these classes of 
distributed systems. The approach was analyzed 
and validated through exhaustive simulation. The 
analysis shows that the diagnosis algorithm has 
diagnosis latency and message complexity of 
O(lc(Tx+Tf+ max(Tout1,Tout2)) +Txcg) and O(ncCs) 
respectively. The proposed clustering approach 
outperforms the non-clustering method in terms of 
diagnosis overhead. It is assumed that there is an 
upper limit to the state holding time. The multi-
cluster approach is shown to provide better 
performance in terms of reduced diagnosis time, 
message complexity and diagnosability while 
increasing the admissible network size by an order 
of magnitude. The proposed distributed diagnosis 
approach presented in this paper has the following 
advantages: (i) improved scalability, (ii) reduced 
message overhead, (iii) reduced diagnosis latency 
and (iv) improved diagnosability.  
 

The proposed diagnosis approach can be 
extended in many possible ways providing the 
solutions to several problems such as adding more 
heterogeneity to the existing systems. Our future 
work includes the investigation of roving diagnosis 
where some of the clusters may run the application 
while other clusters in the system may execute the 
diagnosis algorithm simultaneously. We are 
interested to know the kind of distribution for 
interleaved/simultaneous execution of applications 
and diagnosis processes in a network. Any 
heterogeneous hierarchically organized distributed 
system such as the Internet can use our diagnosis 
approach to acquire a global diagnostic view any 
time and anywhere.  
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Figure 1. The different notations and their meaning 

 
Each node in the arbitrary graph executes the following.  
________________________________________________________________________________ 
Proc. 1:  GRAPHCLUSTER(G,Cs) 
------------------------------------------------------------------------------------------------------------------------          
T: A BFS tree of graph G   
root(T): Root of the BFS tree 
T(x): subtree of T, rooted at vertex x. 

G  
Gt 
θ  
 
n  
Ninit  
tstart and tend   
Δnc  
 lc  
Cs 
nc 
Tf  

 
 
dmin  
Tx  
1_hrB_delay 

(V,E) be the communication graph of the wireless network 
The topology of the communication graph at time t 
Represents the maximum deviation between estimated and observed remaining 
energy/diagnostic value    
Number of nodes in the system  
The number of initiator nodes; 
The starting and finishing times of the diagnosis session. 
The diameter of the network without clustering; 
The number of layers in the hierarchy or depth of the spanning tree  
The Cluster size i.e., the number of nodes in a cluster; 
Number of clusters; 
An upper bound to the time needed to propagate a diagnostic message and accounts for the 
time needed to aggregate the diagnostic information and to send it to the parent node or to the 
children in the spanning tree. 
The minimum of node degrees; 
Send initiation time;  
One hop reliable broadcast delay; 

Tout1  
Tout2  
kc   
k(G)  
δc   
α   
β   
Init-HB-msg  
Reply-HB-msg 
Loc-diag-msg 
Global-diag-msg  
N(u)   
 
 R   
d(u,v) : 

The time out value of the timer maintained by the initiators and cluster heads; 
The time out value of the timer maintained by the children node;  
The connectivity of the cluster; 
The connectivity of the entire network; 
Diagnosability of the cluster; 
Diagnosabilty of system using clustering; 
Diagnosability of system without clustering; 
Init-HB-msg: Initiator heartbeat message;  
Reply-HB-msg: reply heartbeat message; 
local diagnostic message; 
global-diagnostic-message; 
The Neighborhood of a vertex u, is the set of vertices that have an edge to the vertex u in the 
graph. 
The common transmission radius of all the wireless nodes; 
The distance or proximity between two nodes u and v; 
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|T(x)| denote the size of the subtree rooted at x. 
ClusterSet: The set of clusters created by the algorithm 
RemChildren: Variable used to store the set of remaining children (i.e., that has not  
                         been deleted) that are yet to be processed at a vertex. 
Cs is the cluster size; 
PartialClusterSet: Set of temporary clusters those have size < Cs. 
Children(u):  the set of children of u in T; u is the parent node; 
N(u) is the set of adjacent or neighbor nodes of u. 
Empty set is denoted by φ; 
Temp is a temporary set; 
Tree-discovery-beacon:  The beacon contains the following fields: {Src-Id, Parent-Id, Root-Id,   Root-
seq-no, Root-distance} 
cluster-form-msg: {subtree-size, node adjacency} 
Root-distance: the field reflects the distance in hops from the root of the tree. 
Root-Id: is used to distinguish between multiple simultaneous initiators of the cluster creation phase of 
which only one instance is allowed to proceed. The node having lowest id can initiate. 
Root-seq-no: is used to distinguish between multiple instances of the cluster creation phase initiated by 
the same root node at different time instants. 
{Root-Id, Root-seq-no}: is used to uniquely identify cluster creation phase instance; 
Parent-Id = NULL 
Step 1: T = BFS tree of G; ClusterSet = φ 
Step 2: For each node u do  

  transmits the tree discovery beacon to all the nodes; this indicates it’s shortest  
            hop-distance to the root r.  
            N(u) receives the tree discovery beacon; 

  If [shortest-path (N(u) and root)] == “FOUND” 
                         update the hop-distance to the root  
                         update the root-distance; 
                         Change u = parent of v ∈ T(u);  

Endif 
Endfor 

 
Step 3: Piggyback the cluster formation messages on the tree discovery beacon   

If  (T(u) < Cs) then 
Create one single cluster for the entire subtree; 

            ClusterSet = ClusterSet ∪ T(u); 
Else  
 Continue until a single partial cluster remains in the tree;  
endif; 
 

Step 4: Create Clusters using the post-order traversal of BFS tree T: Create the set of disjoint 
clusters or subtrees {T(v1) ,…, T(vp)} where v1, … , vp are the children of u in the tree, from subtree T(u) 
such that the number of all vertices in the subtrees comprising the clusters lies between 1 to Cs. 

 
4.1 For u ∈ G, in post-order traversal of T do   // Left-Right-Root 

     discover the |T(u)| and N(u) of each of its children v ∈ Children(u) in the BFS tree. 
     Aggregate subtree size information on the tree from the leaves to the root. 
     |T(u)| = 1 + Σv ∈ Children(u) subtree-size(v) 

          Let Children(u) = {v1, …, vl} 

        Let |Children(u)| = l 
         // Initiate cluster formation on its subtree; 

4.5     if (|T(u)| ≥ 1) and |T(v)| < Cs ∀v ∈ Children(u)) then 
Receive Cluster-form-msg from each child node vi from Children(u)  
Find the Cluster-form-msg.node-adjacency information of Children(u) in the tree; 

               PartialClusterSet = φ 
         RemChildren = Children(u) 
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4.6    While ∃v ∈ RemChildren do 
             TempCluster = T(v); 
             Remove v from RemChildren; 

4.7              While (|TempCluster|< Cs) ∧ (∃x ∈ RemChildren, s.t x has an edge to w ∈  
                  Children(u) ∩ TempCluster) do 
4.8             TempCluster = TempCluster ∪ T(x)  // inclusion of a children node into cluster 
4.9                  Remove x from UnpChildren 
4.10          endwhile  
4.11      if (|TempCluster|< Cs) then 

             PartialClusterSet = PartialClusterSet ∪ TempCluster;  
         //Add each subtree T(v) to Cluster(u) sequentially until 1≤ |Cluster(u)|≤ Cs. 

4.12         Remove all subtrees from the TempCluster; 
4.13     endif 
4.14     endwhile 
4.15     MERGEPARTIALCLUSTERS(u, Cs, PartialClusterSet, ClusterSet) 
4.16     if (Children(u) = φ) ∧ (u has been assigned to some cluster) then  

                  Remove u from the tree  // T(u) is already processed and put into some cluster 
            endif 
            endif 
4.17   Propagate the cluster assignment information down the child subtrees T(u). 
4.18   Endfor 
4.19   if PartialClusterSet ≠ φ then 
4.20      {|PartialClusterSet| = L; Let P ∈ PartialClusterSet} 
4.21      ClusterSet = ClusterSet ∪ {P U {root(T)}} 
4.22   endif  

                                 
       Figure 3.  Proc 1 for Creating clusters of size 1-Cs 

 
A set of nodes forms a cluster till the cluster size remains less than Cs. Once cluster size exceeds Cs, it is 
included in TempCluster. A set of clusters are included in the PartialClusterSet.    
________________________________________________________________________________ 
Proc. 2: DISTRIBUTED-DIAG-ADHOC() 
------------------------------------------------------------------------------------------------------------------------       
We use the following notation in the diagnosis algorithm: 
 
f: Number of faulty nodes; 
ff: Number of fault-free nodes; 
δc : diagnosability of the cluster; 
Init-HB-msg : Initiator heartbeat message;  
Reply-HB-msg: reply heartbeat message; 
Loc-diag-msg: local diagnostic message; 
Global-diag-msg: global-diagnostic-message; 
Init-Node-Id: initiator node identity; 
Clust-head-Id: Cluster head identity; 
Leaf-node: the nodes without any children node; 
T(x): Subtree of T, rooted at vertex x; 
Status_Table[Node-Id]: status of all nodes in the network maintained at every node 
N(u): Neighbor of node u; 
CLUSTER(u): All the nodes in a cluster with cluster head u 
Terminate = False;   // boolean variable used to terminate the protocol 
Start_Diagnosis = True; // Boolean variable used to initiate the protocol 
FF = φ;   // Set of neighbor nodes diagnosed as fault-free 
F = φ;  // Set of nodes diagnosed as faulty 
D = φ;  // Set of nodes which sent their diagnosis to the initiator 
Fu = set of the identifiers of the nodes currently diagnosed as faulty by node u. 
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Parent = -1; // variable Parent is used to detect the sender of the first heartbeat message received  
                            by v, which is the parent of u in the spanning tree; 
ToSend = False; // Boolean variable ToSend is True only if node v received at least one heartbeat  
                             message but still has to send its heartbeat message 
C(v) = φ;   // Set of the children of v in the spanning tree 
    
Each initiator node executes the following. 
 
Repeat  
    Choice { 
    [] Start_Diagnosis: 
  1-hB(Init-HB-msg, Initnode-Id); 
   Set_Timeout(Tout1, Tout2); 
    Start_Diagnosis = false; 
    [] receive (u, Initnode-Id): 
  // the sender of the heartbeat message is diagnosed as fault-free 
  Status_Table[u] = fault-free;  

FF = FF U {u}; 
  // the nodes that replied an erroneous message are diagnosed as faulty 
      F = N(Initnode-Id) – FF; 

If (F = N(Initnode-Id)) Then 
   // if all of its neighbors are faulty then the diagnosis is complete 
   Terminate = True; 
  Endif; 
    [] Timeout: 
  // the nodes that did not reply within time Tout1 are diagnosed as faulty 
  F = N(Initnode-Id) – FF; 
  If (F = N(Initnode-Id)) Then 
   // if all of its neighbors are faulty then the diagnosis is complete 
   Terminate = True; 
  Endif; 
  If (children(Init-id) times out) 
   Initiate elect();  // Elects a New Initiator  
  Update entry in Status_Table[u]; 
     [] receive-local-diag-msg(u, Fu): 
          // Upon receiving a local diagnostic message local-diag-msg, the diagnosis contained  
                           in  local-diag-msg is used to extend the initiators diagnosis 
  F = F U Fu; 
  D = D U {u}; 
  If (D = N(Initnode-Id) – F) Then 
           // If all fault-free neighbors sent their diagnosis, the initiator’s diagnosis is  
                                 // complete and is sent to all the fault-free nodes in the network using a  
                                 // broadcast protocol   
                      1_hB(Initnode-Id, F); 
   Terminate = True; 
                       Endif; 
           Update entry in Status_Table[u]; 
      [] global-diag-Intiators(local-diag-msg, Initnode-Id): 
   // All initiator nodes exchange local diagnostic message among themselves to  
                                       prepare global diagnosis message 
     1-hB(local-diag-msg, Initnode-Id); 
  Initiator node prepares a global diagnostic message; 
   
      [] cluster-diagnosability(children(Initnode-Id), Initnode-Id): 

 If (f < δ) then  
                If (a cluster-head is not present) then 
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Elect()    // Elect a cluster head from Fault-free members; 
Else  

Continue 
   Endif 
Else  

             This implies that its cluster has exceeded the diagnosability bound, and repairs or   
                        reconfiguration is necessary. The cluster does not have a head and merge the fault- 
                        free nodes into another cluster.  
            Endif 
 
} 
Until Terminate; 
 
Any arbitrary active node (cluster head) v executes the following: 
  Node v: 
  Repeat 
    Choice { 
   [] receive-HB(u,w): 
  // the sender of the heartbeat message is diagnosed as fault-free 
  Status_Table[u] = fault-free; 
                        FF = FF U {u}; 
  If (Parent = -1) then 
   // the first heartbeat message is received 
   // the sender of this message is the v’s parent in the spanning tree 
   Parent = u; 
   ToSend = true; 
  Else 
      If v = w then 
      C(v) = C(v) U {u}; // node u is a child of v in the spanning tree 
  Endif; 
   
     [] ToSend: 
   1_hB(v, Parent); // node v sends its heartbeat message   
   Set_Timeout(Tout1, Tout2); 
   ToSend = False; 
     [] TimeOut: 
 // nodes that did not reply within time Tout1are diagnosed as faulty  
    F = N(v) – FF; 
               If (C(v) =  φ) Then  
  // if node v has no fault-free children it sends its diagnosis to the parent 
            SelSend(Parent, (V, F)); 
    Endif;  

   Update entry in Status_Table[u]; 
     
    [] Receive-HB(u, v): 
 // the nodes that replied an erroneous heartbeat message are diagnosed as faulty 
      F = N(v) – FF; 

If (C(v) = φ) Then 
   // if node v has no fault-free children it sends its diagnosis to the parent 
            SelSend(Parent, (V,F)); 
  Endif; 
 
   [] Cluster-Head-Timeout: 
 // the cluster heads that did not reply within Tout2 are diagnosed as faulty 
 // invoke election to elect a new cluster head 
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   [] Receive-local-diag-msg(u, Fu): 
          // upon receiving a local diagnostic message local-diag-msg, the diagnosis contained in   
                local-diag-msg is used to extend the diagnosis of node v 
     F = F U Fu; 
                D = D U {u}; 
             If (D = C(v)) Then 
  // If all the children in the spanning tree sent their diagnosis, the diagnosis of v is sent  
                           to its parent in the tree using selective send 
  SelSend(Parent, (V,F)); 
   Endif;  
  
   [] receive-global-diag-msg(u, (Initiator, FInitiator)): 
 F = FInitiator;  
  // the global diagnosis message global-diag-msg from the Initiator is propagated to the  
                children 
 For Each u ∈ C(v) do 
  SelSend(u, (Initiator, FInitiator)); 
  // the protocol for node v terminates when the complete diagnosis sent by the  
                        // initiator is received and is propagated downward in the tree 
  Terminate = true; 
                        update-status(Node-Id): 
   
   [] leave-cluster(u, v): 
           // If any cluster exceeds the diagnosability bound then repairs or reconfiguration is necessary. 
              At each layer, the diagnosis is among fault-free cluster heads, and therefore, testing is not  
    required. If all the mobile nodes from a cluster move to some other cluster, the former  
              cluster may not have a cluster head.  

 
If (f < δ) then  

               If (a cluster-head is not present) then 
Elect a cluster head from fault-free mobile nodes using Elect(); 

  Else  
Continue; 

  Endif 
Else  
  MergePARTIALCLUSTERS (u, Cs, P, ClusterSet); 
 

            // This implies that its cluster has exceeded the diagnosability bound, and repairs or   
               reconfiguration is necessary. The cluster does not have a head and merge the nodes  
               into another cluster.  
            Endif 
  [] join-cluster(u, v); 
 // If a new node joins into a cluster, the cluster size increases  
 If  (CLUSTER(v) > Cs) then 
  Call SPLIT-CLUSTERS(u, Cs, P, ClusterSet); 
 Endif 
  } 
Until_Terminate; 
Any static node w executes 
  Node w: 
  Repeat 
    Choice { 
    [] receive-HB(w,u): 
  If (Parent = -1) then 
   // the first heartbeat message is received 
   // the sender of this message is the w’s parent in the spanning tree 
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   Parent = u; 
              ToSend = true; 
  Endif; 
    [] ToSend: 
   1_hB(w, Parent); // node w sends its reply heartbeat message to node u.   
              ToSend = false; 
     
   [] join-cluster(w,u); 
 // If a new node joins into a cluster, the cluster size increases  
 If  (|CLUSTER(u)| > Cs) then 
  Call SPLIT-CLUSTERS(u, Cs, P, ClusterSet); 
 Endif 
  } 
Until_Terminate; 
 
The diagnostic algorithm executing at the initiator nodes terminate after sending the global diagnostic 
message. The diagnostic algorithm executing at the cluster heads and leaf nodes terminate when they 
receive the global diagnostic message.    
    

_______________________________________________________________________________ 
 
The following procedure MergePARTIALCLUSTERS merges the partial clusters using subtrees;  
________________________________________________________________________________ 
     Proc. 3: MergePARTIALCLUSTERS (u, Cs, P, ClusterSet) 
------------------------------------------------------------------------------------------------------------------------ 
               1:  Temp = φ 
               2:   While (P ≠ φ) do 
               3:         Pick an arbitrary partial cluster p from P 
               4:         Temp = Temp ∪ p; Remove p from P 
               5:         if (|Temp| ≤ Cs) then 
               6:              ClusterSet = ClusterSet ∪ {Temp ∪ {u}} 
               7:              Remove all subtrees in Temp; Temp = φ 
               8:        endif 
               9:  end while 
 
  Figure 5.  Proc 3 for Merging two clusters into a single cluster of size 1-Cs 
________________________________________________________________________________ 
The following procedure SPLIT-CLUSTERS splits the larger cluster whose size is greater than Cs into 
clusters using subtrees of cluster size between 1 and Cs.   
____________________________________________________________________________ 
     Proc. 4: SPLIT-CLUSTERS(u, Cs, Q, ClusterSet) 
------------------------------------------------------------------------------------------------------------------------ 
                 1:    if (|ClusterSet| ≥ Cs) then 
                 2:     Form a subtree TempCluster such that  |TempCluster ∪{u}}| = Cs;        
      3:     {Let Q ∈ Remaining nodes of the ClusterSet}  
      4:     PartialClusterSet = Q ∪ TempCluster;           
      5:           Remove all subtrees in TempCluster;  
                 6       Root(T) = PartialClusterSet ∪ Root(T);  
                 7:    endif 
________________________________________________________________________________ 
   

Figure 6.  Proc 4 for splitting a cluster into two clusters of size 1-Cs 

Figure. 4.    The Distributed Diagnosis algorithm  


