Journal of Theoretical and Applied Information Technology

© 2005 - 2007 JATIT. All rights reserved. e

www.jatit.org

OUTLINE OF AN AGENT BASED APPROACH FOR A
DYNAMICALLY DISTRIBUTED SERVICE

'Prof. A.Damodaram, ?l.Ravi Prakash Reddy

prof. Dept. of CSE, INTU College of Engg. Kukatpally Hyderabad
’Associate Professor, IT Dept. GNITS,Shaikpet Hyderabad-8

Email: irpr@gnits.ac.in

ABSTRACT

The concept of distributed computing implies a network / internet-work of independent nodes which are
logically configured in such a manner as to be seen as one machine by an application. They have been
implemented in many varying forms and configurations, for the optimal processing of data. Various
benefits, e.g. speedup, scale up, enhanced reliability, resource sharing etc, are accrued on their optimal
dynamic exploitation.

Agents and multi-agent systems are useful in modeling complex distributed processes. They focus on
support for (the development of) large-scale, secure, and heterogeneous distributed systems. Research in
this domain includes scalable and secure agent platforms, location services, directory services, and
systems management. They are expected to abstract both hardware and software vis-a-vis distributed
systems.

For optimizing the use of the tremendous increase in processing power, bandwidth, and memory that
technology is placing in the hands of the designer, a Dynamically Distributed Service (to be positioned as
a service to a network / internet-work) is proposed. This paper examines the rationale for, and features of,
such a service. An agent approach with thread migration is recommended as the scheme of
implementation. The basic mechanism underlying the scheme is discussed, along with the data structures
that are migrated to implement the service.

Keywords: System Software, Distributed Systems, Agents , Process Migration

1. INTRODUCTION Several other relevant issues while

assessing the relevance of distributed computing

Over the last two decades, the concept of vis-a-vis the current computing environment and
distributed computing has been implemented in this paper are: -

varying configurations and on diverse platforms. e Interoperability in a heterogeneous
In current context, a distributed system implies a environment will continue to be the
networked system of nodes in which a single dominating theme in future applications.
application is able to execute transparently (and e Communication technology advances will
concurrently) on data that is, (or may be) spread continue to fuel the need for more
across heterogeneous (hardware & operating bandwidth and enhanced Quality of
system) platforms. The salient payoffs of Service specifications.

distributed computing may be listed as e The rate of increase in data processing

e Enhanced performance (in respect of and storage is greater than that of data
both speed up and scale up). transfer.

e Resource sharing (in respect of data as e Most users are reluctant to switch
well hardware and software processing platforms, as are developers to switch
elements). technology paradigms.

e Fault tolerance and enhanced reliability. e The individual behavior of the vast

e Serve as the basis for grid computing. number of interconnected nodes based on

individual workstations mandate that any

s
86

Journal of Theoretical and Applied Information Technology

© 2005 - 2007 JATIT. All rights reserved.

www.jatit.org

service acting upon them universally must
be dynamic in nature.

In many computer
installations/complexes, a lot of state of
the art hardware is not used round the
clock. There are times when it is idle, or
is under-utilized. When this happens, it
may be used by other applications for
processing purposes remotely.
Networking enables this. Inter-
networking further emphasizes the same.

In view of the above, it is forecast that
distributed processing of applications and data will
no longer be restricted to high end research and
scientific applications, but will become as normal
as any other service provided over an inter-
network. The Internet and the Web themselves are
a viable (distributed computing domains.
Distributed computing however, has yet to gain the
type of proliferation mandated by enhanced rates
of data processing as well as transfer.

To further the optimization of internet-
works (including networks), by the use of
distributed computing concepts, a Dynamically
Distributed Service, analogous to e-mail, FTP,
Voice over IP, etc, is proposed, which can be made
available on demand, in an intranet/inter-network.
The service will conceptually disintegrate an
application into various constituents, process each
of these simultaneously and on different nodes,
and then integrate it again, after the benefits listed
above have been accrued. This Dynamically
Distributed Service (DDS) is at variance with
distributed paradigms used till date, though no
changes to the underlying hardware or OS are
proposed in its implementation.

Distributed Agents

The research areas of multi-agent systems
and distributed systems coincide, and form the
research area of distributed agent computing.
Multi-agent systems are often distributed systems,
and distributed systems are platforms to support
multi-agent systems[1]. This is depicted in Fig 1.

87

Multl Agent Systems

Distributed Systems

Fig 1. Relationship between the research areas
of multi-agent systems and distributed systems.

Agents are considered to be autonomous
(i.e., independent, not-controllable), reactive (i.e.,
responding to events), pro-active (i.e., initiating
actions of their own volition), and social (i.e.,
communicative). Sometimes a stronger notion is
added (beliefs, desired, intentions) realizing
intention notions for agents. Agents vary in their
abilities; e.g. they can be static or mobile, or may
or may not be intelligent. Each agent may have its
own task and/or role. Agents, and multi-agent
systems are used as a metaphor to model complex
distributed processes.

Both distributed systems and agents share
the notion of 'distributed ness'. The area of multi-
agent systems addresses distributed tasks;
distributed systems addresses supporting
distributed information and processes.

The area of distributed agent computing
is the area in which both approaches intersect.
Both can be synergized to further optimality.

2. RELATED WORK

A great deal of research has gone into the

optimal design and scheduling of distributed
systems. This paper focuses on two major issues -:
A scheme for migrating smaller tasks to
heterogeneous nodes within the network
seamlessly by the use of agents.
Setting the scenario for such a service,
and resolving the issue of scheduling
therein. The main burden of distribution
must of course be shared by local nodes
(to lessen the impact of communication
distances), but no firm bounds are
enforced.

Various open paradigms like CORBA
(based on IDL), Remote Method Invoking (based
on Java), and DCOM (distributed component
object module by Microsoft) already exist, they
are mainly devoted to brokering openness by
distributed object computing (DOC)[2,3,4]. They

Journal of Theoretical and Applied Information Technology

© 2005 - 2007 JATIT. All rights reserved.

www.jatit.org

make available a set of components, which may
be used by applications across heterogeneous
platforms to communicate with each other.

A commercial application that provides
parallel execution of computing tasks in
heterogeneous computing environments using
autonomous agents has already been
implemented[22]. It provides parallel computing
by “breaking of a computer task into smaller
tasks; assigning the smaller tasks to mobile
agents and transferring the mobile agents to
computing hosts; executing the mobile agents on
the computing hosts.....determining network
latency affecting transfer of data between
computing hosts halting transferring mobile
agents if the latency exceeds a particular
threshold monitoring utilization of
computing hosts; halting transferring of mobile
agents if utilization of computing hosts exceeds a
threshold.” The mechanics of implementation
are by realistic thread migration.

In a paper on Internet Distributed
Computing (IDC) [21] Milenkovic et al forecast
that the future evolution of Internet Distributed
Computing will likely include proactive and
pervasive computing. “We assume that the
nodes willing to share a certain subset of their
resources use mechanisms to announce their
availability, possibly stating the terms of their
usage to the rest of the distributed system or
systems in which they are willing to
collaborate.” They feel that this may be achieved
through resource virtualization and discovery by
embedding intelligence in the network and
creating self-configuring, self-organizing
network structures. “Mindful of the successful
Internet model built on existing standards and
technology, we have sought areas that could
provide reusable ideas, technology, or
standards.... We postulate that such a system
can be built as a combination and extension of
Web service peer to peer computing, and grid
computing standards and technologies.”

Based on a preliminary analysis, the
mechanics of our approach to modeling a
distributed solution varies from the above, and

Assume a network N of ‘n” nodes T1,
,T-n. Suppose that an application ‘A’,
running on T1 has to be distributed on the
network n. Static allocation implies that a
certain no of m (m<=n) nodes are available
distributing the application ‘A’ (A’ is an

88

are based on an effort to answer the following
questions-:

Should the focus be on load sharing or
load balancing?

Whether a dynamic scheme (with all its
overheads) will prove more optimal?
Should the scheme proposed be
restricted to its applicability to the Web
(and transitively to the internet) or be
applicable to all networks and internet-
works (truly pervasive)?

Where in the overall system hierarchy
should such a service be placed?

3. DYNAMIC vs STATIC DISTRIBUTION

Static distribution is considered more
effective in a computing environment that deals
with applications that can be portioned into
uniform jobs requiring non-fluctuating resources.

Furthermore these resources should be
homogeneous, with similar operational
characteristics (clock speed, architecture, bus

speeds, buffer size, no of 1/O channels etc). To be
generic in its application, the service must be
responsive to non-uniform problems. Also, the
instantaneous state of availability of participating
nodes is continuously varying. This must also be
considered. Load balancing and load sharing also
influence the decision. A distinction must be made
here between load balancing and load sharing.
Load balancing refers to the global load being
balanced between various interconnected
machines. The DDS however, is proposed to act as
a service, and its aim is considered to be load
sharing - or the distribution of an application
running on a heavily loaded machine to other
lightly loaded or idle machines Though many
algorithms exist for both the techniques, load
sharing in an inter-network, and load balancing to
a limited extent with in the network is felt to be
most appropriate. A dynamic distribution scheme
is therefore considered to be optimal in the worst-
case scenario of processing of non-uniform generic
applications in a non-uniform, heterogeneous
environment, not only with respect to the different
types, but also similar types but different
capabilities. This intuitive inference has to be
investigated further.
instance of a uniform application). Dynamic
allocation implies a random availability of node
from zero to n. The number of node that will be
available for the duration of execution of ‘A’
can be approximated to a set of random
numbers by the Linear Congruential Method by
applying the following recursive relationship :

Journal of Theoretical and Applied Information Technology

© 2005 - 2007 JATIT. All rights reserved.

www.jatit.org

X(1+1) = @X(h)+c)mod m i=0,1,2,3....

The results obtained for the static allotment of
n/4, n/2, 3n/4, and n vis-a-vis the dynamic
allotment are given in Figure 2, 3, 4 and 5
respectively. It is seen from an analysis of the of
the four cases that to viable in time cost terms,
not more than approximately forty percent of
the nodes of a network should be idle and
participate in the scheme if dynamic distribution
is to be resorted to. If the participant nodes in
the network are greater than forty percent a
static distribution scheme is more time
effective. It is thus reasonable to assume that a
the time for execution of an application will be
optimized for a dynamic scheme only — as not
more than fifty percent of the cumulative
processing power of the number of nodes in a
network will be available to an application for
distribution. This leads us to the inference that
any distribution scheme that is to act as a
service to a network or an inter-network must be
essentially dynamic in nature.

time in seconds

0.025
0.02
0.015
0.01
0.005

Time taken for 'n' nodes
(100%)

123456780910 — st

no of nodes X 100
= dynamic

Fig 2

89

b

Time taken for 3n/4
g 0.03 nodes
§ 0.02 static
'g 0.01 = dynamic
0
12345467 8 910
no of nodes X 100
Fig 3
Time taken for n/2 nodes
§ 0.03 (50%)
§ 0.02 static
'E 0.01 e dynamic
0
123456738910
no of nodes X 100
Fig 4

time in seconds

Time taken for n/4
nodes (25%)

0.05
0.04
0.03
0.02
0.01

0

1 2 3 4 5 6
no of

nodes X 1000

7 8 910

static

= dynamic

Fig5

Journal of Theoretical and Applied Information Technology

© 2005 - 2007 JATIT. All rights reserved. e

www.jatit.org

4. PROPOSED MODEL

We propose a model of an on-demand,
voluntary Dynamically Distributed Service
(DDS) to be used on an intranet / inter-network.
The salient features of the service are -:

e Transparency. The most fundamental
feature of the DDS is that once the
appropriate options have been exercised,
it will be fully transparent to the user in
the discharge of its functions.

e No Reliance on Central Site. No
reliance on a pre-determined central
machine is thought necessary. The
machine on which the job is initially
being executed shall dynamically act as
the logical processing center. The native
OS on an option exercised by the user
shall hand over the job to the DDS,
which will proceed to migrate the
various constituent threads (of the
processes) to the participant nodes by
use of agents. A ‘thread’ is used in the
context of not merely a light-weight
process but any unit of code that is
capable of independent execution on a
foreign node. The results of execution
shall again converge on the source
machine on the termination of execution.

e Hardware, 0s, and Network
Independence. The DDS will interface
with heterogeneous platforms, much on
the lines of a virtual machine [3].

e Local Autonomy. The participant nodes
with in the DDS will be autonomous.
This does not imply that processes of a
job will not be shared or that they will
depend on each other. They will. No site
however will depend exclusively on
another for the completion of its job.
Thresholds based on time and space
complexity are set determine which
particular node is tasked with a particular
process and for how long.

e Distributed Message Passing. Non-
blocking, asynchronous primitives will
be used. A ‘send’ or ‘receive’ will not
result in the suspension of the job.
Reliability shall be assured by the
underlying protocol. Copies of the
process shall be made before it is
migrated. Buffer management shall be
inbuilt. A standardized format for
messages (common objects and data)

shall convert the native code on any
machine to that fit for migration, and
translate into native code for another
machine. This process shall be repeated
for the return migration. Remote
procedure calls (RPCs) are [4] relevant
to the extent that they merely provide a
special resource (hardware or software)
to be exploited by a consumer thread.

e Use of Threads. Threads migration is
used, as it is more suitable for
asynchronous behavior. Most modern
OS kernels support multithreading and
interfacing threads would decrease the
overheads[8,9]. A thread itself might be
blocked, while the process goes on. The
blocked thread itself would be
communicated to participating nodes.
Preemptive multitasking by means of
priority allocation is featured. Global
priorities of threads are maintained to
avoid synchronization issues resulting
from simultaneous context switching of
threads of the same priority.

The block schematic of the DDS
proposed is given in Fig 6. It is to be noted that
the positioning of the DDS in the scheme shown
above is to interface with, not replace the native
OS. In this aspect it varies from other distributed
operating systems like Sprite [4](which is meant
to also function as a network operating system),
Amoeba [10](in which the same kernel is
implemented using remote procedure call using
threads), and Andrew [11](which differentiates
between client and server machines).

Node A Node B
APPLICATION APPLICATION
------- '+ Native -------5 Native
DDS 1 DDS !
! 1
. 0S ! 0S
PROTOCOL PROTOCOL
—>
Fig 6

The Positioning of the DDS
When, and by whom is Task Migration
Initiated?

The DDS proposed is to be positioned as
a service on participant nodes in a network or

Journal of Theoretical and Applied Information Technology

© 2005 - 2007 JATIT. All rights reserved. e

www.jatit.org

an inter-network. The initial decision
to invoke the DDS rests with the user initiating
the job. Once it is invoked, thread migration
commences transparently to participant with the
help of agent-based algorithms. The algorithm
will be based on load balancing implying that
knowledge of load state of the participating
nodes dynamically with in the network is
necessary. Another feature of the algorithm will
be the basis of the policy of when and where a
thread (with its context) is to be migrated. It will
depend on the state of the queue of ‘ready’ as
well as the queue of ‘suspended ready’ threads.
In the figure 6 below, Node A may be
considered as the source node and node B, C,
and D the participative target candidates. The
process will be migrated to node B or Node C
based on a global state. In this aspect it differs
from conventional process migration wherein it
is necessary to destroy the process on the source
before it is migrated to some target system [4,
8,12].

What portion of the job is migrated?

The model proposes the replication of
the state of the process, and the movement of a
thread from the source to the target machine.
The process image must be moved. The native
OS will handle the hardware of the target node.
Only those constituents will be migrated which
are essential to the running of a thread of the
process. A scheme of transfer of data residing
in virtual address space on demand is followed.
Though this lessens the amount of initial data
transfer but does increase latency due to
possible increased number of transfers. The
issue is handled differently by various
distributed platforms. Java interprets into byte
code for the Java Virtual Machine [3]. The
OMG object model establishes a client server
relationship between objects — the client can
transparently invoke a method on a server,
which can be on the same node or across a
network[2]. Andrew, a distributed computing
environment developed at Carnegie Melon
University, constitutes a partitioned filename
system (between local and shared partitions),
which supports the sharing mechanism among
participant nodes [12]. The rationale for
devising a varying ad hoc scheme for the
proposed DSS is:

e The main thrust is on speedup and
scale up - not on the use of remote
functions.

e The DSS is intended to interface with
the native OS — not the hardware. It

91

relies on the interoperability offered
by a reliable for execution on
heterogeneous platforms.

e It is not an OS. It merely interfaces
with it. File, memory, 1/0
management etc are still the
responsibility of the native OS.

It is thus envisaged that the image of
process will be migrated to the destination node
— processed - and the results subsequently be
reflected back to the source node. The process
image of the DSS (state) is a data structure,
which would comprise of the following: -

e Thread code to be executed — an
interface will map the code of the
source machine to the DDS data
structure, which will reverse the
process on the target machine.

e Thread ldentification.

= Thread id.

= Process id.

= Parent process id.
= Userid.

e User visible registers’ contents.

e Process visible registers and memory
contents (both constant and variable).

e List of open files.

e Priority of threads - this is to resolve
conflicts between processes from two
source machines onto the same target
machine. As mentioned earlier, an
incoming process will pre-empt no
user process already executing on a
target machine, unless the user of the

target machine has explicitly
authorized such pre-emption.
e System stack - this will store

parameters and calling addresses for
procedures to be called by the system.
Since system calls are specific to the
native operating system the reference
to the system call will have to be
replaced by its’ object code.
Thresholds abandoning the migration
in case the overhead exceeds the
speedup accrued will be set.

e Address references — This will contain
pointer references to file names,
routines, segments/routines that
describe virtual memory assigned to
the process. The pointer references
must be resolved substituted by the
actual contents that are pointed to, and
subsequently packaged before
migration.

Journal of Theoretical and Applied Information Technology

© 2005 - 2007 JATIT. All rights reserved. e

www.jatit.org

e Internal Job Structure — A process may
relate to another process already in some
state/execution. The identifiers of that
process will also be included.

e Thread context.

e State of I/O counters if the migrated
thread is accessing them.

Fig 7 depicts the state of the system
(identified by nodes A, B, C, and D) before the
migration is to commence, as also the conditions
under which it will take place. On an over
simplification, assume that Node A is overloaded
is running with Process A and a State Sa. It has
various threads running concurrently. Though
each thread would have its own state, assume that
all the threads of Process A have a common state
Sa Threads Tp,, Tas, and Ta, are migrated to
nodes B, C, and respectively. The cumulative
execution time of the four threads on four
different nodes A, B, C, and D (inclusive of the
overheads of the DDS) would be less than the
execution time on the same node A. The DDS
would interface with the native OS by abstracting
the process context (and its constituent threads)
for the network protocol stack. In this aspect it
differs from CORBA [2], (an architecture to
further openness in heterogeneous distributed
systems), which seeks to make use of remote
objects through its broker architecture. The DDS
seeks to break up a job, disintegrate it, process it,
and subsequently integrate it again.. Such a
scheme is more relevant for a process intensive
rather than 1/O intensive job. It is obvious that it is
as vulnerable to the limitations of available
bandwidth as any other distributed system, the
main difference being that it will add on to the
latency of the native OS. The decrease in overall
processing time of a process intensive job and the
enhanced availability of networked computing
power result in an overall improvement in scale
up as well as speed up of the job. In this regard it
will offer the advantages of parallel processing
with the following major differences [4 & 13]:

e The nodes may be geographically
far apart.

e Even less powerful nodes (clock
speed, cache, main and secondary
memory etc) may act as
constituents.

e A loosely coupled scheme is
proposed.

Fig 7- Thread Migration

5. AGENT BASED SCHEME

Fundamental to a distributed data
processing is the activity of migration of code, or
the transfer of sufficient amount of the state of a
process (comprising of many threads) executing on
one machine to another set of machines in such a
manner that it can be executed on either. Since a
thread is a lightweight process, and capable of
asynchronous execution, it has been chosen as the
unit of migration. Currently operating systems
support multithreading — our perception of thread
migration however, is the asynchronous, non-
blocking migration of any unit of that can execute
independently. The DDS to function effectively
must have real time access to the following:

e Global ‘awareness’ of the state of
computation in the network. Only then
can the load be distributed optimally.
‘Awareness’ includes what is to be
executed, and who is available to execute.
It must also have the ability to decide on
an optimal allocation scheme. Apart from
all this, information about special
resources must also be held. This
function is intended to be carried out by a
‘scheduling agent’.

e A mechanism for converting the
application into a form that can be
executed by other constituent nodes
which might be heterogeneous in their
computing orientation. The function must
be performed at both the receiving and
sending node. This function is intended to
be carried out by the “interfacing agent’.

Journal of Theoretical and Applied Information Technology

© 2005 - 2007 JATIT. All rights reserved.

www.jatit.org

A mechanism for brokering the migration
of a job, and carrying out this migration
through a suitable message passing
scheme. This would not hinder the use of
RPCs. The interfacing and migration is
proposed is to be carried out a level lower
than that of RPC implementation and
there is no bar on the use of the scheme
by nodes hosting software resources, as
long as the thresholds are adhered to
(processing benefits are accrued). Further
ad hoc protocols and constructs would be
used for the DDS of a source node to
interact with its peer DDS in the
destination node. This function is
proposed to be carried out by the
‘dispatch agent’, in coordination with the
interface agent.

The scheme, though oversimplified, is
similar to the Stealth Distributed Scheduler[14] —
it aims to use the largely under utilized capacity of
computing nodes in a network. Foreign tasks can
be executed in a node even when under by the
owner of that node. Owners are insulated from
excessive resource consumption by foreign tasks
by a prioritized and pre-empted resource allocation
scheme. The difference lies in the DDS being a
service — each node is a willing participant and
there is price involved — to be either paid or
received. Also, the DDS is based on thresholds. If
adequate service is not rendered, the target node on
its own completes the task. In the worst case the
only overhead is wasted bandwidth. The
thresholds are to be built in as Quality of Service
parameters into the service.

The sequence of actions , is as follows: -

1 — A node opts to participate in the
scheme. The Scheduling agent is
informed.

2 — The global load state of the network
is updated. The scheduling agent not
only keeps track of the availability of
nodes for migration, but also keeps a
record of the node to which migration
would be optimized.

3 — A particular node has exceeded its
threshold of load, and the process of
thread migration is initiated.

4 — The interface agent starts preparing
the executable unit of migration — to
include the thread code and its state. As
soon as it does so, it starts an internal
counter for checking the overhead time
consumed. The scheduling agent informs

93

the dispatch agent of the address of the
most preferable node.

5 — The dispatch agent of the source
sends a message to the destination
whether migration can begin on that
node.

6 — The interfacing agent completes the
packaging of the executable unit of code.
7 — The dispatch agent makes use of a
reliable protocol for sending the
executable unit. It dispatches it only after
receipt of the confirmation from the
destination node.

8 — On receipt of the execution unit by
the destination node the interfacing agent
of the destination node decodes it and
hands it over to the destination node’s
kernel for processing.

9 — As soon as the execution is over, it is
once again handed over to the interface
agent and the dispatch agent for its move
back to the source node.

In the specific case when Tq is migrated

from node A to node B and is executing, it might
occur that a process native to node B suddenly
becomes active. In this case it becomes mandatory
to relocate Tq. Process P71 is immediately

suspended on node B and repackaging and
dispatching of its” process image by the scheduling
agent of the source begins. This is only in case
specified thresholds have not already been
exceeded. The point to note here is that instead of
returning to node A, it is sent to some other pliable
node with in the domain. The time taken for it to
execute and return to node A is limited by an
upper bound, but the migration is still supervised
by the original source node.

6. SYNCHRONIZATION ISSUES

Consistency requirements mandate event
ordering which in turn implies awareness of a
global state. The instantaneous global state of any
distributed system requires real time awareness of
all processes, memories, registers, 1/0O channels,
files, communication channels etc, within the
bounds of the distributed system. In the absence of
a system-wide common clock, that regulates the
timing of events, this is unrealistic, if not
impossible, as the global state cannot be obtained
by merely putting together the local states of each
node. Event order based on time precedence is not
viable, and thus an event has to be associated with
the serial chronology of the message under which

Journal of Theoretical and Applied Information Technology

© 2005 - 2007 JATIT. All rights reserved.

www.jatit.org

the thread of the associated process was migrated.
The well established technique of timestamping is
used to handle the issue. Stallings[4] treats the
topic adequately. What has been the general
consensus till date [15] is that a process when it is
migrated destroys itself on the source node (node
A in Fig 7) to recreate itself in the destination node
(node B). The DDS however, does not destroy the
process — it migrates one of the threads of the
process, and pushes the thread into the suspended
state — either in main or secondary memory. For
inter-thread synchronization, a variant of the
normally accepted scheme in [4] is used. The
message is sent in the form

{m,T,q,k,j,p,t,n} where

m -> Contents of message

T - Timestamp of message initialized to ‘0’

Q —> Numerical identifier of original source

node (this will remain constant for the
period of distribution of thread)

Numerical identifier of subsequent source
nodes

Numerical identifier of the job

Numerical identifier of the process
Numerical identifier of the thread
Numerical identifier of the node serial
relative to when it was migrated.

The DDS in each node sets up a local
counter the moment it is invoked by the user. This
counter serves as a clock for that particular session
for that particular. The interface agent of each
node applies the following procedure: -

Message_send // For a unique thread for the
source node A
{local_clock ++;
T = local_clock;}
Message_receive // For a unique thread for
destination node B the
{ if T>local_clock then
local_clock=T+1
else local_clock++;
n:n++;}
This resolves the problem of ordering a unique
thread as it is distributed from node to node by

setting the condition that a message thread tq has
preceded ty if Tyq < Typ fora unique process. As

the process itself is not destroyed on the source
node, the numeric identifier of the source node n
will always be zero. The monitor will keep track of
where the thread is at particular instant by
updating the value of n dynamically and mapping
it to g. To resolve precedence between threads
having the same time stamps but belonging to
different processes, the numerical identifier q (the
owner node of the thread) will be used. The node

94

identifier is a hashed function of the IP address of
the node, and is computed and maintained by the
interface agent.

The major issues relating to concurrency
are the enforcement of mutual exclusion as well as
the avoidance of deadlock and starvation amongst
the distributed threads of a job. These issues vis-a-
vis the DDS have to be resolved amongst the
distributed threads only as only these threads are
being migrated.

Mutual Exclusion, Deadlock, and Starvation.

The issue of mutual exclusion is resolved
between threads by the interface and dispatch
agents. The thread makes a request by a message
{m,T,j,p,t} to the interface agent (through the
kernel) whenever it requires access to a critical
section(the notations are as per those listed above).
The interface agent checks with the source kernal
(via the dispatch agent) to check the state of the
critical section. If it is, the critical section is
allotted to thread t. If the critical section is in
use, it is puts in a FIFO queue.(Priority based
FIFO queue can also be used) The placing of the
thread in the queue itself is based on the value of
its timestamp. The scheduling does however put an
upper limit on the time that the thread can
consume the resource, subject to the condition that
there other threads in the queue for that particular
resource. The DDS does not interfere or override
with the native OS having charge of that resource
— but merely interfaces with it (if invoked). There
is still the issue of coordination between the
interface agents of different nodes on resource
bids. How does a host kernel which is allocating a
resource(through its native interface agent) know
for certain that there is no thread before time t; (at

say tj.1), of the same process that was to be
allotted the resource before t;? The monitor of the

destination node going to the source and
confirming that there is no prior thread outstanding
other than the current one that is requesting the
resource resolves the issue. File consistency, as
well global variable values integrity is maintained
by a uniform timestamping scheme. Access to file
and global variables can be had only by entry into
critical regions through the appropriate DDS
system calls and native OS interface.

Deadlock can be avoided by many ways.
Let us examine a typical one here,the Chandy-
Misra-Haas algorithm(Chandy et al.,1983). In this
algorithm, processes are allowed to request

Journal of Theoretical and Applied Information Technology

© 2005 - 2007 JATIT. All rights reserved.

www.jatit.org

multiple resources(e.g. locks) simultaneously
instead of one at a time. By allowing multiple
requests simultaneously the growing phase of
transaction can be speeded up considerably. The
algorithm is invoked when a process has to wait
for some resource. At that point a special probe
message is generated and sent to the process (or
processes) holding the needed resource. The
message consists of three numbers:the process that
just blocked, the process sending the message, and
the process to whom it is being sent .When the
message arrives, the recipient checks to see if it
itself is waiting for any processes. If so, the
message is updated, keeping the first field but
replacing the second field by its own process
number and the third one by the number of the
process it is waiting for. The message is then sent
to the process on which it is blocked. If it is
blocked on multiple processes, all of them are
sent(different) messages. This algorithm s
followed whether the resource is local or remote. If
the message goes all the way around and comes
back to the original sender, that is, the process
listed in the first field, a cycle exists and the
system is deadlocked. There are various ways in
which the deadlock can be broken. One way to
have each process add its identity to the end of the
probe message so that when it returned to the
initial sender, the complete cycle would be listed.
The sender can then see which process has the
highest number(or lowest priority), and kill that
one or send it a message asking it to kill itself.
Starvation of a resource is not possible because the
monitor is able to suspend the execution of a
thread if it exploits a resource beyond a pre-
determined bound.

7. PERFOMANCE MEASUREMENT

The performance of the DDS depends
directly on the extent to which delivers on the
Quality of Service parameters laid down for the
environment in which it functions. The rationale
for enunciation of the same is explained in Fig 9.

For a particular thread T’s migration, let

ti latency time for interfacing T (in both the
source and destination)

95

ts= time required for scheduling T’s migration
ty= latency due to the network (dispatch agent)
tc = Time taken for T to execute on a single node
with 100% CPU allotment
tn = Time delay due to multiprocessing

Then for the DDS to be viable, the total time of
execution by migration should be less than that
taken by a single node by multiprocessing, ie t,
>+t + ty

8. CONCLUSIONS

The DSS proposed has attempted to
introduce dynamically distributed service as
inherent to an inter-network as FTP, TELNET, e-
mail, chat etc. The rationale for - and the main
features of - the basic scheme have been described.
Process intensive applications will be the main
beneficiaries of the scheme. The outlines of the
resolution of the basic issues of thread migration,
mutual exclusion, deadlock, and process
synchronization to serve as a basis for the service
have been introduced. It is felt that as technology
continues to hold good on its promise of enhanced
data processing and transfer rates, the service
benefits will overcome the overheads of the DSS.

Any viable service in an open inter-
networking environment survives by initially
identifying its underlying components, interfaces,
and protocols, as well as how best to adapt to the
topology in which it is used. The interfaces are
especially important. This paper has introduced the
policy for the DSS. The mechanism of interfacing
the modeled DSS with a native OS is the next
logical study domain, followed by an analysis of
how the TCP/IP suite can be optimized for reliable
thread transfer. The service may be extended to
distributed databases also, but fragmentation
independence issues will have to be addressed.
Multimedia, Data Mining, & GIS constitute
another exciting application domain. Simulation
models have to be applied to forecast the efficacy
of the DDS. A reliability analysis [16], evaluating
the extent and conditions under which is most
beneficial will also have to be carried out.
Qualities of Service parameters have to be defined
and quantified by stochastically.

REFERENCES
[1]
2]

http://www.dsonline.computer.org

“The Common Object Request Broker
Architecture (CORBA) and its Notification
Service” by Gupta and Kar, IETE Technical

Journal of Theoretical and Applied Information Technology

© 2005 - 2007 JATIT. All rights reserved.

.2
=

www.jatit.org

Review, Jan-Apr 2002, Vol 19, Nos 1&2, pp
31-45.
[3]. Java 2 — The Complete Reference — by Peter
Naughton and Schildt (2000) Tata
McGraw-Hill
[4]. Operating Systems
Pearson Education

by William Stallings,

[5]. US Patent Application 20020156932 Kind
Code Al by Marc Schneiderman dated 24
October 2002 for “Method and Apparatus for
providing parallel execution of Computing
Tasks”

[6]. “Towards Internet Distributed Computing”,
by Milan Milenkovic, Scott H Robinson,
Robknauerhase, David Barkai, Sharad Garg,
Vijay Tewari, Todd Anderson, & Mic
Bowman , IEEE Computer May 2003 pg 38-
45

[7]. “Allocation Aspects in Distributed
Computing Systems” by Vidyarthi, Tripathi,
and Sarker, IETE Technical Review, Nov-
Dec 2001 pp 449-454

“Grid Computing : A Vendor’s Version”
(2002) URL :
http://dsonline.computer.org/0206/department
s/new.htm

(8].

[9]. “Distributed Operating Systrems” by

Andrew S Tannenbaum

[10]. “Operating System Concepts” Silberschatz
& Galvin (2000) published John Wiley &
Sons Inc.

[11]. “Application of Parallel and Distributed Data
Mining in E-Commerce”, IETE Technical
Review Aug 2000 pp 57-60 by Beg and Ravi
Kumar

[12]. “Advanced Concepts in Operating Systems”
by Mukesh Singhal & Niranjan K Shivratri,
Tata McGraw Hill Publishing 2001

[13]. “.NET vs JAVA” IT Today Sep 2002, pgs 62
-75

96

[14]. *“Reliability Evaluation of Distributed
Computing Networks 2-Mode Failure
Analysis” by S Selvan, Moinuddin, and KV
Ahmad, IETE Technical Review Jan Feb
2001, Vol 18 pgs 45-51

[15].“Transparent Process Migration in Sprite
Operating System” - URL
-http://www.cs.berkeley.edu/projects/sprite/sp
rite.papers.html

[16] .“Load Balancing in Distributed Systems
(1999)"- URL http://www.ibr.cs.tu-
bs.dc/projects/load/#PAPERS

[17] .“End System Optimizations for High Speed
TCP” IEEE Communications April 2001 Vol
39 No 4, pp 68-76 by JH Chase, AJ Gallatin,
and KG Yocum.

[18] .“Fast Dynamic Process Migration” ICDCS -
1996 -URL.:
http://www.cs.umd.edu/users/kritchal/opt.html

[19]. “Assignment and Scheduling
Communicating Periodic Tasks in Distributed
Real Time Systems” by T Abelalzaher, Dar —
Tzu Rand, & Kang C Shin, IEEE Transactions
on Software Engineering, Vol 23, No 12,
December 1997.

[20]. “Algebra of Communicating Shared

Resources” (1999)- URL

http://www.cis.upenn.edu/~rtg

[21] .“Interfacing Wide Area Network Computing
and Cluster” —(2000) Sumalatha Adabala
http://citeseer.nj.nec.com/adabala00.interfacin

g.html

[22] .“Real Time Information Delivery for the
Extended Enterprise” - URL:
http://www.itworld.com/Net/1756/CISCO/010
302/

[23] .“Optimising Heterogeneous Task Migration
in the Gardens’ Virtual Cluster Computer
(2000)” -URL :
http://citeseer.nj.nec.com/323338.html

[24] . “Managing IT”, Computers Today, March
2002 pp38-42.

