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ABSTRACT 
 

The gain of SVC depends upon the type of reactive power load for optimum performance. As the load 
and input wind power conditions are variable, the gain setting of SVC needs to be adjusted or tuned. In 
this paper, an ANN based approach has been used to tune the gain parameters of the SVC controller over 
a wide range of load characteristics. The multi-layer feed-forward ANN tool with the error back-
propagation training method is employed. Loads have been taken as the function of voltage. Analytical 
techniques have mostly been based on impedance load reduced network models, which suffer from 
several disadvantages, including inadequate load representation and lack of structural integrity. The 
ability of ANNs to spontaneously learn from examples, reason over inexact and fuzzy data and provide 
adequate and quick responses to new information not previously stored in memory has generated high 
performance dynamical system with unprecedented robustness. ANNs models have been developed for 
different hybrid power system configurations for tuning the proportional-integral controller for SVC. 
Transient responses of different autonomous configurations show that SVC controller with its gained 
tuned by the ANNs provide optimum system performance for a variety of loads. 

Keywords: Artificial Neural Network (ANN), Static Var Compensator (SVC), Autonomous      Hybrid 
Power System (AHPS) 

 
1. INTRODUCTION 
 

Applications of ANN to power systems are a 
growing area of interest. Considerable efforts have 
been placed on the applications of ANNs to power 
systems. Several interesting applications of ANNs 
to power system problems [1]-[5], indicate that 
ANNs have great potential in power system on-line 
and off-line applications. The feature of an ANN is 
its capability to solve a complicated problem very 
efficiently because the knowledge about the 
problem is distributed in the neurons and the 
connection weights of links between neurons, and 
information are processed in parallel.  

Back-propagation is an iterative, gradient search, 
supervised algorithm which can be viewed as 
multiplayer non-linear method that can re-code its 
input space in the hidden layers and thereby solve 
hard learning problems. The network is trained 
using ANN technique until a good agreement 
between predicted gain settings and actual gains is 
reached.  

During last three decades, the assessment of 
potential of the sustainable eco-friendly alternative 
sources and refinement in technology has taken 

place to a stage so that economical and reliable 
power can be produced. Different renewable 
sources are available at different geographical 
locations close to loads, therefore, the latest trend 
is to have distributed or dispersed power system. 
Examples of such systems are wind-diesel, wind-
diesel-micro-hydro-system with or without 
multiplicity of generation to meet the load 
demand. These systems are known as hybrid 
power systems. To have automatic reactive load 
voltage control SVC device have been considered. 
The multi-layer feed-forward ANN toolbox of 
MATLAB 6.5 with the error back-propagation 
training method is employed. 

2. TRAINING OF ANN PARAMETERS 
 

The input to the ANN is the value of exponent 
of reactive power load-voltage characteristic (nq) 
and the output is the desired proportional gain (KP) 
and integral gain (KI) parameters of the SVC. 
Normalized values of nq are fed as the input to the 
ANN the normalized values of outputs are 
converted into the actual value. The process of 
determining the weights is called the training of 
the learning process. Prior to conducting the 
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stochastic disturbances are shown in figure 3. The 
dynamic responses are shown for deterministic 
disturbance in reactive power load. To study the 
effect of multiplicity of generation an example of 
multi-wind diesel AHP system is presented. In 
wind-diesel system another type of non-
conventional energy sources (micro-hydro) has 
been added to study its effect.  
Figure 3: Simulation block diagram of multi-wind 

diesel Hybrid Power Systems For step + stochastic 
disturbances 

 
 MULTI-WIND-DIESEL HYBRID POWER 
SYSTEMS 
 

Transient responses of the multi-wind-diesel 
hybrid power system with SVC for 1% step 
increase in reactive power load and input wind 
power is shown in figure 4&5. Table 2 gives the 

maximum deviations of different parameters of 
multi-wind-diesel for 1% step  increase in reactive 
power load and input wind powers for nq =1.25and 
3.25. It is observed that maximum deviations of all 
parameters are more for larger values of nq.  

A lot of difficulty is observed in following the 
general guidelines suggested in [6], in which 
‘purlin’ is considered in the last layer. In the 
present case program works well when ‘purlin’ is 
considered first instead of last. Prior to the training 
process, a training data set consisting of full range 
of exponent nq (0.5 to 4 in the present case) and 
desired gains of SVC are compiled.  

Table 2: The maximum deviations of different 
parameters of multi-wind-diesel   for 1% step 

increase in reactive power load and input wind 
powers 

   1 2 

nq 3.25 1.25 

∆V  -0.002089 -0.001708 

SG∆Q  0.014810 0.012114 

SVC∆Q  0.021546 0.021098 

IG1∆Q  0.003232 0.003185 

IG2∆Q  0.000883 0.000873 
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3.2. WIND-DIESEL MICRO-HYDRO 
HYBRID POWER SYSTEMS 

The dynamic performance for 1% step increase 
in reactive power load for nq = 3.25 and nq = 1.25 
is shown in Figure 6&7. The maximum deviations 
of different  

parameters of wind-diesel-micro-hydro system for 
1% step increase in reactive power load are 
presented in Table 3. It is observed that maximum 
deviations of all parameters are more for larger 
values of nq. 

 
 Table 3: The Maximum Deviations of Different Parameters of Wind-Diesel-Micro-Hydro System For 1% 

Step Increase in Reactive Power Load  

 1 2 
nq 3.25 1.25 
∆V  -0.001531 -0.001249 

SG∆Q  0.010850 0.008858 

SVC∆Q  0.016679 0.014426 

IG1∆Q  0.000187 0.000153 

IG2∆Q  0.000045 0.00032 

 

 
Figure 6:  Transient responses of the wind-diesel-micro-hydro hybrid power system with SVC for 1% 

step increase in reactive power load and input wind power 
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Figure 7: Transient responses of the wind-diesel-micro-hydro autonomous hybrid power system for 1% 
step increase in reactive power load       ---- for nq = 3.25, ___ for nq = 1.25 

 

4. CONCLUSION 
 

ANN models have been developed for different 
hybrid power system configurations for tuning the 
proportional-integral controller for SVC. The 
ANN receives load voltage characteristics as its 
input and provides the desired gain settings KP and 
KI of SVC as the output. Transient responses of 
two autonomous configurations show that SVC 
controller with its gain tuned by the ANNs can 
provide optimum performance of the system over 
a wide range of typical load models. It is also 
observed that maximum deviations of all 
parameters are more for larger values of nq. 

 
System Data: 

  For Multi-Wind-Diesel Hybrid Power Systems: 
The values of constants are:          K1 = 0.15, K2 = 
0.811744, K3 = 6.36662, K4 = -7.0915, K6 = 
0.4961, K61 = 0.39575, K7 = -0.122068, K71 = -
0.026977, K8 = 1.52976, K9 = 1.0, KV = 0.66667, 
TV = 0.0001061 sec., and Kα = 0.460636. 

 For wind-diesel-micro-hydro Hybrid Power 
system: The values of constants are:          K1 = 
0.15, K2 = 0.811744, K3 = 6.36662, K4 = -7.0915, 
K11 = 0.15, K21 = 0.84382, K31 = 8.27276, K41 = -
8.311185, K6 = 0.4961, K7 = -0.12207, K8 = 
1.2826, K9 = 1.0, KV = 0.6667, TV = 0.0001061 
sec., and Kα =0.37655 
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