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ABSTRACT 
 
Using the graphics processing unit (GPU) to accelerate general-purpose computations has become an 
important technique in scientific research. However, the development complexity is significantly higher than 
for CPU-based solutions, due to the mainly graphics-oriented  concepts and development tools for GPU-
programming. As a consequence, general-purpose  computations on the GPU are mainly discussed in the 
academic domain and have not yet  fully reached industrial software development. This paper presents a 
novel contribution to general-purpose GPU programming – the analysis of the new paradigms of programing 
for all the programing languages based GPU .   
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1. INTRODUCTION  
 

Commodity graphics hardware has evolved 
tremendously over the last years – it started  with 
basic polygon rendering via 3dfx’s Voodoo 
Graphics in 1996, and continued with  custom 
vertex manipulation four years later, the graphics 
processing unit (GPU) now has  improved to a 
full-grown graphics-driven processing 
architecture with a speed-performance  approx. 
750 times higher than a decade before (1996: 50 
b/s, 2006: 36,8 b/s).  

This  makes the GPU evolving much faster 
than the CPU, which became approx. 50 times 
faster  in the same period (1996: 66 SPECfp2000, 
2006: 3010 SPECfp2000) [1]. Figure 1.1 shows 
the GPU performance over the last ten years and 
how the gap to the CPU increases.  

 

Fig. 1.1 The performance-increase of computer 
graphics hardware over the last decade . The 

green trend line shows that the GPU doubles its 
speed-performance every 13 months (i.e. GPU of 
2006 are approx. 750 times faster than G Pus of 
1996). In contrast, the performance of the CPU 
doubles only every 22 months [1].  

2. GENERAL PURPOSE COMPUTATION 
USING GPU 
 

Early graphics processing units of the 1980s 
and 1990s were built as 2D accelerators. 
Common operations included bit blitting, which 
is a combination of two bit maps using a raster op 
(for example: AND, OR). Today, GPUs are a 
cheap commodity solution to having a data-
parallel co-processor alongside the CPU. In their 
evolution as processors, they became fully 
programmable in three stages of the graphics 
pipeline Figure 2.1.  

In addition, they specialize in massively 
parallel scalar processing; modern GPUs have up 
to 128 independent processors (NVIDIA 2006), 
whereas CPUs have, at the desktop level, only 
reached 8 cores.  

GPUs are also out pacing CPUs in terms of 
raw processing horsepower. At the time of this 
writing, Nvidia's G80 is capable of a theoretical 
peak performance of 340 G flops, compared to 
the almost 40 G flops of Intel's Core 2 Duo 
processor (NVIDIA 2008, NVIDIA CUDA). 
GPU pixel processing is increasing at a rate of 
1.7 times per year, and vertex processing is 
increasing at a rate of 2.3 times per year, 
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contrasted with a 1.4 multiplier for CPU 
performance (Owens et al. 2005).  

Recently, there has been an increasing interest 
in general purpose computation on graphics 
hardware. The ability to work independently 
alongside the CPU as a coprocessor is interesting 
but not motivating enough to learn how to apply 
problems to the graphics domain. However, with 
full programmability and the computational 
power of GPUs out pacing CPUs (in terms of a 
price/performance ratio), the GPU has moved to 
a place of being the primary processing unit for 
certain applications, with the CPU managing data 
and direction of the GPU.  

This is motivation enough to learn how to 
apply certain problems to the domain of 
computer graphics, thus we achieve general 
purpose computation on graphics hardware.   

 

3. PROGRAMING PARADIGMS OF THE 
GPU  
 

As the name implies, the GPU was initially 
designed for accelerating graphical 
tasks.However, it was soon being exploited for 
performing non-graphical computations, for 
instance, the work of Lengyel uses graphics 
hardware to compute robot motion, the Cypher 
Flow project by Kedem and Ishihara exploits the 
graphics accelerator to decipher encrypted data 
[4, 5, 6]. 

Nevertheless, while more and more algorithms 
are implemented for graphics hardware, most of 
the work stays in the academic field and has not 
yet found its way into industrial software 
engineering. 

The reason is that GPU-based application 
development is much more complex, mainly 
because the developer has to be an expert in two 
domains in the application's domain,and in 
computer graphics. This means that changing the 
graphics-oriented paradigms and corresponding 
GPU development tools may significantly reduce 
development complexity. 

Most of the existing GPU-based development 
systems are founded on the graphics oriented  
paradigm that is illustrated in the figure 3.1 the 
visual paradigm. This approach has been in 
pronounced by the entertainment and special-
effects industry, where the software developer 
creates the so-called rendering engine and the 

graphics artist uses the engine to create so-called 
shader programs that compute visual phenomena.  

 

Fig. 3.1. The Graphic Pipeline. 

For instance, a very popular rendering engine 
is the Render Man software  while the software 
itself is developed by Pixar, the visual effects" 
(i.e. shader programs) are created by individual 
special-effects companies [12]. In this case, the 
visual paradigm makes sense, because the 
graphics artists and the software developers 
usually do not know each other  and therefore, 
have separated each work that are tailored to the 
specific needs of each group. 

Figure 3.1: The visual paradigm knows two 
participants the software developer and the 
graphics artist each having its own work 

The software developer creates the engine that 
is used by the graphics artist to create shader 
programs (that run as part of the engine). 
Examples for GPU-based development systems 
that are founded on the visual paradigm are 
Render Man, Gelato, Pfman, Interact-SL, RTSL, 
Cg, and GLslang [13, 14, 15, 16, 17, 18].  

However, such development systems are 
inappropriate to implement general-purpose 
algorithms on the GPU, mainly because of the 
following two reasons: 
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Due to the distinct specialized work, broad 
knowledge is required in both disciplines 
software engineering (developer) and computer 
graphics (artist). 

The visual paradigm also forces the software 
developer to leave his familiar development 
environment and to develop in the graphics 
artist's programming language. 

Furthermore, because CPU and GPU-based 
code are developed in different programming 
languages, additional binding code is required to 
glue the different functionality together. 

Please note that there are GPU-based 
development systems that relax the 
aforementioned issues. For instance, Brook for 
GPUs, CUDA, and CTM are not graphics 
oriented,but they still separate between CPU- and 
GPU-based code [18, 20, 21]. On the other hand, 
Sh allows mixing the code of both processor 
platforms in the same programming language, but  
still requires knowledge in the computer graphics 
domain [19]. 

As a matter of fact, to efficiently develop 
general-purpose applications that are accelerated 
by the GPU, a significantly different approach is 
required the algorithmic paradigm 

Figure 3.2 illustrated the paradigm: the 
software developer creates the complete software 
that contains code for the main and the graphics 
processor at the same time. This means that there 
is a single development environment, where the 
same programming language is used into CPU- 
and GPU-based code side by side and no binding 
code is required that connects the variables of the 
different processor platforms. 

Fig. 3.2. The  algorithmic paradigm knows 
only the software developer, who creates the 
whole software including code for CPU and 

GPU. The GPU-based functionality of the 
software has to be extracted and transformed to 
the graphics hardware's internal format. 

In other words, the algorithmic paradigm 
conceptually eliminates the separation between 
both processor platforms. In practice, GPU-based 
development systems that are founded on this 
paradigm have to deal with the following three 
challenges: 

a) Compact Set of Generic Concepts  

The development system has to present a 
consistent set of generic concepts to abstract 
techniques and terminology that are specific to 
computer graphics. For instance, vertex and 
fragment processing is hard to understand by the 
common software developer and need to be 
abstracted by a generic concept.  

The challenging task is that the new concepts 
have to be easier to learn, compared to the 
graphics-oriented concepts of the visual 
paradigm. While this is hard to evaluate, the rule-
of-thumb is: the less concepts, the easier to learn 

b) Uniform Development Environment  

Both processor platforms have to be accessible 
in the same development environment. In other 
words, CPU- and GPU-based code should be 
mixable in the same source code , i.e. the code is 
speciefed in the same general-purpose 
programming language. Ideally, the software 
developer is able to use the same familiar syntax, 
the same compiler collection, and the same 
testing environment he is used to for both 
processor architectures. Please note that familiar 
syntax" means that mathematical expressions are 
speciefed in the same way, no matter of the target 
platform i.e. that code should be interchangeable. 



 

 
136 

 

c) Seamless Data Interchange Between CPU and GPU  

Development systems that follow the algorithmic 
paradigm have to eliminate the need of binding code 
variables have to be accessed easily on both processor 
architectures. In other words, computation results of 
the graphics hardware have to be directly accessible in 
CPU based code, and main processor variables have to 
be usable as GPU-based inputs. 

Please note that the prior challenges mainly addressed 
the syntax and style of source code and the software 
development work flow, while this is focused on the 
seamless interchange and automatic transfer of data 
between the main and graphics processor. 

The aforementioned challenges are accomplished by 
using the following two-stage approach: On a 
theoretical level, the existing graphics-oriented 
concepts for programming the GPU are abstracted to 
generic concepts, e.g. pixel and fragment processing is 
abstracted via a unificated kernel definition, and the 
vector processor concept is abstracted via vector 
fusion. Furthermore, on a practical level, graphics-
hardware-based code is seamlessly integrated into the 
general-purpose C++ programming language, which is 
realized by using advanced object-oriented techniques 
like “ad-hoc polymorphism" and “generic 
programming". 

To further reduce the development complexity and to 
improve run-time performance, a variety of 
optimization strategies are automatically applied to the 
GPU-based code. 

4 PERFORMANCE  
 

Successful use of the GPU for general purpose 
computation requires taking into account the 
significant overhead incurred in executing and 
managing GPU kernels. This includes queuing 
overhead, scheduling overhead,, and the GPU 
progress check period. 

a)GPU Overhead 

Our study of GPU overhead examines the 
setup and management costs for a GPU kernel. 
This includes kernel startup, buffer allocation, 
and memory transfer from the CPU to the device 
and in the other direction. We chose not to 
include the overhead involved in data transfer to 
on-chip memory. Since these units of memory 
are small, consisting of tens of KB, the overhead 
of data transfer in this context is small. 

b)Kernel Startup and Termination Overhead 

Kernel startup overhead is the time from the 
point when the kernel is invoked on the CPU to 

when it starts executing on the GPU. Kernel 
termination overhead is the time from when the 
kernel nishes execution on the GPU to the point 
when the CPU can continue executing after a 
blocking kernel-synchronization call. 

We looked at the sum of kernel startup and 
termination costs by timing the synchronized 
execution of an empty CUDA kernel, repeating 
this operation 50 times within a loop. We 
executed the program twice with different kernel 
grid structures. 

The first grid consisted of a single block with a 
single thread. The second kernel had a 64 by 64 
grid of blocks with each block consisting of 256 
threads. 

The results are summarized in table 4.1. For 
both grid sizes we noticed that the first kernel 
execution in the program took significantly 
longer, presumably dueto some CUDA setup 
operation. All subsequent kernels produced very 
consistent results, as evident from the low 
standard deviation. The average kernel overhead 
for the simple grid was 10.0 fs. For the larger 
grid the average overhead was 36.6fs. 

These results reveal that the constant costs 
associated with kernel execution are quite high. 
We can see, for example, that a piece of CPU 
code which runs for less than 10 fs will not benet 
from execution on the GPU, even if the kernel 
can give a good speedup over the CPU code. 

We should also examine the difference in 
overhead between the first, light, kernel grid, and 
the second kernel grid, which consists of over a 
million threads. The overhead in the second case 
is about 3.6 times higher, Streaming 
Multiprocessors have a limited block and thread 
capacity. Only a subset of the blocks will initially 
be assigned to the SMs, with the remaining 
blocks scheduled after previous ones nish 
execution. This is most likely the reason for the 
slower execution. We should keep in mind that in 
practice some of this overhead could be hidden 
by the execution of a compute-intensive kernel. 
Nonetheless, our set up gives us an upper bound 
for kernel overhead in the case of a big grid  

c) Memory Allocation and Transfer 

We tested GPU memory performance, timing 
memory allocation and CPU-GPU data transfers. 
We conducted each test with buffer sizes from 1 
byte to 128 MB. 

Results are shown in figure 4.1. We conducted 
the tests on a workstation having an NVIDIA 
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GeForce G92 8800 GTS graphics card, an Intel 
Core 2 Quad processor clocked at 3.0 GHz, 4 GB 
of DDR2 RAM, and a motherboard using P35 
chipset. 

We can see from the plot that GPU memory 
overhead is quite high. A closer look reveals that 
the relationship between the size of the buffer 
and the time for allocation or transfer is complex, 
changing as size of the buffer grows.  

The allocation overhead is roughly constant at 
1-2 fs for buffers up to 2KB. After a sudden 
increase to 90 fs for 4 KB, the overhead remains 
roughly constant again, reaching 100 fs only at 
64KB. From there the overhead increases sub 
linearly with buffer size until 32 MB, and in 
roughly linear fashion after that. For a 128 MB 
buffer, the overhead is 3.5 ms. 

Table 4.1.  Kernel startup and termination 
overhead. Values represent time in microseconds. 

 Grid 1 Grid 2 
Minimum 9 36 
Maximum 24 51 

Mean 10 36.6 
Std. Dev. 2.07 2.11 

 

 
The transfer overhead is about 15 ss for buffers 

less than 4 KB. For larger buffer sizes, the 
relationship between buffer size and transfer time 
is roughly linear, with a higher average rate of 
growth than for memory allocations. It should be 

noted that transfer from the GPU to the CPU is 
somewhat faster than in the other direction, 
particularly for large buffers As an example, 
transferring a 128 MB buffer from the CPU to the 
GPU takes almost 89 ms. Transfer in the other 
direction is 40 % faster,at 54 ms. 

Fig. 4.1. Memory allocation and transfer 
overhead. 

Based on the results of these tests, we 
recommend reusing work request buffers 
whenever possible, and only transferring GPU 
data back to the CPU when necessary. 

As an example, if the GPU data needs to be 
modified between the execution of two kernels, it 
might be better to perform the transformation on 
the GPU, perhaps using a separate kernel, even if 
the efficiency of the transformation is lower on 
the GPU. 

5.               CONCLUSION 
The acceleration of general-purpose 

computations by using programmable graphics 
hardware has become very popular over the last 
decade, mainly due to the massively parallelized 
processor design and the enormous availability of 
GPUs as an inexpensive standard component of 
today's personal computers. However, most 
existing GPU-related development systems are 
graphics-oriented and developing general-
purpose applications in such environments is a 
challenging task for programmers who are not 
familiar to computer graphics. 

Its factible integrate a new programing 
language. This integration going to be realized in 
two ways: First, the graphics-oriented 
programming paradigms going to replace  by 
generic concepts, using novel techniques like the 
unificated kernel definition and the vector fusion 
approach.  

Second, the definition of GPU-based code 
going to be embedded into the C++ programming 
language using ad-hoc polymorphism and 
operator overloading. In addition, the 
development complexity is further reduced by 
providing automatic optimizations of the GPU-
based code. 
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