
Journal of Theoretical and Applied Information Technology

© 2005 - 2009 JATIT. All rights reserved.

www.jatit.org

133

GPU PROGRAMMING PARADIGM

1J. ÁLVAREZ-CEDILLO, 1I. RIVERA-ZÁRATE,
1J. CARLOS HERRERA LOZADA,1M. OLGUIN-CARBAJAL

1CIDETEC-IPN México

E-mail: {jaalvarez, irivera, jlozada, molguin}@ipn.mx

ABSTRACT

Using the graphics processing unit (GPU) to accelerate general-purpose computations has become an
important technique in scientific research. However, the development complexity is significantly higher than
for CPU-based solutions, due to the mainly graphics-oriented concepts and development tools for GPU-
programming. As a consequence, general-purpose computations on the GPU are mainly discussed in the
academic domain and have not yet fully reached industrial software development. This paper presents a
novel contribution to general-purpose GPU programming – the analysis of the new paradigms of programing
for all the programing languages based GPU .

Keywords: GPU architecture, Computer graphics card, GPU performance, Programming paradigms.

1. INTRODUCTION

Commodity graphics hardware has evolved
tremendously over the last years – it started with
basic polygon rendering via 3dfx’s Voodoo
Graphics in 1996, and continued with custom
vertex manipulation four years later, the graphics
processing unit (GPU) now has improved to a
full-grown graphics-driven processing
architecture with a speed-performance approx.
750 times higher than a decade before (1996: 50
b/s, 2006: 36,8 b/s).

This makes the GPU evolving much faster
than the CPU, which became approx. 50 times
faster in the same period (1996: 66 SPECfp2000,
2006: 3010 SPECfp2000) [1]. Figure 1.1 shows
the GPU performance over the last ten years and
how the gap to the CPU increases.

Fig. 1.1 The performance-increase of computer
graphics hardware over the last decade . The

green trend line shows that the GPU doubles its
speed-performance every 13 months (i.e. GPU of
2006 are approx. 750 times faster than G Pus of
1996). In contrast, the performance of the CPU
doubles only every 22 months [1].

2. GENERAL PURPOSE COMPUTATION
USING GPU

Early graphics processing units of the 1980s
and 1990s were built as 2D accelerators.
Common operations included bit blitting, which
is a combination of two bit maps using a raster op
(for example: AND, OR). Today, GPUs are a
cheap commodity solution to having a data-
parallel co-processor alongside the CPU. In their
evolution as processors, they became fully
programmable in three stages of the graphics
pipeline Figure 2.1.

In addition, they specialize in massively
parallel scalar processing; modern GPUs have up
to 128 independent processors (NVIDIA 2006),
whereas CPUs have, at the desktop level, only
reached 8 cores.

GPUs are also out pacing CPUs in terms of
raw processing horsepower. At the time of this
writing, Nvidia's G80 is capable of a theoretical
peak performance of 340 G flops, compared to
the almost 40 G flops of Intel's Core 2 Duo
processor (NVIDIA 2008, NVIDIA CUDA).
GPU pixel processing is increasing at a rate of
1.7 times per year, and vertex processing is
increasing at a rate of 2.3 times per year,

134

contrasted with a 1.4 multiplier for CPU
performance (Owens et al. 2005).

Recently, there has been an increasing interest
in general purpose computation on graphics
hardware. The ability to work independently
alongside the CPU as a coprocessor is interesting
but not motivating enough to learn how to apply
problems to the graphics domain. However, with
full programmability and the computational
power of GPUs out pacing CPUs (in terms of a
price/performance ratio), the GPU has moved to
a place of being the primary processing unit for
certain applications, with the CPU managing data
and direction of the GPU.

This is motivation enough to learn how to
apply certain problems to the domain of
computer graphics, thus we achieve general
purpose computation on graphics hardware.

3. PROGRAMING PARADIGMS OF THE
GPU

As the name implies, the GPU was initially
designed for accelerating graphical
tasks.However, it was soon being exploited for
performing non-graphical computations, for
instance, the work of Lengyel uses graphics
hardware to compute robot motion, the Cypher
Flow project by Kedem and Ishihara exploits the
graphics accelerator to decipher encrypted data
[4, 5, 6].

Nevertheless, while more and more algorithms
are implemented for graphics hardware, most of
the work stays in the academic field and has not
yet found its way into industrial software
engineering.

The reason is that GPU-based application
development is much more complex, mainly
because the developer has to be an expert in two
domains in the application's domain,and in
computer graphics. This means that changing the
graphics-oriented paradigms and corresponding
GPU development tools may significantly reduce
development complexity.

Most of the existing GPU-based development
systems are founded on the graphics oriented
paradigm that is illustrated in the figure 3.1 the
visual paradigm. This approach has been in
pronounced by the entertainment and special-
effects industry, where the software developer
creates the so-called rendering engine and the

graphics artist uses the engine to create so-called
shader programs that compute visual phenomena.

Fig. 3.1. The Graphic Pipeline.

For instance, a very popular rendering engine
is the Render Man software while the software
itself is developed by Pixar, the visual effects"
(i.e. shader programs) are created by individual
special-effects companies [12]. In this case, the
visual paradigm makes sense, because the
graphics artists and the software developers
usually do not know each other and therefore,
have separated each work that are tailored to the
specific needs of each group.

Figure 3.1: The visual paradigm knows two
participants the software developer and the
graphics artist each having its own work

The software developer creates the engine that
is used by the graphics artist to create shader
programs (that run as part of the engine).
Examples for GPU-based development systems
that are founded on the visual paradigm are
Render Man, Gelato, Pfman, Interact-SL, RTSL,
Cg, and GLslang [13, 14, 15, 16, 17, 18].

However, such development systems are
inappropriate to implement general-purpose
algorithms on the GPU, mainly because of the
following two reasons:

135

Due to the distinct specialized work, broad
knowledge is required in both disciplines
software engineering (developer) and computer
graphics (artist).

The visual paradigm also forces the software
developer to leave his familiar development
environment and to develop in the graphics
artist's programming language.

Furthermore, because CPU and GPU-based
code are developed in different programming
languages, additional binding code is required to
glue the different functionality together.

Please note that there are GPU-based
development systems that relax the
aforementioned issues. For instance, Brook for
GPUs, CUDA, and CTM are not graphics
oriented,but they still separate between CPU- and
GPU-based code [18, 20, 21]. On the other hand,
Sh allows mixing the code of both processor
platforms in the same programming language, but
still requires knowledge in the computer graphics
domain [19].

As a matter of fact, to efficiently develop
general-purpose applications that are accelerated
by the GPU, a significantly different approach is
required the algorithmic paradigm

Figure 3.2 illustrated the paradigm: the
software developer creates the complete software
that contains code for the main and the graphics
processor at the same time. This means that there
is a single development environment, where the
same programming language is used into CPU-
and GPU-based code side by side and no binding
code is required that connects the variables of the
different processor platforms.

Fig. 3.2. The algorithmic paradigm knows
only the software developer, who creates the
whole software including code for CPU and

GPU. The GPU-based functionality of the
software has to be extracted and transformed to
the graphics hardware's internal format.

In other words, the algorithmic paradigm
conceptually eliminates the separation between
both processor platforms. In practice, GPU-based
development systems that are founded on this
paradigm have to deal with the following three
challenges:

a) Compact Set of Generic Concepts

The development system has to present a
consistent set of generic concepts to abstract
techniques and terminology that are specific to
computer graphics. For instance, vertex and
fragment processing is hard to understand by the
common software developer and need to be
abstracted by a generic concept.

The challenging task is that the new concepts
have to be easier to learn, compared to the
graphics-oriented concepts of the visual
paradigm. While this is hard to evaluate, the rule-
of-thumb is: the less concepts, the easier to learn

b) Uniform Development Environment

Both processor platforms have to be accessible
in the same development environment. In other
words, CPU- and GPU-based code should be
mixable in the same source code , i.e. the code is
speciefed in the same general-purpose
programming language. Ideally, the software
developer is able to use the same familiar syntax,
the same compiler collection, and the same
testing environment he is used to for both
processor architectures. Please note that familiar
syntax" means that mathematical expressions are
speciefed in the same way, no matter of the target
platform i.e. that code should be interchangeable.

136

c) Seamless Data Interchange Between CPU and GPU

Development systems that follow the algorithmic
paradigm have to eliminate the need of binding code
variables have to be accessed easily on both processor
architectures. In other words, computation results of
the graphics hardware have to be directly accessible in
CPU based code, and main processor variables have to
be usable as GPU-based inputs.

Please note that the prior challenges mainly addressed
the syntax and style of source code and the software
development work flow, while this is focused on the
seamless interchange and automatic transfer of data
between the main and graphics processor.

The aforementioned challenges are accomplished by
using the following two-stage approach: On a
theoretical level, the existing graphics-oriented
concepts for programming the GPU are abstracted to
generic concepts, e.g. pixel and fragment processing is
abstracted via a unificated kernel definition, and the
vector processor concept is abstracted via vector
fusion. Furthermore, on a practical level, graphics-
hardware-based code is seamlessly integrated into the
general-purpose C++ programming language, which is
realized by using advanced object-oriented techniques
like “ad-hoc polymorphism" and “generic
programming".

To further reduce the development complexity and to
improve run-time performance, a variety of
optimization strategies are automatically applied to the
GPU-based code.

4 PERFORMANCE

Successful use of the GPU for general purpose
computation requires taking into account the
significant overhead incurred in executing and
managing GPU kernels. This includes queuing
overhead, scheduling overhead,, and the GPU
progress check period.

a)GPU Overhead

Our study of GPU overhead examines the
setup and management costs for a GPU kernel.
This includes kernel startup, buffer allocation,
and memory transfer from the CPU to the device
and in the other direction. We chose not to
include the overhead involved in data transfer to
on-chip memory. Since these units of memory
are small, consisting of tens of KB, the overhead
of data transfer in this context is small.

b)Kernel Startup and Termination Overhead

Kernel startup overhead is the time from the
point when the kernel is invoked on the CPU to

when it starts executing on the GPU. Kernel
termination overhead is the time from when the
kernel nishes execution on the GPU to the point
when the CPU can continue executing after a
blocking kernel-synchronization call.

We looked at the sum of kernel startup and
termination costs by timing the synchronized
execution of an empty CUDA kernel, repeating
this operation 50 times within a loop. We
executed the program twice with different kernel
grid structures.

The first grid consisted of a single block with a
single thread. The second kernel had a 64 by 64
grid of blocks with each block consisting of 256
threads.

The results are summarized in table 4.1. For
both grid sizes we noticed that the first kernel
execution in the program took significantly
longer, presumably dueto some CUDA setup
operation. All subsequent kernels produced very
consistent results, as evident from the low
standard deviation. The average kernel overhead
for the simple grid was 10.0 fs. For the larger
grid the average overhead was 36.6fs.

These results reveal that the constant costs
associated with kernel execution are quite high.
We can see, for example, that a piece of CPU
code which runs for less than 10 fs will not benet
from execution on the GPU, even if the kernel
can give a good speedup over the CPU code.

We should also examine the difference in
overhead between the first, light, kernel grid, and
the second kernel grid, which consists of over a
million threads. The overhead in the second case
is about 3.6 times higher, Streaming
Multiprocessors have a limited block and thread
capacity. Only a subset of the blocks will initially
be assigned to the SMs, with the remaining
blocks scheduled after previous ones nish
execution. This is most likely the reason for the
slower execution. We should keep in mind that in
practice some of this overhead could be hidden
by the execution of a compute-intensive kernel.
Nonetheless, our set up gives us an upper bound
for kernel overhead in the case of a big grid

c) Memory Allocation and Transfer

We tested GPU memory performance, timing
memory allocation and CPU-GPU data transfers.
We conducted each test with buffer sizes from 1
byte to 128 MB.

Results are shown in figure 4.1. We conducted
the tests on a workstation having an NVIDIA

137

GeForce G92 8800 GTS graphics card, an Intel
Core 2 Quad processor clocked at 3.0 GHz, 4 GB
of DDR2 RAM, and a motherboard using P35
chipset.

We can see from the plot that GPU memory
overhead is quite high. A closer look reveals that
the relationship between the size of the buffer
and the time for allocation or transfer is complex,
changing as size of the buffer grows.

The allocation overhead is roughly constant at
1-2 fs for buffers up to 2KB. After a sudden
increase to 90 fs for 4 KB, the overhead remains
roughly constant again, reaching 100 fs only at
64KB. From there the overhead increases sub
linearly with buffer size until 32 MB, and in
roughly linear fashion after that. For a 128 MB
buffer, the overhead is 3.5 ms.

Table 4.1. Kernel startup and termination
overhead. Values represent time in microseconds.

 Grid 1 Grid 2
Minimum 9 36
Maximum 24 51

Mean 10 36.6
Std. Dev. 2.07 2.11

The transfer overhead is about 15 ss for buffers

less than 4 KB. For larger buffer sizes, the
relationship between buffer size and transfer time
is roughly linear, with a higher average rate of
growth than for memory allocations. It should be

noted that transfer from the GPU to the CPU is
somewhat faster than in the other direction,
particularly for large buffers As an example,
transferring a 128 MB buffer from the CPU to the
GPU takes almost 89 ms. Transfer in the other
direction is 40 % faster,at 54 ms.

Fig. 4.1. Memory allocation and transfer
overhead.

Based on the results of these tests, we
recommend reusing work request buffers
whenever possible, and only transferring GPU
data back to the CPU when necessary.

As an example, if the GPU data needs to be
modified between the execution of two kernels, it
might be better to perform the transformation on
the GPU, perhaps using a separate kernel, even if
the efficiency of the transformation is lower on
the GPU.

5. CONCLUSION
The acceleration of general-purpose

computations by using programmable graphics
hardware has become very popular over the last
decade, mainly due to the massively parallelized
processor design and the enormous availability of
GPUs as an inexpensive standard component of
today's personal computers. However, most
existing GPU-related development systems are
graphics-oriented and developing general-
purpose applications in such environments is a
challenging task for programmers who are not
familiar to computer graphics.

Its factible integrate a new programing
language. This integration going to be realized in
two ways: First, the graphics-oriented
programming paradigms going to replace by
generic concepts, using novel techniques like the
unificated kernel definition and the vector fusion
approach.

Second, the definition of GPU-based code
going to be embedded into the C++ programming
language using ad-hoc polymorphism and
operator overloading. In addition, the
development complexity is further reduced by
providing automatic optimizations of the GPU-
based code.

REFERENCES

[1] J. L. SPEC CPU2000: measuring CPU

performance in the new millennium. IEEE
Computer, 33(7):28-35, 2000.

[2] D. Kirk. The future: programmable GPUs &

cinematic computing. Presentation at
WinHEC'03, 2003. On line available at
http://developer.nvidia.com/object/cg_tutorial
_teaching.html.

[3] W. R. Mark. Future visualization platform.

Panel Presentation at IEEE Visualization
(VIS'04), 2004. On line available at

138

http://wwwcsl.
csres.utexas.edu/users/billmark/talks.

[4] J. Lengyel, M. Reichert, B. R. Donald, and D.

P. Greenberg. Real-time robot motion
planning using rasterizing computer graphics
hardware. In Computer Graphics
(SIGGRAPH'90 Proceedings), volume 24,
pages 327-335, August 1990.

[5] G. Kedem and Y. Ishihara. Brute force attack

on UNIX passwords with SIMD computer. In
USENIX Security Symposium
(SECURITY'99 Proceedings), pages 93-98,
August 1999.

[6] K. E. Hof III, T. Culver, J. Keyser, M. Lin,

and D. Manocha. Fast computation of
generalized Voronoi diagrams using graphics
hardware. In Computer Graphics
(SIGGRAPH'99 Proceedings), pages 277-
286, July 1999.

[7] P. Kipfer, M. Segal, and R.Westermann.

UberFlow: A GPU-based particle engine. In
ACM SIGGRAPH/Eurographics Workshop
on Graphics Hardware (EGGH'04 Pro-
ceedings), pages 115-122, 2004.

[8] E. S. Larsen and D. McAllister. Fast matrix

multiplies using graphics hardware. In High
Performance Networking and Computing
(SC'01 Proceedings), November 2001.

[9] T. Jansen, B. von Rymon-Lipinski, N.

Hanssen, and E. Keeve. Fourier Volume
Rendering on the GPU using a Split-Stream-
FFT. In Vision, Modeling, and Visualization
(VMV'04 Proceedings), November 2004.

[10] OpenGL Architecture Review Board.

ARB_vertex_buffer_object. OpenGL
Extension,

2003. On line available at
http://www.opengl.org/registry/specs/ARB/ve
rtex_buffer_object.txt.

[11] B. Cabral, N. Cam, and J. Foran. Accelerated

volume rendering and tomographic
reconstruction using texture mapping
hardware. In Symposium on Volume
Visualization (VVS'94 Proceedings), pages
91-98, October 1994.

[12] OpenGL Architecture Review Board, D.

Shreiner, M. Woo, J. Neider, and T. Davis.
OpenGL Programming Guide: The Oficial
Guide to Learning OpenGL. Addison-Wesley
Professional, second edition, 2005.

[13] P. Hanrahan and J. Lawson. A language for

shading and lighting calculations. In
Computer Graphics (SIGGRAPH'90
Proceedings), volume 24, pages 289-298,
August 1990.

[14] M. Olano and A. Lastra. A shading language

on graphics hardware: The PixelFlow shading
system. In Computer Graphics
(SIGGRAPH'98 Proceedings), volume 32,
pages 159{168, July 1998.

[15] M. S. Peercy, M. Olano, J. Airey, and P. J.

Ungar. Interactive multi-pass programmable
shading. In Computer Graphics
(SIGGRAPH'00 Proceedings), volume 34,
pages 425-432, July 2000.

[16] K. Proudfoot, W. R. Mark, S. Tzvetkov, and

P. Hanrahan. A real-time procedural shading
system for programmable graphics hardware.
In Computer Graphics (SIG-GRAPH'01
Proceedings), volume 35, pages 159-170,
August 2001.

[17] W. R. Mark, R. S. Glanville, K. Akeley, and

M. J. Kilgard. Cg: A system for programming
graphics hardware in a C-like language. In
Computer Graphics (SIGGRAPH'03
Proceedings), volume 37, pages 896-907, July
2003.

[18] R. J. Rost. OpenGL Shading Language.

Addison-Wesley Professional, second edition.

